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1 Introduction

A principal purpose of numerical analysis is to project continuous problems
onto finite dimensional spaces and attack the original problems by analyzing
the discretized systems. Although infinite dimensional spaces are quite dif-
ferent from finite dimensional spaces, there is a beautiful harmony between
a continuous problem and the discretized one.

The purpose of this paper is to show this through boundary value prob-
lems of Sturm-Liouville type and their discretizations by finite difference
methods (FDMs). It is also shown that the FDMs work well even for the
case where local truncation errors diverge as the mesh-size h tends to zero.

First, in §2, we present some new results on inversion of tridiagonal ma-
trices. Next, in §3, relations between Green'’s functions and Green’s matrices
are described for continuous and discrete boundary value problems. Fur-
thermore, in §4, an example is given such that even if the truncation error
does not converge to zero as h approaches to zero, the centered finite dif-
ference method does converge to the true solution as h — 0. This suggests
us a robustness of FDM. Finally, on the basis of the result in §4, a mesh
refinement technique for the Shortley-Weller (S-W) method is proposed in
§5, which improves the results obtained by the centered three-point formula.
In fact, an application of our technique to the example in §4 yields numeri-
cal results with O(h?log +) accuracy, while the usual centered formula gives

O(h?) accuracy.
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2 Inversion of Tridiagonal Matrices

We consider an n x n nonsingular tridiagonal matrix A of the form

b1 Cy
a9 bg Co
A= , a6 #0 Vi
ap—1 bn—l Cn—1
an b,
Concerning the inverse of A, the following is known:

Theorem 2.1 (Yamamoto-Ikebe [13]). Define the two sequence {un},
{vm} as follows:

1
up =0, ug = hy, Uy = _C—"(am—lum—Z + bn1tm-1) (m>2), (2.1)
m—1
1
Unt41 =0, vp = h2, Uy = o (bmt1Um+1 + Cmi1Umt2) (M <n—1),
m+

(2.2)

where Ay, ho, a; and cn may be chosen arbitrarily, but may not be zero. Then
A™! = (ayy) is given by

U 13 1 .
q =4 amw II,.,% @< (2:3)
1) T ujv; H Ck—1 (Z > ])
a1h1'vo k=2 Ok - !

I .
where H is understood to be

fpac_ (a2 622
w |1 (G =1).

k=2

In [13], this theorem has been proved as a corollary of the more general
inversion formula for a nonsingular (g, p)-type band matrix A = (a;;) with
aij=0ifi>j+qorj>i+panda; #0ifi—j=qorj—i=p.

We can also prove Theorem 2.1 by directly verifying

bianj + crog; = 01 ,
aiai_lj + biOéij -+ Ciit15; = 5@', 2 < 1 S n—1

anan_lj + bnanj = 5nj‘

Furthermore, Theorem 2.1 includes the following results as a special case:
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Theorem 2.2 (Gantmakher-Krein [4], Bukhberger-Emel’yanenko [3]).
If A is a nonsingular symmetric and irreducible tridiagonal matrix, then there
exist two column vectors u = (u;) and v = (v;) such that

UiVv1 U2 -+ UIUy,
U1V2 UV -+ UV,
-1 __ — s g ..
A= : : : = (Umm(z,g)vmax(m))- (2.4)
U1Vp U2Up -+ Uplp

Conversely, if u = (u;) and v = (v;) are given and a matrix B = (Umin(;,j)Vmax(ij))
is nonsingular, then B! is a symmetric tridiagonal matrix with nonzero su-
perdiagonal elements. :

Theorem 2.3 (Ikebe [5]). Under the assumptions of Theorem 2.1, four
column vectors u = (u;), v = (v;), € = (z;) and y = (), i = 1,2,...,n
exist such that A™! = (ay;) is given by

wv; (i <)
Qi {xjyi (’l > J) y Uy ZY;
Proof. In Theorem 2.1, put

J
1 ! Cp—1
Ui = U4, Vi =— 3
! alhl’Uo kI:-‘E ag
J
Uj ! Cp—1
X' = = J ; Y; = ;.
! arhivo Ig A
Then U = (U;), V = (Vi), X = (X;) and Y = (V) satisfy the conditions for
u, v,z and y in Theorem 2.3. O

On the basis of Theorem 2.1, we now state the following result which appears
to be new.

Theorem 2.4. Under the assumptions of Theorem 2.1, there exist three
column vectors u = (u;), v = (v;) and d = (d;) such that

uvr WUz v Wp\ [di
U1V UgVg -+ UV d2

AN =] : . , = GD, (2.5)
U1Vp U2VUp - UpUp dn

where D = diag(dy,...,d,) and G = (gi;) With gij = Umin(i j)VUmax(,j)- 1f We
add a normalization condition d; = 1, then G and D are uniquely determined
and A is symmetric if and only if D = I.



Proof. A proof of this result will be given in [11]. O
Remark 2.1. A matrix R = (ry;) is called a Green’s matrix (cf. [2]) if there
exist number a4, ...,ay, b1,...,b, such that
ab; (i <j)
ij = Qmin(i,j) Omax(ij) = !
Tij = Gmin(i,5) Ymax(i,j) {biaj > 7).

Hence the matrix G in (2.5) is a Green’s matrix. We shall call the expres-
sion (2.5) a GD decomposition of the inverse of a nonsingular irreducible
tridiagonal matrix A. The expression (2.5) with d; = 1 may be called the
normalized GD decomposition of the inverse of a nonsingular irreducible
tridiagonal matrix A.

Now, for certain tridiagonal matrices, we can derive the explicit formula for
A~1. Only two results are presented here without proofs.

Theorem 2.5. Let

a; + bl -—b1
—Qa9 as + b2 —bg

A= ERTES . ai,bi#£0 Vi. (2.6)

Then A™! = (ay;) is given by

1 N —1 +1 . )
B Ep S SN DR () 2.7
R U o R R ! (i > ) (2.7)
w; 2ax=1\ p=i+1“p ZJ)s
where
- A1
A—1 bi 'bi—l a; n+1 »
c1 = ay, C)\-:CI,IH—-—.-Zb/\_ln . (AZ2), ’U)J:—-— Ccy .
i1 & img Wi % =1
Theorem 2.6. Let
ay + b1 —bl
—az az+by —by
A= ‘ ' Canbi £0 Vi,

—an an + bp, —b,
—(@nt1 + bpt1) @1 +bpg
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and cy, w; be defined as in Theorem 2.5. Then

Z1 21 ... ... 2 1
Zn+1
21 22 .. ... 29 ws
-1_ 1 : : .
A = . . . T ’
. . Znt1
Zn Zn Wn b
n Zn41
21 k2 ... Zn  Zn+l Ant1t+bnt1 wn
(2.9)
where

i
z=Y ¢l i=12...,n+1
A

The right-hand side of (2.9) gives a normalized GD decomposition of A~
Proofs of Theorems 2.5 and 2.6 will be given in [11].

3 Green’s Functions and Green’s Matrices

Consider the Sturm-Liouville equation

Lu] = —% (p(m)j—i) +qx)u=f(z) a<z<b, (3.1)

subject to the boundary conditions
B [u] = aqu(a) + apu'(a) = 0, (3.2)
Byu] = Bru(b) + B/ (b) = 0, (3.3)

where p € C'[a,b], p(z) > 0, g, f € C[a,b], ¢(z) > 0 and, a1, s, B1, B> are
constants satisfying of + a3 # 0, 82 + 82 # 0. Then, as is well known, the
Green function G(z,€) for the operator

_% (p(@%) : 9 = {u € C?a,b] | B,[u] = Byu] = 0} — Cla, b]

is constructed as follows: Let @(z) and ¥(z) be the solutions of the initial
value problems

Llu] =0; u(a) = ay, v(a) = —ay, (3.4)
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and

Liv] =0; v(b) = Ba, v'(b) = —Ph, (3.5)
respectively. Then @(z) and ¥(z) are linearly independent over [a, b] and

€ (3)
G(z,¢) = { s (@<T<E)
’ __o(@)u()
p(E)W(&;8,9) (E<z<?)
_Jru@)u€) (a<z<f)
- L@ae) (<z<)
where W (¢;%,7) denotes the Wronskian determinant of @ and ¥ and ¢ =
—p(¢)W (&;4,7). Observe that ¢ is a nonzero constant independent of &. If
we discretize (3.1)-(3.3) by the usual difference formula:

'a=x0<x1<---<xn<xn+1=b,

1 .
T 1= -2-(33i—1 +2;), hi=zi—z, 1=12,...,n+1,

d du L (Uig1 — ;) (us — uiz1) hi + hita
dx (p(x) dx)z:mj N [pH-% h’i-i—l pi_% hi / 2
(3.6)

where p; 1= oz, 1 ), then the resulting matrix is not necessarily symmetric
tridiagonal. The iterations (2.1) and (2.2), essentially due to Bukhberger-
Emel’yanenko [3], correspond to (3.4) and (3.5), respectively. In particular,
if we consider the case oy = ) = 1, ay = 2 = 0, then the discretized system
is

-

(DA+Q)U = f,
where
/bl +by —by
—by by +b3 —b3
i AR , Pl
= ) P = h:
. —b,

\ _bn bn + bn+1

(hlihz e
D = : b) Q = ’

2

\ hn+hn+1 qn

U=(U1a---,Un)t, fz(fl7--'>fn)t'

20
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Hence, if we denote by 7; the local truncation error of the approximation

(wir1—ui) (us—ui—1)
Pit: "hin Pii ™

o hithita ' Tt = fz
2
at xz;, then
(DA+Q)(u—-U) =1
where u = (uy,...,u,)! and 7 = (71,...,7,)% It follows that

lu-U| < (DA+ Q)7 7| < (DA |r| = A7 D7 '|7|

since DA is an M-matrix and @ is nonnegative diagonal, where |u — U| =
(lur = Uhl, ..., |un — Up|)* and |T| = (|71],...,|m|)". An application of The-
orem 2.5 then yields

A—1 = (g‘tj)a
n+1 '
(Z)\ 1 Py 1) )
Gij = -1
n+1 ha J hp.
A=1 pk—% Il'=1 D
b 4 -1 i d. b ds
(fa ,Ti)) Ja rﬁ)) (fw p(s)

( o)
() () (2 )

= G(a:l, 1’j),

where G(z, &) is the Green function for
—(pu) =f, a<z<b wula)=ud)=0.

Therefore, we obtain

n

hy + By
lus = Us| < ZgijJTHW-
=1

On the other hand, if oy = 2 = 1 and s = 3, = 0 in (3.2)—(3.3), then, with
the use of fictitious node 42 (cf. [1]), the difference equation at 41 = b is
given by

—2p, 1 2p +1
h s U h2n Un+1 -+ qn+1Un+1 = fn+la
n+1 n+1



so that we again have
u —U| < (DA+Q)7'|#| < A7'D7H7,

since DA is an M-matrix, where

(bi+by —b
) —by  by+bs —bs pis
A = .. . ., s bz — hi2
bn bn + bn+1 _bn+1
\ —bp41 bns1
2

/h1+h2

D = 2 ’ T = (’f—la a’f-n)t
hn+hn+1

\ 2
hni1

and 7; stands for the local truncation error at z;. Then, an application of
Theorem 2.6 (replacing a1 + bpt1 by bny1) to A7 yield

Z1 Rl eee e 21
Z1 22 ... ... 29 i o
Al=]: : — ha [T ds
= : : : , &= = —_—
. . A=1 pA—% a p(s)
: : Zn Zn
Z1 292 ... Zn  Zp+l

In this case, the Green function G (z,&) for the operator

9= (e O%lab] | ula) = () = 0} > Cla

is given by

[ 5 @<o

p(s)

¢ ds
.ARE (2> 9).

Hence A~! is also a Green’s matrix which approximates G (z,&).

G(z,8) =



4 Superconvergence and Nonsuperconvergence
of the S-W Approximation

Consider the boundary value problem

_.% (p(@%) +q(z)u=f(z), a<z<b, ula)=aq, ubd)= ﬁ., (4.1)

Then, as was already seen in §3, the FDM which employs (3:6) leads to the
estimate

n

u; — Us| < (A7PD7Mr))i =) gy

J=1

hi + by
L—§J—H|Tj|- (4.2)

If p(z) = 1, then it follows from (3.7) that

1
(zi—a)(b—=z;) (i<7)
Gij = b I a4 = G(z4, x;),
b_a(xj—a)(b—:c,-) (¢ > 7)

where G(z,&) is the Green function for

d2
dz?

Therefore, if the solution u(z) of (4.1) belongs to the class C*[a,b] and
the nodes {x;} are equidistant, i.e., h; = h Vi, then sup;|r;] < O(h?) and,
from (4.2), the error of FDM solution {U;} yields O(h?) at every ;. ,

Even if hy # h or hy,y1 # h and h; = h for ¢ # 1,n + 1, this estimate is
true. More precisely we have

: 9 = {u € C*a,b] | u(a) = u(b) = 0} — Cla, ).

O(h3®) atz;nearz=aorz =25

i — Ui = . 4.3
“ {O(hQ) otherwise. (4:3)

This is a special case of recent results due to Yamamoto [9] and Matsunaga-
Yamamoto [7], which holds for the Dirichlet problem

Au= f(z,y,u) inQ, f,>0 (4.4)
u=g(z,y) on ' =00 (4.5)

- in a bounded domain © C R2. The property (4.3) is called “superconver-
gence”. It is reported in [6] that the Collatz approximation does not have
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such a property. If u & C*[a, b], for example, if u € C|a, bjNC*(a, b), then does
“superconvergence” occur? It has been shown in Yamamoto-Fang-Chen [12]
that different situations may happen. For example, if we apply the centered

finite difference method with h; = h = n+r1’ 1=1,2,...,n+1 to the problem

{_— ~ f(z), O<az<l, (46)

u(0) = u(l) =0,

and the exact solution u satisfies u € C[0,1] N C*(0,1) and
401 _ A, ()

oy P02 )
zeoy)  2P(1—x)°

with some constants p,o € (0,2), p# 1, o # 1 then, putting § = min{p, o},
we have

< 00,

lu; — U;| = O(R?)  Vi. (4.7)

That is, the FDM solution {U;} converges to the exact solution u; as h — 0,
although 7 and 7,, — 400 as h — 0. But, superconvergence does not occur
at any z;. If the solution u satisfies u € C[0,1] N C*(0, 1) and

z*|u® (z)|

sup ——>= < 00
z€(0,1) xP

with some constant p € (0,2) and p # 1, then

s — U] < O(h**1)  at z; near z = 1
7Y Tl O(?)  otherwise.

That is, superconvergence occurs near x = 1. These results can be extended
to two dimensional problems like (4.4)—(4.5).

This suggests us that FDM is a quite simple and natural approximation
method for solving boundary value problems in @ C R™, 1 < m < 3 and
might approximate the exact solution in many cases, even if the truncation
error does not converges to zero at a point. The modern numerical analysis
has not well grasped such a harmonic relation between the problem (4.1) and
their discretization by FDM.

5 A Mesh Refinement Technique

Again consider the FDM applied to the problem (3.1)-(3.3), with a mesh
spacing

a4—-x0<x1<---<xn+1:b, hi=l‘i—.'13,,;_1, Z=1,2,,’)’L+1
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Without loss of generality, we may assume a = 0 and b= 1. Then

Ujp1 — Ui Uy — Ui h; + h;
T(z:) = — [pi+%( ;LI,H ) _pi—%( z o : 1):| / (—2 +l) + qiu; — fi
(2 1
1 1 1
= (his — ha)(gppi + gpiuy) = E(h?-H — hirh + B g + - -
If, we put z = @(t) with ¢ € C?[0, 1] and set
. . : 1
t;=1th, 1=0,1,2,....,n+1, h= ,
n+1

then

Rivi — hi = Qi1 — 205 + i1 = B2Q"(Q),  tii1 < ¢ <ty

Therefore, if u € C*|0, 1] and {U;} denotes the FDM solution, then u; —U; =
O(h?) Vi. The superconvergence property also holds near the end points
z = 0and z = 1. Even if 7(z;) = O(h™") for some constant x > 0, the
convergence of {U;} as h — 0 may be expected. In fact, let

f(z) = %{x(l‘— x)}‘%, 0<z<l.

Then u = 4/z(1 — z) is the solution of the problem
d*u
—d—x2=f(:c), 0<z<1, u(0) =u(l) =0

and 7(z;) = O(h2~2) for z; near z = 0 or z = 1. In this case, choosing ¢(t)
so as to satisfy ¢'(t) = {t(1 —1)}3, ie., @(t) = t*(3 — 3t + 3t2 — 1t3), we can
prove that

lui — Us| = O(h? log %) (= O(h*%) Ve > 0) Vi.

This is a marked improvement over the estimate (4.7) with = 7.

It is now easy to apply this technique to refine finite difference net near
finite numbers of grid points ay,...,a, € (0,1). Furthermore, it is also
possible to extend the technique to 2 or 3-dimensional boundary value prob-
lem (4.4)—(4.5). The detail will be reported elsewhere, together with numer-

ical examples.
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