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1 Introduction

In this note, we present a brief survey on the Arthur-Selberg trace formula. Interested
readers can consult more detailed expositions [1], [28], [29], and of course, the original
papers [2] to [13]. See also [20] for some important ideas and several appropriate arguments
in reduction theory. For the purpose of this introduction, it is sufficient to recall the
original Selberg trace formula and give some words about arithmetic backgrounds.

The Selberg trace formula was originally proved for a pair (G, T") of a semisimple Lie
group and a cocompact discrete subgroup in it [37], [38]. If we exclude some exceptional
cases, this is equivalent to the setting of anisotropic adéle groups.

Thus let F be a number field and write A = A for its ring of adéles. | |4 denotes the
idéle norm on A* and set A! := Ker| |s. For a connected semisimple group G over F, its
group of adelic points G(A) is a locally compact topological group, in which the group
G(F) of F-rational points is a discrete subgroup. We assume that G is anisotropic over
F, that is, G(F) contains only semisimple elements. Then G(F)\G(A) is compact by the
result of [18].

R denotes the right regular representation of G(A) on the space L?(G(F)\G(A)).
Write C°(G(A)) for the space of functions with compact supports on G(A) which is
smooth in the archimedean components and locally constant in the non-archimedean
components. For f € C?(G(A)), the operator

R(f)8)(z) = /G ,, T o) dy = /G L e
- /G S fe)ew) dy

(FNGA) eq(r)

is an integral operator with the kernel

K(z,y):= Y flz ") |

YEG(F)

Since G(F)\G(A) is compact, this operator is of Hilbert-Schmidt class (i.e. K(z,x)
is square integrable on G(F)\G(A)). In particular one can show that the representation
R decomposes into a direct sum of irreducible representations where each irreducible
representation occurs with finite multiplicity:

R= & o™ (1.1)

TeII(G(A))

Here, II(G(A)) denotes the set of isomorphism classes of irreducible unitary representa-
tions of G(A) . Moreover an argument of Duflo-Labesse [21, 1.1.11] shows that R(f) is of
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trace class. That is, it admits a trace given by the integral of K (z,y) on the diagonal:

trR(f) = / K(z = > > / f(z™16 y6z) d
G(F)\G(4) G(P)\G(A)

{7}€O(G) §€GY(F)\G(F)
1 / /
_ :  fl@yz) dyde
{V}GZD(G) [GV(F) : Gy (F)] Jayancw) Jon e, m

= > aMe( /).

{7}€0(G)

Here O(G) is the set of (semisimple) conjugacy classes in G(F'), G := Cent(y, G) is the
centralizer of v in G, G, := Cent(y, G)° is its identity component, and

Gy . meas(Gy(F)\G,(A)) I :: ~1n2) da
a”(7) : ey o e ) /GW(A)\G(A) f(z™ yz) dr.

This combined with (1.1) yields the Selberg trace formula:

S Mt H= Y oC)sln, f), (1.2)

{7}e0(@) mell(G(A))

where a%(m) := m(r) and Ig(w, f) := trrw(f) is the distribution character of . The left
and right sides are called the geometric and the spectral side, respectively.

The Selberg trace formula has many variations reflecting its applications to wide vari-
ety of fields in mathematics. But the Arthur-Selberg trace formula is the only extension
to the case when G has the F-rank greater than one. It is one of the important ingredients
of the Langlands program. Perhaps it will be helpful to explain the program briefly.

It is a program to understand the deep relationship between automorphlc forms and
Galois representations and motives. Two main processes are

(1) To describe the automorphic representations of reductive groups by means of their
associated automorphic L-functions (or their Langlands parameters);

(2) To construct the correspondence between automorphic representations of arithmetic
type and f-adic representations of Galois groups of the field of definition of such
forms. This correspondence should be characterized by the equality between auto-
morphic and Artin L-functions.

Both of them are very hard but will provide a lot of fruitful arithmetic informations.

As for (1), the case of inner forms of GL(n) was successfully treated [25], [26], [35] and
[15]. The relevant L-functions are the Rankin product L-functions. Then one expects to
reduce the case of general reductive (or at least classical) groups to the GL(n) case. This
divides into two steps. First we relate the automorphic representations of a reductive
group G to those of its quasisplit inner form G*. This is suggested by the experience in
the GL(n) case [24], [15]. Then relate the automorphic representation of G* with those
of some GL(n). In [14, § 8] the detailed framework of the second part for classical G
are explained. We need to compare the trace formula for G with that of G* in the first

3
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problem, while a twisted trace formula for GL(n) need to be compared with the ordinary
one for G* in the second.

The problem (2) contains so many aspects that we cannot explain them in any detail
here. But the starting point is to construct the Galois representations associated to
an arithmetic automorphic representations in the ¢-adic cohomology of certain Shimura
variety. Here the trace formula with special geometric test functions will be compared
with the Lefschetz-Verdier trace formula of the Shimura variety.

For these purposes, the trace formula must be of the arithmetic form, i.e. must be
stabilized. In fact, already in the spectral decomposition of the L2-automorphic spectrum,
the normalization of intertwining operators by L-functions and the precise analytic prop-
erties of those L-functions must be established. The analytic trace formula alone yields
little arithmetic information !

In this note, however, we deal only with the analytic aspects in the construction of the
Arthur-Selberg trace formula. Some parts of the stabilization process will be found in the
article of Hiraga in this volume. The contents of this note is as follows. We start with a
brief review of Langlands’ theory of spectral decomposition of the automorphic spectrum
by Eisenstein series § 2. In the higher rank case, the residual Eisenstein series appears
which makes the construction in what follows much more complicated. Anyway this allows
us to express the kernel of the right translation operator in two forms, one geometric and
the other spectral. § 3 explains the construction of [2] and [3]. We define the truncated
kernel and prove that its integral over the diagonal converges. We obtain the coarse trace
formula. § 4 is devoted to the fine O-expansion. We write the geometric terms in terms
of the unipotent terms of certain reductive subgroups of G. Then they are expressed
by means of weighted orbital integrals. The spectral counter part, the fine X-expansion,
is explained in § 5. This is the heart of this note, because it is the most important
part in applications. We use the fact that the coarse X-expansion is a polynomial in the
truncation parameter 1" to deduce the precise expression of the X-expansion from the
asymptotic formula of the inner product of truncated Eisenstein series. Finally in § 6, we
illustrate the rough idea of Arthur’s construction of the invariant trace formula [11], [12].

Because of the lack of time and volume, many important ideas are overlooked. In
particular, we ignore many convergence/finiteness arguments, and also cannot refer to
the works of Osborne-Warner [34]. Instead we add some examples in the simplest case
G = GL(2) with some figures.

2 Spectral decomposition

We begin with some notation. For a finite set of places S of F, we write Ag := {(a,), €
Ala, =0, Vv ¢ S}. The infinite and finite components of A are denoted by A, and A/,
respectively.

Let G be a connected reductive group over F. For brevity, we write G := G(A),
Gs = G(As), etc. Let Ag be the maximal F-split torus in the center Z(G) of G, while
the maximal R-vector subgroup in the center Z(Gy) of G is denoted by As. Write ag
for its Lie algebra. We have a direct product decomposition G = G! x 2 such that

Ix(ag)|a = |x(a)la, a€Ag, g€ G

4
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holds for any F-rational character of G. Set

proj lo
HgiG=G1 XQ[G_——?QlG——E?aG.

For a parabolic subgroup P = MU, we write F(M), P(M) and L(M) for the set of
parabolic subgroups containing M, the set of parabolic subgroups having M as a Levi
factor and the set of Levi subgroups containing M. We fix a minimal parabolic subgroup
Py = MyUy. F(P) and L(F) denotes the set of parabolic subgroups containing Fp
and the set of Levi components of elements of F(F,) containing My (the set of standard
parabolic and Levi subgroups).

Fix a maximal compact subgroup K = [], K, of G such that the Iwasawa decompo-
sition G = PK holds for any P € F(My). Using this we extend the map Hy : M — apy
to

Hp : G = UMK 5 umk —— Hp(m) € apy.

W = WS denotes the (relative) Weyl group Norm(Ao, G)/Mo of Ag = Ap, in G,
where Norm(H, G) means the normalizer of a subgroup H in a group G. We identify W
with a fixed system of representatives in Norm(Ay, G). W acts by conjugation on F (M)
and the associated objects. We write the action w : P +— w(P) =YP := wPw™? etc.

2.1 Siegel domains

Fixing an invariant measure on G and a Lebesgue measure on %, we can consider the
space

p:G—C

measurable

(i) é(vag) = ¢(g), Va € Ag, v € G(F) }

LX(G(F)Ac\G) ::{ () [ 19(0)2dg < oo

as in the anisotropic case. Let C°(G /%) for the space of smooth functions on G which
are compactly supported modulo %(g. Similar calculation as in the anisotropic case shows
that, the operator

RO = [ fw)sewdy
A\G
on L?(G(F)A:\G) is an integral operator with the kernel

K(z,y):= Y [ ') (2.1)

YEG(F)

for f € C®(G/Ug). Later we shall use the subspace H(G/2g) of elements which are
K-finite on both sides in C°(G/2s) as the space of test functions.

The spectral decomposition of the right regular representation R = Rg of G on
L*(G(F)As\G) is more complicated than in the anisotropic case, because G(F)c\G =
G(F)\G! is no longer compact. The form of the non-compactness is described as follows.
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Since My is anisotropic modulo center by definition, we can choose a compact subset
w; of M} satisfying M} = Mo(F)w;. As Up is a multiple extension of additive groups,
there exists a compact subset wy C U such that Uy = Uy(F)ws. For T' € ag, we set

A0(T) :={a € Ao |a(Ho(a) = T) > 0, Va € A},

where we have abbreviated 2, Hp, as 2y, Ho, respectively, and A is the set of simple
roots of Ay := A, in Py, considered as a subset of aj.

Proposition 2.1 ([23]). We can choose Ty € ag sufficiently negative so that
G = G(F)G(TQ), 6(T0) = Wleg[()(To)K

Thus the non-compactness comes from that of 2o(7}), a shifted positive cone.

2.2 Cusp forms

For an F-parabolic subgroup P = MU of G and a measurable function ¢ on U(F)\G
we can define its constant term along P by

Y

$p(g) == /U g P

The space of L?-cusp forms L2(G(F)s\G) consists of ¢ € L*(G(F)As\G) such that
¢p vanishes almost everywhere for any P € F(P,). Of course this is not the space of cusp
forms Ao(G(F)Ac\G) in the usual sense [33, Chapt. I], but Ao(G(F)s\G) is a dense
subspace of LZ(G(F)As\G). The following lemma is fundamental in our estimation
arguments.

Lemma 2.2. Suppose ¢ : G(F)\G — C is slowly increasing and sufficiently smooth
relative to dim Uy. Then the alternating sum

eplg):== Y (=1)Hep(g)

P=MUEcF(P,)

is rapidly decreasing. Moreover ¢ extends to a projection on L*(G(F)Ac\G) whose re-
striction to L3(G(F)Ac\G) is the identity. Here a$; := dimays/ag.

The proof is a simple extension of the argument showing that the classical holomorphic
cusp forms are rapidly decreasing. From this, we see that the kernel of the restriction
Ro(f) of R(f) to L3(G(F)Ac\G) is ¢, K(z,y) (¢, means the operator ¢ applied in y)
which is rapidly decreasing. Hence Ry(f) is of Hilbert-Schmidt class and Rq decomposes
discretely. Moreover each irreducible component has finite multiplicity:

LA(G(F)A\G) = EB 7 OMeusp (7).

Tell(G)
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2.3 Decomposition by cuspidal data

A pair (M, p) of M € L(P) and an irreducible component p of LA(M(F)Ap\M) is
called a cuspidal pair for G. We write L3(M(F)A\M), for the p-isotypic subspace
in L3(M(F)2,/\M) and Ao(M(F)2Ap\M), for its intersection with Ao(M (F)2Ap\M).
This is the underlying admissible (goo, Koo) X Gyp-module of the unitary representation
LA(M(F)Ap\M),. A G(F)-conjugacy class of cuspidal pairs is a cuspidal datum for G.
We write X(G) for the set of cuspidal data for G.

Fix a cuspidal pair (M, p) € X € X(G) and a finite set of K-types §. Write PM

for
~ (M, p)
the space of smooth functions ¢ : UM (F)As\G — C such that

(1) M(F)2Apy\M > m — #(mg) € C belongs to Ao(M(F)2Ap\M), for any g € G;
(2) Ap /A > a+— g(ag) € C is compactly supported for any g € G;

3) Kak+— &5( gk) € C belongs to the linear span of the matrix coefficients of K-types
in § for any g € G.

Noting that qAS € ]35\4 2 is rapidly decreasing, we deduce the following.

Lemma 2.3. (1) F0r¢€ (Mp),

0s(9) = > $lv9)

YEP(FN\G(F)

converges absolutely and belongs to L?(G(F)A:\G).
(i) If we write L*(G(F)Ac\G)x for the closure of the span of Uz U pyex{bsl® €

PS

(M, p)} then we have the orthogonal decomposition

LA(G(F)UNG) = P L*(G(F)%c\G)x.
xeXx(G)

2.4 Cuspidal Eisenstein series

Next we set PfM’p) for the space of functions ¢ : (a$;)s x UM (F)An\G — C satisfying

(1) (a§)& 2 A= ¢();g) € C is of Paley-Wiener type for any g € M'K;

(2) M(F)2py\M > m — ¢(A\;mk) € C belongs to Ao(M(F)2Ap\M), for any X €
(a§)e, k € K;

(3) K 3 k — ¢(\;mk) € C belongs to the linear span of the matrix coeflicients of
K-types in § for any A € (a,)&, m € M.
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Obviously, any (E € P3| is the Fourier transform

(M,p)

d(uamk) = /( d(\; mk)a* dA (2.2)

a§)*

of some ¢ € ngf o) On the other hand, associated to each ¢ € P(SM, p) I8 a “Paley-Wiener
section”
(@§)E 3 A [g = 8a(g) := PP HrDlg(X; g)] € TE (pa)

of the bundle of induced representations ZS(py) := indS[(e* ® p) ® 1y] — A.  Here
pp € a}, denotes the half of the sum of positive roots of A in P.
For ¢ € P(@M )7 the associated cuspidal Eisenstein series is defined by

Ep(z,¢x) = Y,  ¢x(6). (2.3)
s P(F)\G(F)

P = MU, PP = MU € F(F) are said to be associated if the set W(M, M) := {w €
W |w(M) = M'} is not empty. Obviously the Weyl group WM of M acts on this set by
the right translation. A system of representatives of W™-orbits in W (M, M’) is given by
Wy = {w € WM, M") |w(PM) C Py}. For w € Wy we define the intertwining
operator by the integral

(M(w, o)) = | Oa(w™ ) du - = o T2,
(U'nw(U)\U’

Using the theory of resolvent, Langlands established the following properties [31], [33,
Chapt. II, IV].

(1) Convergence. Ep(z,¢y) and M(w, py)¢ absolutely converge for Re(A) >> 0. At

such A, Ep(z, ¢») defines and automorphic form on G(F)Ac\G, and ¢y — (M (w, pr)P)w(r)

defines an intertwining operator Z8(px) — ZS(w(py)). Moreover the following
holds. ‘

(i) Equivariance. Ep(z,Z8(px, f)¢x) = R(f)Ep(z, ¢5) for any f € H(G/Us).
(ii) Constant terms. The constant term of Ep(z, ¢y) along Q = LV € F(F) is

given by
Ep(z,¢x)q = Z Eég(ﬂ?, (M(w, px)P)w(n))-
’LUGWM(L)
Here Wy (L) := UM,GLL(POL) W and PL denotes the unique element of

FL(PYL) having M, := w(M) as its Levi component.
(iii) Functional equations. Ep(x, (M (w, px)®)wr) = Ep(z, ¢y) for w € Wy (G).

Also for w € Wy pr, w' € Wygr ppn, we have M (w', w(pa)) M (w, pa)¢ = M(w'w, pp)d

at A where both operators converge absolutely.

(iv) Fourier transform. For )\ whose real part is sufficiently positive, we have

04(uamk) = / Ep(umk, ¢y)a* PP dX.

Xo+i(a§p)*
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(2) Analytic continuation. Ep(z, ¢,) and M(w, p))¢ extend meromorphically to the

whole (a§;)%&. The properties (i) — (iv) of (1) still hold as equalities of meromorphic
functions.

(3) Singularities. The set of poles of Ep(z, ¢») (hence those of M(w, p)¢ by (1-ii)) is a
union of locally finite collection of affine hyperplanes whose vector parts are zeroes
of some coroots.

2.5 Residual Eisenstein series and the spectral decomposition

Essentially by the Perseval formula, we deduced from (ii), (iv) the L2-inner product
formula:

<0¢, 9¢’>G = A Z (M(w, p)\)(ﬁ, ¢,>M dX. (2.4)

(A G Y
0HUaN)" weWyy ppe

Here (, )¢ denotes the hermitian inner product on L?(G(F)s\G). That is, the inner
product between two 6,’s is the integral over the Pontrjagin dual of 2§, of the Petersson
inner product of M(w, px)¢ and ¢’. Certain residue analysis transforms (2.4) into

(0, 04) =1 /( o). > (M(w, pa)¢, &) dA

weWiy amv

+Z /( Z Resg (M (w, px)d, ¢ ) ar dX.
S o

; G *
(‘5)+z(atMG ) WEW s apv

(2.5)

=7 denotes a certain equivalence relation, the sum on the right runs over a finite set
of intersections & of singular hyperplanes of Ep(z, ¢») and o(&) is a certain “origin” of
6. Ms € L(My) is such that i(afj_)* equals the vector part of &. Resg means the
iterated residue along &. Noting that ZweWM,M/ Resg M (w, px)® belongs to the discrete

spectrum of L?(Mg(F)2ns\Mg) and, at the same time, equals to the constant term of

certain residual Eisenstein series, we arrive at the following theorem [31, Chapt. 7], [33,
Chapt. 6]

Theorem 2.4. We call a pair (M, ) consisting of M € L(P) and an irreducible sub-
representation w of L*(M(F)%n\M) a discrete pair. A G(F)-conjugacy class [M, ] of
discrete pairs is a discrete datum. Write [P] for the associated class of P € F(R,).

(1) For a discrete pair (M, ) and a finite set of K-types §, we define the space Pg\l,w) m
the same manner as P(gM)p) with Ao(M (F)2A\M), replaced by As(M(EF)Ap\M),, the
intersection of the space of square-integrable automorphic forms Ax(M(F)Ap\M) with
the m-isotypic subspace L?>(M(F )2y \M),. Then the residual Eisenstein series Ep(z, ¢»)
defined by (2.3) with ¢ € ng‘,m) satisfies the properties (1), (2) and (3) of 2.4 (But this
time, the formula (1-ii) holds only for Q@ D M.).

(2) Let E[M,w] for the Hilbert space of families of functions F' = {Fpi}picip) such that

(i) Fp :i(a$)* — L*(U'M'(F)2y\M') is a measurable function. Here (M',7'") €
[M, 7).
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(ZZ) Fp/(’u}(/\)) = M(’LU,T(',\)FP(/\), w e WM,M'~

(iit) The norm

1
”}7"”2 = —_— “FP’()\/)”%/ d)\/
(M'ﬂ;[Mﬂr] IWM(G)I i(agﬂ)*

18 finite.

Then there exists a G-equivariant unitary injection E[M’ﬂ — L*(G(F)U:\G), whose
restriction to the automorphic spectrum valued Paley- Wiener sections is given by

1
Fre Y Epi(z, Fpi (X)) dX.
(MI’ﬂ-I)G[Mﬂ, I ( )| (CIM,

If we write L*(G(F)UAc\G)x for the image of this map, we have the orthogonal decom-
position
L(G(PANG) = D L*(G(F)A\G) -

(M, 7]

Note that the properties of residual Eisenstein series are deduced from their realization
as residues of cuspidal Eisenstein series. In particular, various growth properties of cuspi-
dal Eisenstein series are no longer assured for residual ones. This makes the construction
of the trace formula much harder in the case when the F-rank is more than one.

2.6 Spectral kernel

Th. 2.4 allows us to deduce the spectral expression of the kernel K (z,y) (2.1).
Choose a discrete datum [M, 7], a cuspidal datum X € X(G) and a finite set of K-types
F. Set

Ap(M(F)Ap\M)rz := Ap(M(F)2\M), " € L*(M(F)%p\M)xn,
XMecx(M)NX

and write Ao (M (F)2An\M)Z 8 for the subspace of functions which transform under M,

the set of irreducible componen‘cs of the restrictions to KM := KNM of elements in §, un-
der KM. This is a finite dimensional subspace of L2(M (F)A,\M), so that we can choose a

ortho-normal basis %31\; of it satisfying %31\; C 5831;4 if § C §'.Similarly we have an ortho-
normal basis B3 »x of the induced space Ag(UM(F)QlM\Gr)7r = Indfa Ao (M (F)2 \M)3'; x-
Associated to each ¢ € Ay(UM(F)Ap\G)® x is the “constant section”

oa(uamk) 1= a** PP p(mk)

of the bundle Z§(my) — A € (a$))e.
Now the space L*(G(F )ng\G)[i]’x for functions transforming according to § under K
in

L3(G(F)26\G)m N IA(G(F)26\G)x

10
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is spanned by
 p(z) = / Bz, F(\)y) dA
i(afp)*

where F : i(a§))* — A(UM(F)\G)S ; is a Paley-Wiener section. Using the ekpan—
sion F'(\) = Zweﬁfx (F(A)a, ©r)pa, we have

[R(f)®r](z) = R(f) /(G) S (F0n, o) Eele, 92) dA

.
&
peB? .

/( Gy (f)Ep(z, ox)(F(X)x, @a) dA,

6%3
for f € H(G/Ug)®. Now recall the H(G/2¢)-equivariance
R(f)EP(:Ea (P)\) = EP(xvl-g(WAa f)SO)\)

and the following formula obtained by the Fourier inversion formula applied to 25, /2g X
(af)*:
(FOx o0 = ([ Be(Pw)) do Beon)e
wlags)*

We see that [R(f)®Pr](z) equals to

/(G)* Z Ep(x,Ig(m\,f)SOA)</G Ep(F(u),) du, Ep(py))c d

y *
peB? . Hanr)

/G(F)uc\c / (oS, Z Ep(z,Z5(m, £)ox) Er(y, ¢2) dA®r(y) dy

In other words, R(f) (f € H(G/Q(G)S) restricted to LQ(G(F)ng\G) i,z has the kernel

Kffr],x(a?ay) :f(c) Z EP(a?,Iff(m,f)cpA)Ep(y,w)dA-
CIM*

‘Pe%i,x
It was shown in [2] that

Kx@w)= > > Jma

PeF(Fy) well(M1) (2 6)
[ X B TEm e Erluen di
(

i(aG
'LaM) PYEBr x

defined as a certain limit, exists. Here B x := Uz B3 »x is empty if 7 does not appear

in the discrete spectrum of L?(M(F)2\M). Also the factor 1/|Wam(G)| is necessary
because we take the sum over all the standard parabolics, not over their associated classes.
We obtain the spectral kernel:

Kzy)= Y. Kxlzy). (2.7)

XeX(G)

11
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3 Convergence

3.1  Truncated kernel

One can easily see that the operator R(f) is no longer of trace class and

/ K(z,z)dx
G(F)A\G

diverges. The first step towards the trace formula is to truncate the kernel so that its
integral over the diagonal converges. To see how this works, we need the following com-
binatorial functions.
We write Ag and Ay for the set of simple roots of A in Py and the set of corresponding
simple coroots, respectively. For P = MU € F(R), set Ap := {ala,, | @ € Ao\ AY} and
%= {{(aV)ar | o € Ao\ AY}, where X, denotes the ap component of X = XM X, €
ao under the W-invariant decomposition ag = a)! @ ay,. Using this, we define the positive

chamber
afb i ={X €ay|a(Xum) >0, Va € Ap},

whose characteristic function is denoted by 7p. Next let Ap C (a$)* be the dual basis of
the basis A}, C a$;. Then the convex open cone

tap = {X € ap | w(X) = w(Xy) > 0, Vo € Ap}

is spanned by AY (Strictly speaking, this is the direct sum of ag with an open cone.).
Write Tp for the characteristic function of this cone.

Let $9(G) be the set of semisimple classes in G(F'). For each o € D(G), we write
0 for the set of v € G(F) whose semisimple part v, under the Jordan decomposition
Y = Y5y = YuYs belongs to 0. We have

K(z,y)= Y Ki(z,y), Koz,y):=) flz ')

0eO(G) YEO
Next, for P = MU € F(F,) write
(@, 9)= Y Kpo(z,y), Kpolz,y):= > / fla yuy) du
0eO(G) yeP(F)No (F)\U

for the kernel of the right translation operator Rp(f) on L (UM (F)s\G) defined
similarly as R(f). Choosing T' € ao, define the truncated kernel

T, )= kl(z,f),
0eO(G)
Ko (z, f):= > (=% > Kpe(6z,87)7p(Ho(Sz) — T).
P=MU&cF(Py) SeP(F\G(F)

12
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Example 3.1. We present the explicit formulae in the case of G = GL(2) [22]. The
minimal parabolic subgroup will be denoted by B = TU. The kI'(z, f) is given as follows.
(i) If o s elliptic, then

> flalyz). (3.1)
Y€
(11) If 0 © (% g) is hyperbolic regular, then

Z flz™tyz) — Z / flz=tot < 5) wdx)Te(Ho(0z) — T) du

v€o S€B(F)\G(F)

(3.2)
151 (B ~ ~
_ flz=tst wdx)Tg(Hy(dz) — T) du.
M%Q”/ (7 ) wde)rats) - 1)
(ii3) If o = {C - 1}, ¢ € F*, then
Z f(lx™yz) — Z / fCz™ 6 udx)Tr(Ho(6x) — T') du (3.3)

y€B € B(F)\G(F)

Note that this last term unifies the unipotent and identity terms.

Theorem 3.2 ([2] Th. 7.1). If we choose T € aqy sufficiently positive with respect to
suppf, then

Jgf,Jgf:z kf,d
3 A ) [N (G L

converges absolutely.

Let us sketch the proof. In the higher rank case, the following combinatorial argument
is fundamental.

§ 2.1 combined with the Iwasawa decomposition yields G = P(F)&p(Ty), where
Sp(To) = wow A (To)AnK. If we write (e, T) for the characteristic function of

Q(F){z € 6p(To) | w(Ho(z) — T) < 0, Vw € Af}
and 350z, T) := F5(x,T)75(Ho(z) — T), then we have [2, Lem. 6.4]:

> | o 35062, T)=1. - (3.4)

Q=LVEeF(Py) S€Q(F)\P(F)
QCP

Next we put 85 (z,T) := F§ (z, T)o5(Ho(z) — T), where o is the characteristic function

of
(1) Oé(XL> > 0, Vo € AQM,
X €ecay| (2) afXr) <0,Vae Ag\ Agwm,

(3) @w(X) >0, Vw e Ag.

13
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Example 3.3. If G = SL(3), the chambers in ag are illustrated as

OZQZO

a1=0

and 05 are the characteristic functions of the regions

G . MH P1

ot >i
Tp, = 0§ Tp, = 08 :
P, P P, =0p, .

where P; = M;U; € F(FR) are such that Am, = {os}, (i=1, 2).
0

%
s

As these illustrate, we have Y- p 0§ = 7om7p and hence

> Rz, T) =35z, T). (3.5)

ReF(FPy)
RDP

14
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Applying these combinatorial formulae to our integrand, we have

K f)e  3 S (~1)% Kp(63, 62)35(8, T)7p(Ho(5z) — T)

QCPEF(Fy) 6€Q(FN\G(F)

(3.5) 3 3 ﬁg(éa:,T) > (1) Kp,(6z, 6z).

QCReF(Py) €Q(F)\G(F PeF(PRy)
QCPCR

Thus it suffices to prove the convergence of

/Q(F)m - |RS(z,T) Z (1) Kp(z, z)| dz.
G

PE]:(P())
QCPCR

RE(z,T) cut off the domain of integration to a product of a compact set and a transported

positive cone in a]gR. But on such cone the alternating sum in the integrand is rapidly
decreasing by Lem. 2.2.

3.2 Truncation operator and the basic identity

Next we turn to the convergence of the spectral side [3]. Already it follows from Th. 3.2
that the integral of the total kernel

[ ¥ H@nd
GIF)AG\G xex()
converges absolutely. Here we have written
Kiz, f) = > (=10 > Kpx(Sz,82)7e(Ho(6z) — T),
P=MUEF(Po) S P(F\G(F)
where

Kpx(z,y)= ) Z W (D]

Q= LVef(Po) T€H(L1)

J . X BT e EE o)
ClL*

QDE%T X

is the kernel of Rp(f) restricted to L2 (UM (F)s\G)x. Thus the problem is the com-
mutativity of the integration and the summation.
For T € ap, define the truncation operator AT on L?(G(F)2s\G) by

(AT¢) ()= > (=1)% > ¢p(dz)7p(Ho(0z) — T).
P=MUEcF(P,) € P(F)\G(F)
As in the proof of Th. 3.2, we can rewrite this as
(NP @) = D S &R0, T) D) (—1)%ep(s),
QCPIEF(Po) €Q(FN\G(F) P;QCPCh

and obtain the following properties:

15
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(1) AT is an orthogonal projection.
(2) AT¢ = ¢ for ¢ € L§(G(F)U\G).

(3) If ¢ is slowly increasing and sufficiently smooth relative to dim Uy, then AT is
rapidly decreasing.

We have similar operators ATF on L2(UM (F)2A:\G).

Example 3.4. Consider the simplest example, the GL(2) case. Note that if T is suffi-
ciently positive the sum on & contains only one term. (Recall the classical situation where
any element of SLy(Z) which preserves the region

y=1

N

N

with sufficiently large t is upper triangular.) Then AT is the operator which cuts off the
constant term in the neighborhood {z |7p(Ho(z) —T) > 0} of cusps, the complement of a
compact set in the Siegel domain. The properties stated above are rather obuvious in this
example.

A similar combinatorics as in the geometric side yield

iz, f)= ) > 0&(Ho(dz)—T)

QCREF(Py) 6€Q(F)\G(F)

x Y (=1)% AT Kpx (o, bx).
PeF(Pg)
QCPCR

Here AL means the truncation operator is applied in the second variable. This combined
with (3) above shows that the integration and the summation commute. Moreover the
alternating sum on the right gives

JE(f) = / Ki(a, f) da
G(F)Ac\G

= / o&(Ho(z) = T) Y ( 1)% ATQ Kpx(z,z) do 36
QCRE}'(PO QFA\G PEF(Py) (3.6)

QCPCR
- / AN Kx(z, ) dz.
G(F)A\G
That is, the term associated to ), R vanishes unless Q = R = G.

16
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We now come to the coarse Arthur-Selberg trace formula
> SWH= D FHW (37
oeD(G) XeX(G)

for sufficiently positive T' € ayg.

4 The fine D-expansion

Next we need to calculate each terms JI (f) and Jx (f) in (3.7). Recall that, in the GL(2)
case [24], [22], certain part of the hyperbolic terms and Eisenstein terms cancel each other.
The resulting equality has a meaning when 7' — oo. Since such an explicit cancellation is
not available in the present case, taking the limit under 7' — oo is not allowed. Instead
we calculate the special value at “T" = 0”.

4.1 JT(f) as a polynomial
For Q C P € (), consider the function

THX,Y) = Y. (=1)7gm (X)7pm(X —Y)

P;,QchCP

on dp X ag. Noting that the matrices ((—1)%1gm)g,p and ((—1)*:Tgm)qg,p are inverse to
each other, one sees that this function expresses the variation of Tg:

Fon(X —Y)= Y (~1)%n7om (X)IE (X,Y). (4.1)

Py;QCPCP

Some calculation shows that

TG = Y SR [ TSUEX) an

PE.”'-(PQ)

where fp is the descent

fp(m):= m”P/K /U flk™ muk) dudk

of f to M. Since the integral of I'S(H, X) in H is a polynomial function in X, the same
is true for JI'(f) [4, Prop. 2.3].

Recall that the distributions in (3.7) depend on the choice of the set of representatives
W € Norm(Ag, G), which can be chosen in G(F) N K if G is split. In general W C
KM, N G(F) and, for o € Ay, the representative wr, of the reflection 7, attached to o
satisfies Ho((wr,)™t) = hoaV for some h, € R. We define the (analytic) origin 77 € ag by

T1 = Z haw;/
acAg
Here {w}aca, is the basis of a§ dual to Ay € (af)*. We define Jo(f) := J(f),
Jx(f) = Jz'(f) [4,§ 1, 2.

17
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Example 4.1. Let us compare this to the classical GL(2) case. The distributions JI (f)
are calculated as follows [22].
(1) If o is elliptic, we have

JT(f) = meas(Gy(F)AAG.) / (z~Lyz) da (4.2)

as 1n the anisotropic case. Note that we have G7 = G in the special case of GL(2).
(2) If 0 is the hyperbolic regular class of (% g), (3.2) equals the sum over § € B(F)\G(F)
and w € W of

1 oY% o
= f(Ad(wvéz)™! ( )) — [ f(Ad(wuéz)™ ( ) duTp(Ho(z) — T).
2 VE%(:F) g /U ( 5)) 4T |

One sees that JI(f) equals

3 /B - Z F(Ad(wrz)™! (O‘ ﬁ))

wew JB(F)AG\G 2 veU(F)

_ /U f(Ad(wuz)™ (a ,8)) duTg(Ho(z) — T) dx

=u;v /UT(F)%\G / f(Ad(wuz)™! <a ﬁ)) (% — Tg(Ho(z) — T)) dudz
a weZVV /T(F)‘Zlg\G flw™a™ (a 5) Tw) (% —7p(Ho(z) = T)) dz

_ /T e 1 (a 5) 1) (1 = 75(Ho(z) — T) — 75 (Ho(wz) — T)) dz

using the Iwasawa decomposition,

—meas(T(F)A\T") /K /U F(k1ud (O‘ ﬁ) wk)

/ 1 75(Ho(a) ~ T) — 5 (Ho(wau) — T) da du dk.

T

Noting Ho(wau) = w(Hoy(a)) + Ho(wu), the inner integral becomes

/amaw Ly _ 02T — Ho(w)

a(Ho(wuw)~T)aV /2 V2

Here o denotes the unique positive root of T in G. We obtain

JI(f) = —meas(T(F)Ac\T) // iyt (a ﬂ>uk)g—(—}i)%ik—))dudk (4.3)

+v20(T)meas(T(F)A\T) 7P(<O‘ ﬁ> ). (4.4)

18
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(8) The case of central o is easily reduced to the case o = {1}. Ifo = {1}, 3 =
Usenrnew) AAG)TU(F) allows us to write (3.3) as

i+ Y (X s - /U F(@'6 7 ubz) duFs (Ho(0z) — T))).

SEB(F)\G(F) veU(F)\{1}

Thus, by the Iwasawa decomposition, J{Ii}(f) equals the sum of
meas(G(F)Ac\G) f(1)  (45)

and

Ftvt) — | f(t ut) duTs(Ho(t) — =205 gt .
/T(F)%\T< > FTw /Uf(t t) (Ho(t) T))t t (4.6)

veU(F)\{1}

where ;
f(z) ::/ fk™tzk) dk.
K
Fiz a non-trivial character ¢ of F\A. Write u for the Lie algebra of U and uV be its dual.
Then the Poisson summation formula for the Fourier transformation

—

(Ad()F o exp)(XV) := / ., (AdOD e X)p((XY, X)) dX = 2 (F o exp) (a(t)X")

implies that (4.6) equals

——

V2 - meas(F*\A) / Z (f oexp)(z7'€)|z|x" — (F 0 exp)(0)Tsa(r) (log |24 ) dz*

FXNA een(F)\{0}

—VEemeas(F\AY( [ S (Foexp)aT ey’ dr”

FXNA geu(F)\{0}

[ Y (Feen)at) = FDlali! - (Foexp)(0)7sacr loglal) dz*)

x \A_>_1 5\/ euV(F)

:\/Qmeas(FX\Al)</ Z (f o exp)(z€)|z|a dz>

FX\A>1 ey ()\{0}

+ [ S Feem)(@g) - FL)laly" do”
FX\A21 eveuv (P)\(0}
+ (F 0 exp)(0) L~ Toar)(log |2]) dz* ).
FX\A>1

Here 1 4 is the characteristic function of Rs 4. Consider the integral
2(7.9)i= [ (Foexp)(@lalsde.
AX
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This converges absolutely for Re(s) > 1 and extends to a meromorphic function in s.
It turns out that the sum of the first two integrals in the above equals the regular part
reg,_, Z(f,s) of this “zeta function” at s = 1, while the last equals meas(F>*\AHa(T).

Noting that (f o exp)(0) = fp(1), we conclude that
J{Tl}(f) = meas(G(F)Ac\G) f(1) + meas(Z(F)Ac\Z)reg,_, Z(f, s) (4.7)
+v20(T)meas(T(F)ANT) fp(1). (4.8)

We choose Ty = 0. Then taking the special value at Ty is equivalent to throw away the
sum of (4.4) and (4.8):

Z V2a(T)meas(T(F)AN\T") fp ( (a ﬁ) ).

a,BeEFX

This is precisely the term which cancels the analogous term in the spectral side [22, p. 289].
Thus we can say that the present construction is a generalization of the GL(2) case. Note
also that this term can be viewed as the geometric side of the “trace formula” for the Levi

subgroup T applied to fp.

4.2 Reduction by the Jordan decomposition

Calculate the geometric terms. Our goal is to express J,(f) as a sum of terms, each of
which is a product of a global constant and an Euler product of local distributions.

First we replace k7 (z, f) with

iz, )= D (D)% > jpo(z)Te(Ho(éz) — T),

PeF(Po) s€ P(F)\G(F)
Jpo(z) i= Z Z q’)(:c_lu_l'yuux) du.
~eEM(F)Ns veUrs(F)\U(F) Y U™
We have
Kpo(z, ) =/ Jpo(uz) du
U(F)\U

and hence

JT(f) = / (2, f) da.
G(F)Ac\G

Take a representative ¢ € o which is elliptic in some P, = M U; € F(F), that is,
o € M;(F) but it is not contained in any proper parabolic subgroup of M;. Then P, is a
minimal parabolic subgroup of G,. Each 7 € 9 is conjugate to some element of oldg, (F'),
where Ug, is the unipotent variety of G, the connected centralizer of o. Thus writing

(o) =[G (F) : Go(F)], we have
Jeo(z) =C(@)™ Y

weWMl (LvGU)

Z . Z )/wﬂ(V)nGU flz7tn7 ¥ (ovv) ) dv.

T€(YGoNQ)(F\Q(F) vew ! (L)(F)NUg, (F
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Here

L .G,) =
WMl( ,G) {’LUGWMl(L t (ZZ ,8)>0 V,@EEPIU ,
by P being the set of positive roots of P. If we write R for the standard parabolic subgroup

YT QN G, of Gy and F(M)g := {P € F(M,)| P, = R}, the above gives

n=cor [ 2

(FYAc\Go ReF(P1 o) §€R(F)\Go(F)

Z f(y_lx—lti'lcwvéa:y) dv (4.9)
IJEUMR(F)

Z (—1)"87p(Ho (Szy) — wpl(T — Th) — Th) dz dy.
PeF(Mi)r

wp € W is such that “? P € F(F,). R = MgrUg denotes the standard Levi decomposition
of R. We shall write this in terms of the unipotent terms J; {1} T of the trace formula for
the Levi subgroups of G,.

As in the case of GG, we have the origin T , € apy, for G,. We write T, for the image
of T'—T1 4+ T1, in ap, and set

YE(z,y) = —Hp(kp, (z)y) + wp' (T = Ty) — T, + Ty, P € F(M)r.

Then the family Y% (z,y) := {YZ (z,y) | P € F(Mi)r} is compatible in the sense of [9,
§ 4]. Generalizing (4.1), we see that the last line in (4.9) can be written as

S (—1) R (Hr(07) — Tp)T (Hs (63) — Ty, Y (62, )),

SeFCGo (M)
SOR

where

TE(X,Vr) = > TRMS(X)( > (_1)02"?@()(»1/@)).

SeFCGo (Mi,s) QeF(Mi1)s
SDR

This combined with the Iwasawa decomposition yields

JT(f) = C(o)™ /GG\G / /Q[G TS (&5, ,.,) dadk) dy, (4.10)

DL g y(m) == mPs Fy Yok  'muky) duT§ (Hs(a) — Ty, V5 (k,v)).
Us

SEFGo(Py,»
with

Finally if we specialize this to T' = Ty, T'S(X, Vi (k,y)) reduces to rg(x, ~HQ(ky) +
Ty — Ty ) for any Q € F(M1)s. Applying this to the integral over a in (4.10), we obtain

BN =@ [ I @smn,)dy
NG $5erGo(py,)
| (4.11)

G \~1 (WME]
= E —J (P _ d
1“ (o) /(;U\G ( |WE| t (®rym, Tl’a)) v

RG}—GG(MI,U)
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where
Bsya(m)i=mes [ [ p ok maky)os(hy, T) dudr,
o US

vsi(ky, T) =Y /G I'S(X,—Hq(ky) +T)dX.
QeF(My)s L

4.3 Weighted orbital integrals

Our goal here is to express (4.11) as a linear combination of weighted orbital integrals.
We must first recall the notion of (G, M)-family.
For Q C P € F(M,), we define two denominator functions

1

Oo(N) = meas(a}l/Z[AG.))

a’(A),

OCEAQM

~ 1
E(N) = ~ @V (N).
o) meas(a} /Z[AY]) 11 )

wVGEéM

Here 3}’; denotes the basis of a§, dual to Ap C (a$;)*. These functions first appeared in
the Fourier transform of I'g(X,Y) in X [4, Lem. 2.2]:

AMiY)

JUR
/ FE(X, V)M dX = (—1)% ¢

af P50 05(NOE(N)
but its real nature is to produce certain “difference”

Py = ST (Lt AN B
o) =Y (-1 TN O (4.12)

P1DQ

of a smooth function cp(A) on iay,, @ D P. Here cp (A) := cp(Aar, ), Am, being the iaj,
component of A under iaj, = i(ay})* @ iaj},,.

Example 4.2. In the case of GL(2), we have

oy V2 Y,
) = oy s~ ) = 7y

(cs(A) — cB(Ac))-

Since /2 is the length of o, this is literally the difference of cg()\) around \g.

A family {cp(A)}perpar) of smooth functions on ia}, is a (G, M)-family if cp(A) =
cp/(A) for any P, P’ € P(M) whose associated chambers share a wall and X in that
wall. For a (G, M)-family {cp(\)}pepar), the function (4.12) is well-defined because it is
independent of the choice of P € PF1(M).
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Lemma 4.3 ([4] Lem. 6.1, 6.2, 6.3). Let {cp(A)}pepm) be a (G, M)-family.
(1) cp(N) extends to a smooth function on ia} .

(2) The function
G = Y o)

Q
PecP(M) 0 ()‘)
PCQ

extends to a smooth function on ia},.
(3) If {dp(N)}p(ary is another (G, M)-family, (cd)p(N) := cp(N)dp(A) form a (G, M)-

family and we have
(V) = Y cGNdo(N).
QEeF(M)

An example of (G, L)-family is the family {vg(), z) := e MHa@)} o o) for z € G. If
P = MU € F(L), then we have the bijection

PP(L) 3 Qv+ QM :=QN M e PY(L).

Thus, from a (G, L)-family {cqo(A)}gep(r), one deduces a (M, L)-family {com(N) =
co(A) Yomepm(r). Applying this to {vg(A, )} gep(r), We have the smooth function

vo(A, x)

vE(\ z) = —@—)\—)——

QMePM(L)

by Lem. 4.3 (2). This depends on P € P(M) (as the notation suggests) because the
function Hy depends not only @™ but also Q. Set v (z) := limy_o vE (A, z).

Let S be a finite set of places of F'. We now define the weighted orbital integral
Ju (v, f) for M € L(My) and v € Mg. Write v, = 7, s%u for the Jordan decomposition
of . f G,,, C M,,, at any v € S, we define

Ju(y, f) = IDG(,Y)|1/2/ “ /MS() o px)vp (z) dp dx

—IDPOE [ S (@) s

Gs5,4\Gs

Here D () = (D%())ves is given by D%(v) := det(1 — Ad(vu,s)|8(Fv)/8ve.s (Fo))s Gres
being the fixed part of Ad(v,s) in gy, the Lie algebra of G®F F,. Also oMs () is the Mg-
orbit of «y. The convergence of Ja (7, f) is assured by [10, Lem. 2.1] and the Deligne-Rao
theorem [36]. In the general case, we define

Iu(y, f)=1lim > ry(y,a)Ji(ay, f). (4.13)

a—1
LelL(M)

Here 7%, (7, a) = r%(7y,a) (Q € P(L)) is constructed from the (G, M)-family

= H H Iaﬁ _ a—ﬁlﬁ(ﬂy’)’v,u)’\(ﬁv)/Q’ Pc P(M)

T
veES ﬁEEP%)S
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by the process explained above. The non-negative integers p(8,u) are defined in [10, § 3],
and the existence of the limit in (4.13) is assured by [10, Th.5.2]. In this case the resulting
function is independent of @ € P(L) [10, Lem. 5.1]. Note that, if M = G this reduces to

the ordinary orbital integral

Tl )= IDSQE [ fee)da,

Gs54\Gs

We need the following descent formula for weighted orbital integrals.
Lemma 4.4 ([10] Cor. 8.7). Suppose that v € Gg satisfies
(1) (T.s)ves € G(F);
(it) an.,, = ap (vs 18 elliptic in M(F)).

Then we have

JM(’Y,f)=1DG(7S)[11<92/ > InE (s Pry) | dy,

Gre,5\Gs \ peFGrs (M)
where

Pryr(m) = m""/ / fy sk i muky)vip(ky, T) du dk
K’Ys S UR,S

is the local analogue of ®ry 1 in (4.11). In particular the right hand side does not depend
onT.

We now go back to the calculation of (4.11). Take a finite set S of places of F
sufficiently large with respect to G and f so that

J G —1 |WMR]JMR (b d
o(f) = 7(0) Z Wos] ar (Pryni-mi.) | dy (4.14)
Go,s\Gs  \ ReFGo(My,,)

We have following formulae on the variation of J13(f) and Jy (v, f) under conjugations:

Sy WH p
T Ade ™ = D T I (Fas)
QeF(Mo)
Tu(rAdG) = D T Fag);
QeF(Mo)

where

fol) =22 /K /V f(k'lﬁvk)u'Q(k,y) dv dk

ug(k,y) = /G TG(X, —Ho(ky)) dX.

L
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From this Arthur deduced [8, Cor. 8.3] that there exists a family of complex numbers
{aX(S,u) | L € L(My), u € UL(F)} such that

Juy(f) = Z > II;//LIGL(Sv u)JL(u, fs).

LeL(Mo) u€ly(F)/Ad(Ls) W]
Using this (4.14) becomes

R =) [ > Y e

Gos\Gs LerGo(M,,) ReFGo(L)

X Z aL(S> ) ‘]I],VIR (W, Pry-11,) dY
uel (F)/Ad(Ls)

writing ,C(O,(Ml) = {M € ﬁ(Ml) l ap = ClMG},

-1 W
=LG(0') Z JI——W—E":’T' Z

MGEg(Ml) UGUMG (F)/Ad(Md.S)

a™ (S, u)| D% ()|, > i, @ryn-1y,) dy.

Go,s\Gs RerGo(M,)

Going back from G, to G by Lem. 4.4, we obtain

WMa |
Jo(f) =@ '|WGU |' > M (8, u)Ju(ow, ). (4.15)
MeL£d (M) u€lpr, (F)/Ad(Mg,s)

4.4 The fine Y-expansion
Our final step is to get rid of o from (4.15). We say that vy, ¥/ € M(F) is (M, S)-equivalent
(notated as vy e ') if there exists § € M (F') such that

e v = 6v,0~! and

e 7/ and §v,67! are conjugate in M.

We write (M(F) N8)u,s for the (finite) set of (M, S)-equivalence classes in M(F) No.
Noting that o € M(F) is elliptic if and only if M € L3(M;), we set

M e (7s) M.
a (S,7) = M () Z a™ (S, u),
7). uctin, (F)/Ad(Ms,)
T tans)

where

v, . )1 if o iselliptic in M(F),
(o) = .
0 otherwise.
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This allows us to write

=S VLIV L elo) s~ g 0,00, 1)

M| Gs| .G
MEL:(M1) |W| ]W [ |W | L (0) 'YG(MA(/F:);‘H)M,S

-y o > aM(S7)Iu(n )

MeL(Mo) o EOD(M)  YE(M(F)NB) M, s
Ad(G(F))op=0 Vs=0

M
L

€L(Mo) [ YE(M(F)N0)ar,s

Theorem 4.5 ([9] Th.9.2). For each compact neighborhood Q C A:\G of 1, there ez-
ists a finite set of places Sq such that we have

WM

TORED S ) SR iR
MeL(Mo) YEM(F)m,s

for S D Sq and f € C*(G/Us) supported on S.

We must remark that a™ (.S, v) are constants which are not well-understood. The only
information for these is the following theorem.

Theorem 4.6 ([9] Th. 8.2). For a semisimple v € G(F) and sufficiently large S, we

have meas(G,(F)2c\G)
a(8,7) = “0)

0 otherwise.

if v is elliptic in G(F'),

5 Fine y-expansion

Next we calculate the spectral terms. Let us recall the definition of JE(f). We have the
induced space A(UM (F)Ay\G)rx § 2.6. Define the linear transformation QI x(P, \)

on this space by

/ / (7 (P, \) ) (mk) P (mk) dm dk = / AT Bp(z, $3) AT Ep (2, 8 do
K JMF)%\M

G(F)Ac\G

for any ¢, ¢' € A(UM(F)Ap\G)rx. From (2.6), we know that

N Kx(z,y) =N Kx(z,y)= >, Y

PeF(Py) mell( Ml)

/ Z N Ep(z,IE (mx, [)ea) ATEp(y, ¢a) dA.
i(a%y)

G \*
t <P€‘31r,3€
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Replacing this in (3.6), we have

ZH=3 3 /

PEF(Po) memi(M?) ¥ 451"

M)| (e (PNIEx(m, ) dA, (5.1)

where Z§ ¢ () denotes the representation of G on Ay (UM (F)Ap\G)rx. We would like
to obtain a more explicit expression for this.

5.1 An application of the Paley-Wiener theorem
We put

TN, )= D> D> Y meas(af/Z[AY])

Q LVG]—" PQ) ’LUGWML w’EWM,
<M(wa 7T,\)d), (’LU ) 7TA/)¢/> (w(X)—w' (A)NT)
[Taeng (wA) —w'(X))(aY) ’

for ¢ € Az(UM(F)QlM\G)W’x, (]5’ S AQ(U’MI(F)Q[M/\G)W/,;{, A E iy, PNS Z'Cl.}kw,. Ex-
tending the GL(2) case, Langlands proved that if ¢ and ¢’ belong to the space of (induced
from) cusp forms, the L2-inner product of truncated Eisenstein series (AT Ep(¢y), AT Epi($),))
is given by wT (A, N, ¢, ¢') [30, § 9]. For general ¢, ¢’ we have the following weaker result.

Proposition 5.1 ([5] Th. 9.1). There exist e > 0 and a locally bounded function p(A\, X')
on iay, X iay, such that

(AT Ep(¢2), ATEpr(¢y)) = wh (A X, ¢, 8] < p(X, X)l9]l - | ]|le=I .

Here the norms on the right are given by

2. __ 2 .
il '_/K/mmM\M |p(mk)|* dm dk.

Example 5.2. In the GL(2) case, we write x, x' for © and n' € II(T!). Then we have
(NTEp(#2), AT Es(¢y)) = (E(¢x), NTEB(8)))
_ / En(z, ) (5 (@) — En(x, ) 575(Ho(z) — T)) da
B(F)%\G

_ / Es(z, é2) 5 (Fu(@) — Bal@, 8y) 576 (Ho(z) — T)) da
UT(F)A\G |
using § 2.4 (1-ii),

_ / (6(2) + M(w, x)$a(x))
UT(F)A\G

X (¢ (x)(1 = Tp(Ho(z) = T)) — M(w, X\) ¢ (2)78(Ho(z) — T)) dz.
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Using the Twasawa decomposition this becomes, for Rea”(\') > £Rea”()),

a(T) ~/ 3
/ <¢’ ¢/>etav()\+,\ )/2 + (M(w, X,\)Qb, ¢I>etav(w(>\)+)\ )/2 ﬂ
oo V2

” vV (A+w (X v 5\ dt
- / gy (M) GO 4 (M(w, X2, M (w, X)9) e O =
a(T

V/2eOHXNT) V/2e@N+X)(T)

= _———I——-<¢7 ¢I> + —/
aV( A+ ) av(w(A) + )
V2w , V2O (D)

+ Oév(/\ +w(7)) <¢,M(w,Xx)¢>+ aV(w()\+X’))

(M(w, xx)$, ¢')

(M (w, x2)¢, M(w, X))

If we restrict the last formula to (A, X') € ia% X ik, we obtain w™ (X, N, ¢, ¢'). In the higher
rank cases, ™ can be in the residual spectrum, an irreducible quotient of an induced from
cuspidal representation. Since it throw away some submodules which might contribute to
the inner product formula, we can control the inner product only asymptotically.

We would like to replace wT(\, X, ¢, ¢') for the inner product of truncated Eisenstein
series in (5.1). But this is not allowed because the domain of the integral is not compact.
We bypass this difficulty in the following way.

Fix an R-minimal parabolic subgroup P = MxUsx of Go which is contained in
the global minimal parabolic subgroup Po .. Write as for the Lie algebra of the R-
split component Ao, of Z(My). Choose a Cartan subalgebra bk in the Lie algebra of
Ko N Mo and set b := ihk_ @ ae, a Cartan subalgebra of go. Write W (hc) for the
Weyl group of hc in goo(C) and let £(h)W ) be the space of W (h¢)-invariant compactly
supported distributions on f. The following is a corollary of the Paley-Wiener theorem
for real reductive groups. '

Proposition 5.3 (Multiplier theorem, [7] Th. 4.2). For v € ()Y and f., €
H(Gw), we can find foor, € H(Gs) such that

7r<>0(foo,’y) = V(Xmoo)Too(foo), VToo € [I(G).

Here § denotes the Fourier transform of v and X, € b s a representative of the in-
finitesimal character of Teo.

Write h for the kernel of b 2 Goo Hg ag. Applying this proposition to the infinite
component of f € H(G/2s), we have:

Corollary 5.4. For v € E(h¢)W0) | we have a linear map f — f, on H(G/Ug) such
that
T(fy) = A(Xmeo)7(f), ¥ € I(G).

We use the abbreviation

WL (N f) = tr(QF 2 (P, NIEx (m, f))-

[P(M)]
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There exists Cy > 0 such that if a(T") > Cy, YVa € Ay we have

Ziy=S % / OV S

PEF(Po) meTi(M1) ¥ 850"

YD / A me + NYL (A, ) X

PeF(Py) mell(M?) (aM)

- Z Z /.(G) \I’g,w(A, f) /FJG 'y(X)e(xnoo+,\)(X) AX d\
1 llM *

PeF(Py) mell(M?)
N / Z Z w?f—',ﬂ'(X: f)’Y(X)ex"oo(X) dX,
Y peF(Ro) mem(M1)

where

WL (X, ) = / WL (O £ da,
i(a$)*

In particular, if we write vy := |[W (bc)|™ Y wew (he) Ow=1(H) (average of Dirac distribu-
tions), then for T with a(T") > Co, Vo € Ag we have

Jg(f””)_IWh)l S Y dRLwT@E) Her=tTE (52)

weW (he) PeF(Pp) WEH(MI

Let p” (H) be the right hand side. This is a polynomial in 7" and is smooth in H. We can
recover J%(f) as p(0) =“o(p”)".

The last expression is incorrect because the right hand side of (5.2) has non zero real
exponent, i.e. is not tempered. Instead, we look at the coefficient

1 _ .
VA = Ty, 2 Do YRa(wT(H), flemem D)
CN peF(Ro) (wm)ew (he) xTI(M?)
w(ReXnoo )=

“of each real exponent A of pT(H): pT(H) = >, I (H)e*#), the sum is finite. We can
asymptotically approximate these by polynomial functions:

Lemma 5.5 ([6] I, Prop. 5.1). There ezists a unique (finite) family {p3 (H)} of poly-
nomials in T which satisfies the following conditions for some C, € > 0. For any differ-
ential operator D on K€, we can find cp > 0 such that

(1) |DWT(H) — pL(H))| < ep exp(—einfaca, a(T))(1 + [T)®, for H € b and sufi-
ciently positive T,

(2) |DpL(H)| < ep(1+ [|[HIN® (L + [[TI)%, for H € §¢ and T € ao.
Here dg is the mazimum of the degrees of pk.

By construction, these pl (H) are tempered and we can consider
Y A

B0) = [ AnBen s, 8 e s,

a polynomial in 7". Moreover we have
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(1) For 8 € S(h°) satisfying
[ sman -1,
bG

we have lim_o pZ(8:) = pT(0) where S.(H) := e~ 4m° 3(e~1 H).
(2) For B € S(h%), we have
W (H)B(H) dH — p(8) — 0
b
as a(T) — oo for any a € A,.
Now we are ready to calculate JL(f). Take B € C(i(h%)*) and write By, for the
restriction of this to i(a%,)* C 3(h%)*. There is a 8 € S(h®) such that
B\ = [ B(H)MNDJH.
G

If we put P7(B) := >, pi(0), then the theory of Fourier transformation and the above
(1), (2) imply:
(1) If B(0) = 1 we have lim_,o PT(B.) = JL(f), where B.(\) := B(e\).

(2) PT(B) is the unique polynomial in T such that
> X [ 0Bk - P
PEF(Po) meti(Mt) Y i(851)"
goes to zero as a(T') tends to infinity for any a € Ao.
Consider the linear transformation

Ap,ﬂ’x(A, )\/) = Z Z

QEF(Po) w,weWn L

(W' (\)—w(X)(T)

05 (w' (X) — w(X))

on Ax(UM(F)2n\G)rx. Since the global intertwining operators are unitary on the
imaginary axis, we have

M(w, ma) "' M(w', 7))

(M(w', X', M(w, X))l W) =w))T)
2.2

(Aprx(\N)P', ) = 05 (w' (N) — w(X))

QEF(Py) w,weWn, L
=w (N, A\, ¢, 9).

It is shown that w? (N, A, ¢, ¢) is holomorphic on i(a$;)* x i(a%)* [5, Cor .9.2], and we
can define wi (P, A) := Aprx(A A) for A € i(af)*. Since By are compactly supported,
we can apply Prop. 5.1 to see that PT(B) is the unique polynomial in 7" such that

Y. A trw (P, AVTEx (ma, £)]Bu(A) dA — PT(B)

PeF(Po) weH(Ml) i(afp)*

goes to zero as a(T) tends to infinity for any a € A,.
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5.2 Logarithmic derivatives

Yet we need to give an explicit expression for wgm(P, A). We first look at the simplest
case.

Example 5.6. Suppose G = GL(2). In the notation of Ez. 5.2, we have

JIeN NI [FwN)-N)(T)
\4 !/ + AV 1 M(w7 X/\')

N =N T avwV) = N

BN —wON(T) L /2N -N)

oo gy M) Sty M) M )
N

:_________-(e(,v_x)(T) _ e(A'“’\)(w(T))MEB(L X)\)_IMF|B(1’ XA'))

Apg x(MXN) =

av(N = X)
+ V2 (e(w(A’)—A)(T)M(w /) — (W) =) (w(D) pr_ (1, xx) " Mg 5 ,))
V (wN) — N » XA BIB\L: XA BIB\W; X)) )5

where we have written Mz (1, x») := w o M(w, x») and Mz p(w, x») = w. This illus-
trates how Apg y,x(A, X') becomes holomorphic on A = X'. Moreover, writing X' = A +ta/2,
the first row in the right hand side restricts to A = X' as

Lim Tt [eamt/z — € a(T)t/zMEB(l,XA) 1M§|B(17 XA+ta/2)]

= lim ~—= [1 — e M Mg (1, xa) T My p(1, tha/Q)] ,

which gives rise to the logarithmic derivative term in the trace formula of GL(2).

To produce the higher dimensional analogue of the logarithmic derivative, we use two

kinds of (G, M)-families. We need the following recapitulation of intertwining operators.
Take M, M' € L(M,). For P € P(M), P' € P(M') and w € Wy 1+, we define

[Mprp(w, m\)$)(x) = / p(w uz)eArerHrT i) gy . N tep), Hpr@),
(U MwU\U’
a linear operator Ay(UM (F)Ay\G)rx — A2(U'M'(F)Ar\G)wr),xz- One can easily
show that
v o MP’]P(wa 71'/\) = e"((w(/\)+PP/)yT1—v—1(Tl))MU(P,)lp(Uw, ﬂ-)‘)
Mpip(w,m) 0 vt = e ter Ty T Ny oy (wu ™ u(m)).
If we choose P;, P/ € F(P,) and vy, v}, € W such that P = "1 P;, P’ = "1 P|, we may write
w = viw vy " for some wy; € Wiy, pz. Then the above formulae imply that

Mp/p(w, my)

) - _ } (5.3)
e(ww1 (N +ppr T1—v1 (T1)>6—(vll(/\)+ppl,T1——v1 1(Tl))v;L o ]\4}){”31 (whvl—l()\)) 0,01—1_
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This relation allows us to translate the basic properties of M (w, 7) to those of Mp/p(w,7y).
In particular the latter operator absolutely converges if the real part of A belongs to a
cone, and extends meromorphically to aj,c. This defines an intertwining operator at A
where it is holomorphic. Finally this fits into the functional equations:

Ep/(z, Mpip(w, mx)$r) = Ep(z, $r), :
Mpopr(w', w(m)) Mpp(w, m3) = Mpnp(w'w, ), P"€P(M"), w' € Wy pn. (5.5)

These results allow us to write Aprx(A, ') as

A (N = Z Z (W' (M) =w(X)(T) Mo (10, 73) " My p (0 )
P, X\ - 9G (w’()\’) — 'LU()\)) P |P\W, Tt ) PP y A
P1DPy w, ’LUIEVV]\/[JW1 51
VW) =A)(T)

=2 D Gaieon =y M) Map v, m)

P;DFPy ve VV]\,{J\,{1
’UJGWM,M

using (5.5)

V(W) =A)(T) o (w(X)=A)(T1—v~ 1 (T1))

=2 2

G —
P1DP UGWM,MI e'll—l(Pl)(w(A,) A)
weWns pr

X Mv—l(Pl)lP(la WA)—le—l(Pl)lP(w: 7rf\)

putting Q := v~ () € P(M)

e(w\)=AYo(T))

=2 2 9@ oy = vy Mair(Lm)” " Moyp(w, 7).

QeP(M) weWnr M

Here we have written Yo(T) := Ty + v (T — T1) for Q = v }(P), v € Wy n,. To
calculate tr{w? (P, A\)Z§ ¢ (mx, f)], which equals the restriction of

> 2

weWn pr QEP(M)

e(w(A )- }\)(YQ(T))

_/\)

tr(Mgyp(1, m2) ™ Mgyp(w, mx ) I ¢ (0, f)) (5.6)

to A = )\, we note that
cq(T,A) := M) g (A) 1= tr(Mgp(1, 7)) " Mgp(w, mara) I8 x(mr, £))

form (G, M)-families. Then we know from Lem. 4.3 that (5.6) is smooth at any (), \)
and

trlomx(PANIEx(mn, Nl = D0 D e(T,w(d) = Ndg (A, w(d) = A).

’LUEWM M P1€.7:(M)
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Here L, € L{(M) is such that ar, = {H € ap |w(H) = H} and

dg (AL, A) = tr(Mgp(1, ) ™ Mgip(w, 7fx+c)11(>;,3e(7f,\, 19!

if A=w(\) — A+ ¢, ¢ €ia},. (Notice that A and ¢ can be recovered from A and A, .)
We now combine the above with the result of § 5.1 to see that

Z Z )| Z

PeF(Py) weH(Ml) weWn, m

jf ¢ (T, w(N) — N2 (A, w(A) — \)Bar(A) dA

i@f)" py e]—'(M)

(5.7)
is asymptotic to PT(B). Write x1:(T, ) for the characteristic function of the convex hull
of {Yo(T)|Q € P(M), Q C P}, then cyi(T) is its Fourier transform [4, § 6]:
AT = [ XEH(T, X)eH™) dx.
(YQ(T)) ary +apg
Then the integral over i(a$;)* can be calculated as

1
J X(T, )
) peFenny J @) an +aps

| det(w — 1]ak
/ "~ / o - Mg (A, 1) By (w — 1) () + ) d\dpdH

In this, the terms associated to P, 7 L, goes to 0 as a(T) — oo, Ya € Ag. Those
associated to P; O L,, becomes

1 P / !
¢t (1,0 dp, (A, 0)Bar(A) dA
et — a0 Jg, e O

We conclude that (5.7) equals

> 2 man

PeF(Fo) neH(Ml) weWM,M

: ST (T 008 (0, 0)Bar(N) dA

Ly
ldet(w - 1IaM )I i(afw)* PieF(Ly)

(5.8)

Final step towards the fine X-expansion is to look at the nature of the “logarithmic
derivative” '
c(T', A)dg(A, A)
0g(A)

(5.9)

> i (T, 0)dp(X,0) = >

P €F (L) QeP(Lw)

As in Ex. 5.6, we divide d§(X, A) as
WA A) = tr[(Mgp(1,m2) " Mgp(1,ma1a)) © (Mpip(w, mrra)Zox(mx, £))]
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The latter simply restricts to A = 0. But in the former,
MQ(P, T, )\, A) = MQ|p(1, WA)—IMQIP(L 7T)\+A), Q € P(M)
is a (G, M)-family in A and so is
Mg(P, ™, )\, A) = CQ(T, )\)MQ(P, ™, /\, A)
This combined with Lem. 4.3 justifies to write the specialization of (5.9) to A = 0 as
T G
tr[(Q ;L 7 (A)M BPAN)| ) Mpyp(w, TS (s, £)).

Note that Mpp(w, ma+x) = Mpjp(w, ) for A+ € iaj}. Since this is a linear combination
of certain derivatives at A = 0 of the exponential functions cg(T,A) = eA¥e) the
exponents being linear in 7', this is a polynomial function in 7'. Since (5.8) and P (B)
are both polynomials and asymptotic to each other, they must coincide:

T — L !
PTB)= >, > > > |P(M)||det(w — 1]ak,)]

PeF(Po) mell(M?) LeL(M) ywewlres

(5.10)
X /( . tr(MEL (P, m, A, 0)Mpip(w, 7)Tpx(my, £))Bar(\) dA.

Here Wyse := {w € Wk | det(w — 1]ak;) # 0}. Once we have an equality, we can
specialize it to T'= T3. Since Yg(T1) = T4, we have
M (P, A, 0) = eI ML (P, A A)|amo = ML(P, 7, A, 0).

Using p. 30 (1), we conclude from (5.10) that

1 1
Jx(f)~hm Z Z Z Z |P(M)||det(w — 1]ak,)]

PeF(PRs) well(M1) Lel(M) wEWL ,reg

« /( .. TOME(P T2, Moo, )Tz, £)) (B ()

L |[WM| 1
=hmo DL DL D D I [dew =Tk (5.11)

MG‘C(MO) LEC(M WEH(MI) WL reg

1
X /(QG)* PO Z tr(ML(P, 7, X, 0)Mpip(w, )G x(mx, £))(Be)m (N) dX

PeP(M)

Here B € C(i(h%)*) is such that B(0) = 1.
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5.3 Normalization and estimation of intertwining operators

We hope to get rid of the limit € — 0 and the factor B, from (5.11). For this we have
to estimate the integrand and show that it converges without the factor B.. For such an
estimation, we adopt the usual approach of normalizing intertwining operators.

The normalization is constructed locally. Consider a connected reductive group G over
a local field F' of characteristic zero. We adopt the local analogue of various notation pre-
sented above. In particular we write G = G(F') and fix its maximal compact subgroup K
so that the Iwasawa decomposition G = PK holds for any P € F(M,). For M € L({M,),
write IT,qm(IM) for the set of isomorphic classes of irreducible admissible representations
(irreducible (mg, KM)-modules if F' is archimedean) of M. For 7 € II(M) and P € P(M),
write Vp(m) for the space of smooth right K-finite functions on G satisfying

p(umg) = (m)p(g), uweU meM,geG.
The parabolically induced representation Zg(m), A € a}, ¢ is defined by

[Z5 (72, 9)¢](2) := p(zg)eHorHir@dle=Oterlire) g e G, ¢(z) € V().
This is isomorphic to the usual parabolically induced representation by
Z8(my) 3 ¢(z) s P(z)ePMPrHP@) ¢ indSry, @ 1y].
As in the global case, we define the intertwining integral Mp/p(w, 7)), (P = MU, P' =

MU e f(Mo), w € WM,M’) by

(Mpp(w,m\)$)(z) := / p(w ug)eMrerHr@wTium)) gy . o\ +op) e (@)
(UnwUN\U ,

Proposition 5.7 ([27], [39] § 2.2). (i) [Mp/p(w,ms)¢](x) converges absolutely if Re(N)
belongs to some open cone in ay,, and meromorphically continued to the whole e

(11) If we write £p(w) for the length function on Wi (G) with respect to P € P(M)
/33, [.1.7/, then for w € WM,M’ and w' € WM/,MH with Ep(w’w) = €P<’U)) -f-Ep/(’wl), the
functional equation

Mprip (W', w(m2)) Mpp(w, m2) = Mprp(w'w, my)
holds.
Consider first the following two special cases.
(1) F is archimedean.

(2) G is quasisplit over F' and 7 is generic with respect to some non-degenerate character
of a maximal unipotent subgroup of M.
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(Recall that a splitting of G is a triple of a Borel subgroup B, a maximal torus 7" in B
and a system of root vectors {X} C g for the simple roots of T in B. G is quasisplit if it
admits a splitting spl; = (B, T, {X}) which is stable under Gal(F/F). Then a character
0 of the unipotent radical N of B is non-degenerate if its stabilizer in B equals the center
of G. For such 0, a 8- Whittaker functional on 7 € II(G) is a linear functional A : V,; — C
on a realization of 7w such that

Ai(w(n){f) = O(n)Afr(é), neN, eV,

We say that 7 is 0-generic if it admits a non-trivial #-Whittaker functional.) In these
cases, we have the automorphic L and e-factors L(s, m,7) and &(s, 7, 7,) of 7 attached to
certain finite dimensional continuous representation r of the L-group *G of G [17], 4 being
a non-trivial character of F'. (N.B. The L-group should be the Weil form *G = G x pa WF
instead of the Galois form G x ,, Gal(F/F) adopted in [17], since some important cocycles
on Gal(F/F) does not split while its inflation to Wr does.) In the case (1), these are
defined in terms of the local Langlands correspondence established in [32]. In the case
(2), the definition is given in [40, § 7]. Now let P, P', m € I,am(M!), A € ia}, be as
above. Writing T, := u/% " w/ Nu, set

Tw: “M 3 m xw— Ad(m) o pg(w)|a, € GL(1y).
Define the normalization factor for Mp/ p(w,my) by

. L(07 WAaTw)
- 8(07 7rA, Tw, ¢)L(1, ﬂ.A’ Tw) .

7‘P’|P('U)> UPY! ’QD) :
The normalized operator Np/ p(w, ) := rpp(w, T, ) "' Mpp(w, 7)) enjoys the follow-
ing properties [13, I, §§ 2,3], [40, Th. 7.9]:
(N1) Npip(w, m)ZE(m, ) =I5 (w(m), f)Npip(w, m2), f € H(G).
(N2) Without any length condition, the functional equation
Npmpr(w', w(my))Npp(w, wa) = Nprjp(w'w, 7))
holds.
(N3) For X € iaj};, Np/jp(w, ) is unitary.

(N4) In the case (1), Np/p(w, ) is a rational function in (a¥(\))aeap. In the case (2)

it is a rational function in (q;av()‘))

field of F.

acAp, Where gp is the cardinality of the residue

(N5) In the case (1), and if 7 is tempered, then 7p/p(w, mx, %) has no poles in the region
Re(a¥(A)) > 0, Va € Ap.

(N6) If G is unramified in case (2) and Z§(wy) admits a fixed vector ¢° under the
hyperspecial maximal compact subgroup K, then Np/ p(w, my)¢%(k) = ¢°(k), k € K.
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The property (N5) should also hold in the case (2) [40, Conj. 7.1].

Example 5.8. Consider the case of GL(2). If xa = x1| |3* ® X2l |32, then the normaliza-
tion factor equals

LA — Mg, x1x3 )
/\1 - A27X1X517¢)L(1 + /\1 - )\Qa X1X2_1) '

TBlB(w,W/\,’QD) = T§|B(177T/\>w) - 5(

(N5) is clearly valid in this case.

In the general case, a normalization factor satisfying (N1) to (N6) was constructed
by Langlands using the Plancherel measure [20, Lect.15]. We still use the notation
rpp(w, Ty, ) for this normalization factor, since these two essentially coincide in the
above special cases. To obtain an expression of 7p/\p(w, Ty, %) in terms of L and e-factors
as illustrated above is also important in the arithmetic applications.

Going back to the global setting, we define

TP'1P(1U,7T>\) = H 7”P'|P(UJ, 7Tv,,\,¢u), NP'[P(’LU,W,\) = ® NP/|P(’LU,7Tv,,\)-
v v

Here ¢ = ), ¥» is a non-trivial character of A/F and m = ), 7,. We use these to
estimate

S [ MR O

rem(v) Y ieE)
where || || is the trace class norm. Define two (G, M)-families
T 1,7
NQ(P, ™, )\, A) = NQ{p(l, 7T>\)—1NQ1P(1, 7T)\+A), T’Q(P, ™, )\, A) = M
T’Q|p(1, 71',\)
We apply Lem. 4.3 to Mg(P,m,\,A) =ro(P, 7, A\, A)Ng(P, 7, A\, A) to have
ML(P,m, X\, 0I8x(ma, f) = > rp(Pm, A 0Np, (P, A, 0)IE (s, f).

PeF(L)

Since Np (P, 7, A, O)If;jaE (7, f) is rapidly decreasing in A, it suffices to show that

[, RO A i
(a7 )*

converges absolutely for sufficiently large N. Once we are reduced to the estimation of
such a scalar valued function, we can deduce it from that of the inner product of two
truncated Eisenstein series (using Prop. 5.1) . This is done in [6, II, § 9]. Finally we have
the following.

Theorem 5.9 (The fine X-expansion). For f € H(G/2g), we have

W] 1
EA= 2 > > X T Taeiw = Teh]

MeL(Mo) LeL(M) well(MY) wewlres

1
X — tr(Mp(P, 7, A, O)Mp|p(w,7r)11§,x(7r,\, f))dA.
/i(ﬂf)* P(M)] PGPZ(M)
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5.4 Weighted characters

To obtain an expression of Jx(f) analogous to Th. 4.5, we need weighted characters, the
spectral counter part of weighted orbital integrals [13].
Let S be a finite set of places of F'. Consider the local analogue

NQ(P,’IT, )\,A) = NQ|p(1,7r,\)—1NQ|p(].,7T)\+A), T € Hadm(MS>a Ae z’a}‘w

of the (G, M)-family defined above. Since the singularity of Ngp(1,7) as a function in
A is isolated, its “logarithmic derivative” at A

1
=1l T P A
NM(P>7F>)‘) Al_I_% QS(A)NQ( 77T7>‘7 )
€
can be defined. This is meromorphic in A whose singularity set is a locally finite union
of affine hyperplanes whose vector parts are the zeros of coroots. Define the weighted
character to be

JM(’]T)‘, f) = tI‘(NM(P, ™, /\)I_,?(ﬂ')\, f))

More generally, for 7 € Maam(L) (L C M), we define Jy(7a, f) = Jn(Z5 (), f) with
any @ € PM(L). This again is a meromorphic function having the same type singularities
as Ny (P, 7, \) has. Note that, by taking trace, this is independent of P € P(M) as the
notation suggests. We also need the distribution

T, X,0) = [ Julm, NN ax, f € H(Gs).
s
Here aprs := Hpy(Mg) is aps itself or a lattice in aps (according to either S contains an
archimedean place or not), and we have written a}, ¢ for a3, or aj,/(aj; ¢) accordingly.
ays s denotes the dual lattice of ap s in the latter.
We look at the discrete part (i.e. the term associated to L = G) of the fine X-expansion

Th. 5.9:

wM 1 | G
Z Z Z ]|W|l | det(w — 1|af/[)| tr(MPIP(waO)IP,x(WA, )

MeL(Mo) mell(M!) weWis,

Since tr(Mpip(w, 0)I5 5 (s, f)) is an invariant distribution and Zg () is admissible, we
find that this is a finite linear combination of characters:

S aelm Bytrn(f).

well(G1)

Here we note that ag () 1= >z cx(q) a5sc (7, X) are merely some scalars and are not the
multiplicity of 7 in the discrete spectrum (cf. Th. 2.4)

Lo (G(F)ACNG) = @ LAG(F)A\G)m-

[G.7]
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We now give an expression analogous to Th. 4.5 for the sum J(f) = > xex(e) Jx(f)-

Set
[ me JH(TZM (o) (1) agdi.(o) #0,
Maisc (M) = { Q€ C723M(L) (2) wd(au) = o, Jw € W } ’
mM) = [ {ml 7€ Mase(M), X €i(ahi)*}.
MeLM1(Mg)

Note again that Igisc(M) is not the set of discrete automorphic representations of M.
For my € II(M,), m € JH(Z} (0,)) being as above, define

1 o(Q1,m, A A
aMi (1)) = afiee(O)rE (M), rEi(m) i=lim > - 6”131(/\) .
QGF(L)
QCH

Here TL 1(my) is independent of @)1 and P.
Corollary 5.10 ([12]). For f € H(G/%s), we have

WM

JH= > % a™(m) Tu (7, f) dr
MeL(Mo) (M)
Here we have written Ty (7, f) := Ju(w, 0, f) and the measure drw on II(M) is such that
W
[ eman= > TS / b(ms) dA
1) LeLM (Mp) w TrGHd,sc apf)

holds.

Proof. Write R, for the right regular representation of M on the discrete spectrum
Liisc(M(F)2p\M) of M. We may consider the induced representation Z§ (RLL. ,), which

disc

from Th. 2.4 is isomorphic t0 @ xcx(c) Dremm) T8 (). Th. 5.9 asserts that

wM 1
2. 22 IIWllldet(w—lla&)l

Le (M) ME,CL(Mo) wEWI\[;{‘T/Ig

1 G(pM
* [P(M)] p; ) /(uL) tr(ML(P, A, 0)Mpip (w, 0)ZE (R, £)) dA

Here M (P, \,0), Mpp(w,0) are defined similarly as My (P, 7, A,0), Mpjp(w, ) with 7
replaced with R .
One can easily see that the operator My (P, \,0)Mpp(w,0)Z5 (R, », f) vanishes on

the orthogonal complement of a subspace which is a direct sum of IG(ﬂ')\) (Q € P(L),
7 € Igisc(L)). On the ZG(my)-component, M (P, X, 0) equals

1
ML(P,TF,)\, O) == Z ‘9—8—(—XST'Q(P,7T,)\, A)NQ(P,’/T, /\, A) A:O.
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Noting that r£*(P,m, A, A) (cf. Lem. 4.3) depends only on M; and not on P € P(M),
we can write this as

S° AP NN (B )| = () Na (B, ),

MyeL(L)
This combined with the definition of a} (o) yields

J(f) = Z Z K_ /( o ke (M) (1) tr (N (Q, 1, VTG (ma, f)) dA

LGC(MQ) M1€£ L) I mwellg; sc(L)

decomposing i(a§)* = i(af™)* ®i(afy,)",

Z Z E{VT Z /( adxsc Ml (71’,\)le (7T/\’ ) f)dx

MieL(Mp) LeLMi(My) m€lgisc (L

writing M for M; and using the definition of the measure dm,

> W] aM (1) Tue(m, f) dr

MeL(Mo) (W1 I

6 The invariant trace formula

Recall, in many application of the trace formula, we need to compare the trace formulae
of different groups. The starting point of the comparison is a correspondence between
the conjugacy classes of the relevant groups. Consequently, we need to express the trace
formula in terms of invariant distributions, distributions which are invariant under the
conjugation. Here we shall explain how Arthur achieved this [4], [11], [12].

6.1 Non-invariance

First we measure the non-invariance of the terms in the trace formula. Recall the geomet-
ric kernel Ké;(a: Y) = 2 0en(q) Ké)o (z,y) of the induced operator Rg(f) on L*(VL(F)2A:\G)

3.1. Since KAd(y Wz, z)= KL (zy~t,zy~?!), we have
Q.0

Ad(y)J7(f) = / S (0f Y Koal6z,02)r(Ho(dey) — T) da

G(FAN\G ger(py) SEQ(F\G(F)

40



283

using (4.1),

_ /G S0t S Koeldw, w)Rgu(Ho(63) — T)

(F)A\G g peF(py) SEQ(FN\G(F)

x TE(Hq(6z) — T, —Ho(kq(dz)y)) dz

= > /P S (=D Y Kqe(dz,02)Tgu(Hg(dz) — T)

PeF(Ry) Y PF)Ac\G Qe]-'(Po) §€Q(F)\P(F)
QcP

x TS(Hp(6z) — T, —HP(]CQ((SQ?»)Q)) dx

Here we have written dz = g(dx)kg(dx) for the Iwasawa decomposition of dz with respect
to G = QK. If we write z € P(F)2c\G as x = umak, (u € U,m € M, a € A§,, k € K),
then

Ké;,o(&c, dx) = Ké%’oM(éma, dma), Hou(éz)= Hgm(ém),

P2 (Hp(dz) — T, —Hp(ko(Sz)y)) = T3 (Hp(a) — T, —Hp(ky)),

where

fE(m) := mPr /U f(k™'muk)du, m € M.

Using the function TQ’Q (see p. 24), we obtain the following. (The proof for the spectral
formula is similar.)

Lemma 6.1 ([4] Th. 3.2). For f € H(G/%¢), we have

L
AL = Y Wi,

QEF(Mo) l I

Ad) () = 3 'I”XV,'JMQ?,)

QeF(Mo)

We now explain the rough idea of the combinatorial part of the construction. Suppose
we are given a family of continuous linear maps ¢ : H(M) — Z(L) satisfying

(1> ¢]£4(Ad(y_1)f) = ZPle]-'M(L) ¢LM1(?P1,y)7
(2) oM . H(M) — Z(M) is surjective,

/\

(3) Any (Ad(M)-) invariant distribution I on H(M) passes through ¢37: IM = M
-
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Then we define a family of distributions {1, I} prec(a,) by

Ry = A - S ST ()
LeLM(Mo),#M
By =g -y

|WM|
LELM (M), #M

Then it follows from Lem. 6.1 and (1) that (e is 0 or X)

IE(Y (fM)).

L
LA™ f - f) =LAdw ™ f - = S 'IWI’ALwL(Ad( Nf - )
LeL(Mo),£C
M
> WG, - ¥ LV-—Z (64 (Fry))
PeF(Mo), #G W LeL(Mo),#G w eF(L) -

-y Mg, v -'Y-V—" (oM (Fry)

PGf(M ) #G [ | LeLM (M
0/, € ( )
—0.

That is, I}* are all invariant distributions. On the other hand we deduce from (3.7) the

invariant trace formula
D L= D L)

0€D(G) XeXx(G)

6.2 Application of the trace Paley-Wiener theorem

Of course the most difficult point is to construct the maps ¢¥. Arthur used the distri-
bution Jup(m, X, f) (§ 5.4) for this. In fact, he defined the “Fourier transform” ng( f) of
f € H(Gs) by

¢§4(f) : Memp(Ms) X an,s 2 (7, X) — In(m, X, f) € C.

Here Iliemp(Mys) denotes the subset of tempered elements in IT,4,(Mg). Of course this
can be extended to Ilogm(Ms) X au,s by analytic continuation. It was shown in [13, 1.
Lem. 6.2] that this satisfies (1) above:

Tu(m, X, Ady ™) f) = > Ji(m X, Fg,)

QeF (M)

Here we overlook the technical imprecision that H(Gyg) is not stable under Ad(Gg). The
image Z(Gs) of H(Gs) under ¢Z is described by the trace Paley-Wiener theorem [19],
[16].

The next problem is that the image Z(Mg) does not contain ¢$;(H(Gys)) if G # M.
Then Arthur enlarged the range a little by relaxing the support condition in the direction
of the center to obtain Z,.(Mg). To assure the surjectivity, he also enlarged the domain
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to a little larger space Hac(Mg). Finally we have the surjective maps ¢¥ : H,.(Mg) —
Zoc(Lg) for any L C M € L(M,).

The final problem is to show that the distributions IS, I{ pass through ¢ in order
to define faG, I ¢. More precisely, we need to establish the following inductive statement.

Problem 6.2. Suppose for any M € L(My), # G, we are given the distributions IM (),
IM(7) on H(M) which pass through ¢, so that we can define TM (v), TM(x), and satisfy

T, M) =M, MY+ > (e (FM)),

MeLM (My), #M
Iy MYy =10 M)+ > T (e, b (FM)).

M, ecM (M0)7 ‘_IéM

Then the distributions

IS ) =TS~ Y. T e5()),

MeL(Mp), #G

Igrm, ) =T = Y. I(m ¢5(f)

MeL(Mo), G
pass through ¢S.
This was done at length in [11], [12]. We end this note by stating the resulting formula.

Theorem 6.3 (The invariant trace formula). If we take a finite set of places S suf-
ficiently large for f € H(G/Us), then we have

s WS s nn
W]

MeL(Mo) YE(M(F))m,s
liad
Z —!—V‘V—r CLM(T")IM(W7f) dm
MeL(My) ()
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