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1 Introduction
Let a set of fuzzy numbers with bounded supports be as follows (e g‘ {3]) | i
Fo={p:R—=>I=][0,1] satlsfylng the following conditions ( ) ~ (i)}
(i) The membership function x has a unique point m € R such t‘hat p(m) =1;
(i1) supp(/,l.) is a bounded set in R;
(221,) i is fuzzy convex on R;

(iv) p is upper semi-continuous on R.
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By the extension principle (e.g., the one due to Zadeh), the binary operation
over the fuzzy numbers is nonlinear. For example it doesn’t necessarily hold
that (ky + k2)z = kyz + k22 holds for ¢ € Fp k; € R,i=1,2.

In Section 2 we introduce some kind of representation to the fuzzy numbers
so that we can easily calculate addition and difference between fuzzy numbers
and scalar product as well as it seems that a set X including F}, construct a
Banach space with suitable addition, scalar product and norm.

In Section 3 we define differentiation and integration of fuzzy functions.
In differentiation our representation of fuzzy numbers is enable to calculate
addition , scalar product and difference without difficulties, but it is not easy
to calculate the difference by the extension principle. Moreover we define the
integral of fuzzy functions by calculating end-points of a—cut sets. -

In Section 4 we treat initial value problems of fuzzy differential equations in
the type of & = f (t,z). We give existence and uniqueness theorems of the fuzzy
differential equations. And also we show sufficient conditions for the continuous
dependence with respect to initial conditions of solutions.

2 Representation of Fuzzy Numbers

Let I = [0,1]. Denote a fuzzy numbers = € F, by = = (a,b), where a(a) =
minz,, b(a) = maxz, for a € I, where z, is the a— cut set of z. In the case
that r € R, we denote r = (a,d) € Fp, where a(a) =bla)=rfor0 <a <1

Define x — y = (a — ¢,b — d) for x = (a,b),y = (¢,d) € F. Denote the
set {x—-y:z,y € Fpn} by Fb — Fro. In the following deﬁmtlon we give ones of
addition and scalar product etc.

Definition 2.1 Let z = (a,b), 2 = (a1,b1) € Fp — Fp.
() z+ 2z = (a+ay,b+by);
(i) Bz = (Ba, Bb) for B € R;
(iti) Define z = z by (a(a) = a1(e)) and (b{a) = by(a)) for a € I
(iv) The zero 0 = (a,b) € Fp, where a(a) = b(a) =0 for a € I;
(v) Let 6 norm || 2 1= sup,e s (@ T QP

It follows that F, — Fp constructs a normed space and the smallest linear
space including Fy,. Denote X by a completion of F, — Fyp,.

We get properties of end-points of the a— cut sets of fuzzy numbers. Denote
z = (a,b) € Fp. The following properties(i)-(iv) hold:

(i) a is lower semi-continuous and b is upper semi-continuous on I;

(ii) a is non-decreasing with maxa(a) = a(1) = m and b is non-increasing
with minb(a) = b(1) = m;

(iii) If 0 < a < 1, then it follows that a(a) < b(a), or a(a) = b(a);



(iv) The set {(a(a),b(a)) : & € I} C R? is a bounded curve.

See Figure 1.
Theorem 2.1 Fy is a closed convez cone in X.

Proof. It can be easily proved and it is omitted.

Let X™ = {(z1,22, -, 2n)T 12, € X,i=1,2,---,n} and F?* = {(z1, 2, - -
z; € Fu,i=1,2,---,n}. The notation T means the transpose. Define || z ||=
maxi<i<n || &; || for € € X™. It’s clear that X™ is a Banach space and that FJ}
is a closed convex cone in X™.

In [7] Puri and Ralescu introduce the following equivalence relation and
norm. Let (u,v), (u',vl) € Fp X Fp. Define an equivalence relation ~ by

(u,v) ~ (U ,v) = u+v =v+u

so that the equivalence classes Fy, X Fp/ ~= {{(u,v)) : u,v € Fp} is a linear
space with some addition and scalar product. Denote a norm || - ||pr in the
linear space by || ((u,v)) ||= sup dg(Ua,Va), where dg(-,-) is the Hausdorff

metric. Let u = (a, b)'v——(cd)u —-(a b, v —(c d) € Fp. such that

(u,v)) = {(u',v)),le.,a—c=a —c andb—d=0b —d . Define T(u—v) =
{(u, v)) Then we have
Tw—v) = T((a,b) - (c,d))
T((a—rc,b—d))
= T —v),

where u+v = 4 +v. Then we get the following theorem.

Theorem 2.2 There ezists a one-to-one linear mapping T such that
I T2 |lpr<|l 2 1< V2 || T2 | pr

forze R, — Fp.

Proof. For 2 =u — v we denote T : F, — Fp, & Fp X Fp/~ by Tz = ((u,v)).
It follows that for u = (a,b),v = (¢, d)

| Tz |lpr
=supmax( sup inf ||& —& ||, sup inf ||& —& )
as] £1€uy §2€Va £2€v, §1€Ua

= sup max(ja(a) — e(a)], |b() — d(a)])

o=l

< sup \/la(a —c(a)|? + |b(a) — d(a)|?

—H z H
< V2| Tz |lpr.

Q.E.D.
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3 Fuzzy Differentiation and Fuzzy Integration

In what follows we consider a function f : E — Y, where F is a subset in a
normed space and Y is a normed space. In this section we give definitions of
differentiation and integration of fuzzy functions.

Definition 3.1 A function f is continuous at py € E, if for any € > 0 there
exists a 6 > 0 such that p € E and || p —po ||< & satisfy || f(p) — f(po) ||<e. It
is called that f is continuous on E if f is continuous at any p € E.

Let J be an interval in R. In what follows f is fuzzy function from J to Fy.

Definition 3.2 It is called that f is differentiable at ty € J if there exists an

1 € Fy, such that for any € > 0 there exists a § > 0 satisfying

f(t) = f(to)
t—1to

-nll<e

fort € J and0 < |t—to| < 8. Denoten = £ (to), 4 (to) = 1. f is differentiable on
J if f is differentiable at any t € J. In the similar way higher order derivatives
of f are defined by f*) = (.f(k“l))/ for k=2,3,---. In case that f : J — X,
the derivative of f is defined in the same way.

(CL 1, 4,5,8) |
In [7] they define the embedding j : R, = Fp X Fp/ ~ such that j(u) =
((u,0)). The function f : J — F}, is said o be differentiable in the sense of
Puri-Ralescu, if j(f(-)) is differentiable. Suppose that f is differentiable at
t € J in the above sense, denoted the differential f (t) € F,. Then we have
%(j(f(f))) = ((f (t),0)), i.e., f is differentiable in the sense of Puri-Ralescu.
In [6, 7] H-difference and H-differentiation of f is treated as follows. Suppose
that for f(t+h), f(t) € Fp, there exists g € Fy, such that f(t+h) = f(t)+g, then
g is called to be the Hukuhara-difference, denoted f(t + h) — f(t). The function
f is said to be Hukuhara-differentiable at t € J if there exists an n € Fy, such
that both lim LUTM =IO g gy [O T
h—+0 h h—+0 h
If f is H-differentiable, then f’(t) = 1.

exist and equal to 7.

Proposition 3.1 If f is differentiable at ty, then f is continuous at tg.

Proof. It is clear and the proof is omitted.

Theorem 3.1 Suppose that f is differentiable at ty, then it follows that there
exist %(min f(t)a), —g?(max f(t)a) and that

£/ (t6) = (s (omin f()a)lemtor s (mx F (Fa) et

for o € I, where min f(t), and max f(t), are left, right end-points of the a-cut
set of f(t), respectively. ‘



Proof. In the same way in the proof of Theorem 2.2 in [5] it can be proved.
Theorem 3.2 It follows that f'(t) =0 if and only if f(t) = const € Fp.

Proof. Let f ’(t) = 0. Suppose that f # const. Therefore there exist t; # t3
such that f(t1) — f(t2) # 0. By applying the Hahn-Banach extension theorem
there exists a bounded linear functional z* € X* such that || z* ||= 1 and

o*(f(t1) = f(t2)) =|| F(t1) — f(t2) || . Denote @(t) = z*(f(t) — f(t1)). Here
qb I — R is differentiable so that ¢ (t) = x*(f (t)) = 0. Then we have ¢(t;) =

z*(f(t1) — f(t1)) = 0. This contradicts w1th the above assumption. Thus we
get f = const. In case that f(t1) — f(t2) € Fo, f' € X. Q.E.D.

In the following definition we give one of integrals of fuzzy functions.

Definition 3.3 Let J = [a,b] and f be a mpping from J to X (or Fyp). Divide
the interval J such that a = to < t1 < --- < t, = b and 7; € [t;—1,t;] for
i=1, 2 -+«,n. It is called that f is integrable over J if there exists the limit

lgllm Z f(T)A;, where Ay =t —t;_q,|A| = lrg%xn A;. Define

b n

/a f(s)ds = Igllljlm;f(nmi-
Proposition 3.2 Let f be integrable over J. Then the following statements
(1)-(ii) hold.

(i) f is bounded on J, i.e., there exists an M > 0 such that | f(t) IS M for
teJ

(ii) If f(t) € Fo fort € J, then [. f(s)ds € Fy forte J.

Proposition 3.3 If f is continuous on [a,b] then f is integrdble over the in-
terval.

Theorem 3.3 Let f : J — X with f(t) = {(c(t, ), d(t, a)) a € I} be inte-
grable over [a,b]. Then it follows that

b b b
/ f(s)ds = {(/ c(s,a)ds,/ d(s,a)ds) : a € I}.
Conversely, if c,d are continuous on [a,b] x I, then [ is integrable over [a, b].
Proposition 3.4 Let f be continuous on the interval [a,b].
Denote F(t) = / f(8)ds. Then the following properties (i) and (ii) hold.
(i) F is differentiable on [a,b] and F' =f;

(i) For ty,t3 € [a,b] and t; < ta, we have Ltlz f(s)ds = F(t2) — F(t,).
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Proposition 3.5 Let f is continuous on [a,b]. Then it follows that

b b
I / f(s)ds ||< / | £(s) || ds.

Theorem 3.4 Let f : [a,b] — Fy be continuous on [a,b] and differentiable on
(a,b), Then it follows that there ezists a number c € (a,b) such that

| F(B) = fa) IS (b—a) || £ () |-

Proof. Suppose that || f(b) — f(a) ||# 0 without loss of generality. From
the Hanh-Banach extension theorem there exists a bounded linear functional
z” € X~ such that || 2* ||= 1 and 2*(f(b) — f(a)) =|| f(b) - f(a) || - Denote
¢(t) = 2*(f(t)), which is differentiable function from (a,b) to R and ¢ (t) =
z*(f'(t)). Then we have :
e (f(b)—f(a)) _ ¢(b) — ¢(a)

b—a b—a
= ¢'(c)=2"(f(c))

for ¢ € (a,b). From || 2*(f () ||<|| #'(c) ||, the conclusion holds.
Q.E.D.

Definition 3.4 Let f : J — F such that f(t) = (fi(t), f2(t),--, fn(t))T.
It is called that f is differentiable on J if each f; is dzﬁerentwble on J for
i=1,2,---,n. Define the derivative f (t) = (fL(2), fz(t) ()T,

Let f [a b] — X™ such that f(t) = (f1(t), f2(t),- -, fn(t))T It is called that
f is znfegmble over [a,b] Lf fi is mteg'rable over [a, b] fm i=1,2,---,n. Define

the mtegralf f(s ds—(f fl(s)dsf fa(s)ds, - - f fn(s)ds)T.

It is easily seen that similar theorems and propositions concerning to Fi —valued
functions to ones in thls section hold.

4 Fuzzy Differential Equations

In this section we consider the initial value problems of the following type of
fuzzy differential equation

@ (1) = f(t,%(1)) (4.1)

:B(to) = xgp. (4'2)
Here f: R x F — F,to € R, xp € F. We mean that a solution z : J — Fo
satisfies the above equation and initial condltlon of ((14.1),( 4.2)), where J C R
is an interval.

We denote the initial value problem of higher order fuzzy differential equa-
tions by

ZL'(n) = f(t, -’L'(t),a:l(t), Tt ,"B(n—l)(t)) (43)
.’l?(k)(tO):{k’ kf:O,l,--',’fl—l,



where f: R X F} — Fp,to € R, & € F,. We mean that a solution z: J =+ A,
satisfies the above equation and conditions for t € J, where J C R is an
interval. Define z,(t) = 2(t),z2(t) = z (t),---,za(t) = (=1 (t) so that the
above problemn can be reduced to Problem (( 4.1),( 4.2)). In this section we
show some kinds of conditions to solutions of (( 4.1),( 4.2)) for the existence,
uniqueness and continuation.

Definition 4.1 Define a norm || p ||= max(|t|,|| z ||) forp = (t,z) € R x X".
Let po € R x FJ. Denote a neighborhood of po by U(po,8) = {p € R x X" ||
p—7po ||< 8} and a relative neighborhood of po by V(po,d) = U(po, 6) N(R x F)
for 6 > 0. Let V C R x FJ. It is called that V is a relatively open subset in
R x FJ, if for any p € V there exists a relative neighborhood V (p) C R x F
such that V(p) C V. In the similar way we define relatively open subsets in

v, o X Ry R x F x R.

Let a function f : V — F, where V is a relatively open subset in Rx F'. It
is called that f satisfies a locally Lipschitz condition if for any p = (to,z0) € V
there ezists a relative neighborhood V(p) C V' and a number L, > 0 such that

| f(t,21) = F(t,22) IS Lp || 21 — 22 |
for (t,z1), (t,22) € V(p).

Theorem 4.1 Let f : V — FJ satisfy the locally Lipschitz condition and be
continuous on V. Then there exists one and only one solutionx of (( 4.1),(4.2))
defined on [to,to + 1] passing through p = (to,2z0) € V, where r > 0.

Proof. From the Lipschitz condition and continuity of f it follows that there
exists an M > 0 such that || f(¢,2) ||< M for (t,2) € V(p), which is the relative
neighborhood in Definition 4.1. Denote a subset

A={(t,x) e Rx Fy :t € [to,to + p), || z — x0 ||< k} C V(p),

where sufficiently small p > 0,k > 0. Let 7 = min(p, k/M, ZIIJ ).

Let I, = [to,to + r]. There exists a solution z of (( 4.1), ( 4.2)), which has
a continuous derivative z fort € I, if and only if there exists a continuous
solution @ of an integral equation z(t) = z +ft0 f(s,z(s))ds for t € I,.. We shall
show the existence of solution of the integral equation. A set C(I,,X™) = {z:
I, — X™ are continuous } is a Banach space with the norm || z ||o= sup,c;_ ||
z(t) || - Denote Sk = {z € C(I,, F) :|| * — @0 ||oo< k}, which is a closed subset
in C(I;, X™). Then we have (t,z(t)) € A C V(p) C V for = € Sk,t € I, and
there exists f(t,«(t)) on I,.. Define a mapping T : S, — C(I,., F¢) by

()0 =20+ [ J(s,a(sNas,

where t € I.. Then || T2 — Lo loo< k so that T is an into mapping on Si.
Moreover || Tz; — T22 ||o< 27! || #1 — @2 ||oo for 2; € Si,i=1,2. Thus T'is a
contraction mapping on Si. There exists a unique point x € Sk, which satisfies

((4.1),( 4.2)). Q.E.D.
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Theorem 4.2 Suppose that the same conditions as Theorem 4.1 hold. Let func-
tions a,y : J — FJ be solutions of (( 4.1),( 4.2)), where J = [t5,T) and T > 1.
Then z(t) = y(t) fort € J.

Proof. Suppose that there exists ¢, € J such that z(f;) # y(t1). Denote
= {t € I:z(t) # y(t)} and t§ = inf A. From Theorem 4.1 there exists

a number r > 0 such that z(¢) = y(t) for t € [t5,t5 + 7). This leads to a
contradiction. Thus the theorem holds.
Q.E.D.

Suppose that the same conditions of Theorem 4.1 hold. Denote an mterval
J = {[to,T) € R : there exits a solution z of (( 4.1),( 4.2)) on [to,T)}. For J € J
there exists a unique solution of (( 4.1),( 4.2)) on J. Denote J(to, o) = UyesJ
and z;(to,x0,t) = x4(t) fort € J € J. For t € J(to,zq) there exists a unique
value (). The function xy : V' x J(to,20) — F is said to be the solution
of (( 4.1),( 4.2)) with the maximal interval J(to, o). Denote a mapping z; :
R x F} x R — F{ defined on D(f) = {(to, z0,1) : (to,z0) € V,t € J(to,20)}-
See [9)]. ‘

Theorem 4.3 Suppose that the same conditions of Theorem 4.1 hold. Let J =
[to, T) C J(to, 20) N J(to, ), where T > to. Then there exists an M > 0 such
‘that

| 2 (to, 2o, t) — 24 (t0, z0,1) ||< M || 2y — 0 ||
fort e J.

Proof. Let ¢(t) = xy(to,x0,t),9¥(t) = wf(fo,zo, Yfor t € J. Then we have
é,v € C(J,FP). From condition of f and compactness of J, there exists a
number L > 0 such that

L) = f(E @) IS L (1) — ¢(2) |

fort € J. So we have

15() = 8(0) 1<l 20— 2o 1| +L 1| ¥ = & [loo (¢ = o)

for t € J. In the same way we get
Il () — &(t) |l

e (LT = t))* | (L(T — o)
Sllzfo—-"boH:A;D Kl + (n+1)

Y — ¢l -

)n+1
|

Put M = eL(T=t) then the above conclusion holds. Q.E.D.
Consider the following fuzzy differential equation

2 (1) = f(2(1)): (4.4)

Corollary 4.1 Let f : V — F satisfy the locally Lipschitz condition on V,
where V. C F{} is a relatively open subset. Then there exists one and only one
solution x of (( 4.4),( 4.2)) defined on [to,to + 7] passing through to € R and
p =xg €V, where r > 0.



From the similar discussion to ({ 4.4),( 4.2)) the maximal interval J(to.zo)
and the correspondmfr to solution x5 can be clefined (see [9]). It can be seen
that

J(to,:L‘o) = J(O,:l?o) + 1o
= {t+1to:t€ J0,z)}
for (to,z0) € R x V. and for t € J(to,zp) we get
zf(to,®o,t) = x5(0,x0,t — to)-
Thus we denote J(z0) = J(0, o), x5 (0, t) = x (0, z0,t) and Do(f) = {(z0,1t) €
V x J(z0)}-

Theorem 4.4 The same conditions of C’orollary 4.1 hold. Then D§(f) =

{(z0,t) € Do(f) : t > 0} is a relatively open subset in F* x R and the mapping
x5 is continuous on Do(f).

Proof. Let (x3,t*) € Dy(f). There exists r > 0 such that J = [0, t*+7] C J(z5)-

Since the set By = {zf(z},t) : t € J} is compact, there exists § > 0 such that
B;(0) = {¢ € F : dist(&,By) < 6} C V, so that f satisfies the locally Lipschitz

condition with the constant L > 0. We shall prove the ex1stence and uniqueness"

of solutions for the integral equation z(t) = xo + fo f(z(s))ds for z0 € Ff
satisfying || zo — 2§ ||< p/2 and t € J, where p = e2L("+7), Denote a norm
in C(J,X™) by ||  ||1= max{|| =(t) || e 2L* : t € J} and :L'O(t) = xy(xg, t).
Let S, = {x € C(J,F7) :|| 2 —a® ||L< p} which is a closed subset in the
Banach space C(J,X™). Then we have z(t) € B;(0) C V forxz € S,,t € J
and there exists f(z(t)) on J. Define a mapping T, : S, — C(J, FJ*) such that
(Tzo (2))(t) = 20 —I—fot f(z(s))ds for t € J. Since || Tz, (2))(t) —2°(¢) ||< pe?t?/2,
Tz () € S, and T, is a contraction mapping, because

e2Lt
I (T () (1) = (To(22)) (1) IS —5= [ 22 — 22 ||,

so that || Tmo(q 1) = Tao (2) 12< 5 | 21 — 22 ”L for x; € Sp,i =1,2. Thus there
exists a unique solution of the integral equation as well as (:Lo,t) € Dy(f) for

zo € F satisfying || o — 23 ||< p/2 and t € J. Therefore Dg (f) CFrxRis
a relatwely open subset.

We have for || zo — x5 ||< p/2,1 € J,

| zf(z0,t) — (5,17 ||
<” %f('LO:t) - a’f(x01t) H + ” Tf 7’011‘) ""a‘f(LO? ") ”

Since z(%o,-),25(x5,) € S, are fixed points of Ty, Txy , respectively, it follows
that '

| zf(xo,t) — x5(25,1) |

<o~z || + | /0 (F(@5(w0,5)) — f (w5 (w5, 5)))ds |

t
<IN wo - || +L / 2 (z0,5) — wp(33,5) || ds.
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for t € J. From the Gronwall’s Lemma (e.g., [2]), we get

0~ || €2 o

” "vf(a"()at) - -"«'f(ma,l‘-) ” <
< Jwo—aj || M.

Thus z¢(xo,t) is continuous in (zo,t) € Do(f).

Q.E.D. |

- Condition (L) For any p = (to,20) € V there exists a relative neighborhood
V(p) CV and a number L, > 0 such that

” f(t'l’a"l) - f(t2’m2) ”—<—- LP “ (tl’ml) - (tg,:l:z) ”

for (t1,21), (t2,22) € V(p).
It is said that y : J — R x FJ} is differentiable at t € J if

y(t +h) = y(t) + Ch+ o{h)
as h — 0, where ¢ € R x 7 and o(h)/h — 0, denoted ¢ =y (t).

Theorem 4.5 Consider Problem (( 4.1),( 4.2)). Let f : V — F* satisfy Con-
dition (L), where V is a relatively open subset in R x F'. Then D*(f) =
{(to,zo,t) € D(f) : t > 1o} is a relatively open subset in R x F7* x R. and the
mapping x¢ is continuous on D(f).

Proof. Let z be the solution of (( 4.1),( 4.2)) defined on J = [to,T), where
T > to. We denote mapping ¥y = (y1,¥2) : J — R'x F such that y,(t) =
t,72(t) = =(t) and mapping g: V — R x F7 such that g(m) = (1, f(n)), where
n € V. Then y = (31,12) satisfies y = g(y(t)) for t € J and y(to) = (to,o)-
Conversely if y satisfies the above equation and initial condition, then o = y» is
the solution of (( 4.1),( 4.2)).

Denote the solution of y = 9(¥),y(7) = (to,zo) with the maximal interval,
which satisfies y = (y1,y2) such that

.:ljl(’l',to,(l,'o,t) = to—7-+t (45)
yg(to,to,(l,‘o,t) = aif(to,mo,t). (4.6)

Since y(7, to, 2o, t) = y(0,1o,20,t — 7), we have
zf(to, o, ) = y2(0, to, xo,t — to). (4.7)
The function y(0, to, To,t) exists on Dy(g) so that x5 exists on
D(f) = {(to,z0,t) e R x Fiy xR.: -(T‘o,.'L'o,t —tp) € Do(g)}-

Denote an into mapping ® on R.x F x R such that ®(tg,z0,t) = (to, w0, t—10).
Then it follows that

D(f)=2""(Do(9)), D*(f) =2 1(D{ (9))- (4.8)



Since D{ (g) is a relatively open subset in R x Ff* x R and @ is continuous,
D™*(f) is relatively open in R x F' x R. From Theorem 4.4, ( 4.7) and ( 4.8),
x ¢ is continuous on D(f).
Q.E.D.

In the following Corollary we assume that f : U — FJ! satisfies some proper-
ties corresponding to the smoothness in the sense of Fréchet, where U is a open
subset in R X X™ such that U N (R x F¢) # 0.

Property (P). It follows that there exists the producﬁ T(y)A € fé‘such that

fly+8)=F)+TWA+o(| Al

as || A || 0, where y+A € U and the above product means the one of extension

principle. Denote the derivative f '(y) = T'(y). Suppose that f " is continuous
on U. '

Corollary 4.2 Let f in ( 4.1) satisfy Property (P). Then D*(f) is a relatively
open subset in R X Fi} x R and zy is continuous on D(f).

Proof. It can be easily seen that || f(y +A) — f(y) I<]] A || suppcacy |-

f'(y+al) | . Since f satisfy Condition (L), the conclusion holds by Theorem
4.5. Q.E.D.

Theorem 4.6 Consider Problem (( 4.3)). Let f : V — Fy satisfy the locally
Lipschitz condition and be continuous, where V C R x F[ is a relatively open
subset. Then for (to,&1,&2,--,&n) € V there exists one and only one solution
xy of (4.3) on the mazimal interval. Moreover if f satisfies Condition (L), then
the set DT (f) = {(to,&1,&2,+*,€n,t) € D(f) : t > to} is a relatively open subset
in R X Ff! x R. and the mapping x5 is continuous on D(f).

Proof. It can be proved in the similar way as the proof of Theorem 4.5.
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(i)

n

Figure 1: Fuzzy numbers z = (a,b) in the following cases(i)-(iii).

(i)b—m=ci(m—a), ¢ >0;
(i) (b —m)2 =ca(m—a), c2>0;
(iil) b — m = cz(a — m)?, ¢z > 0.
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