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Abstract

In this paper, we study the convergence of a sequence of fuzzy sets on R” which
is monotone w.r.t. a pseudo order <y induced by a closed convex cone K in R".
Our study is carried out by restricting the class of fuzzy sets into the subclass in
which 5k becomes a partial order and a monotone convergence theorem is proved.
This restricted subclass of fuzzy sets is created and characterized in the concept of
a determining class. These results are applied to obtain the limit theorem for a
sequence of fuzzy sets defined by the dynamic fuzzy system with a monotone fuzzy
relation.
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1. Introduction and Notations

A convergence theorem for a sequence of fuzzy sets is mathematically interesting and
applicable to sequential decision analysis in a fuzzy environment. In fact, the limiting
behavior of fuzzy states of dynamic fuzzy system or sequential fuzzy decision process have
been studied by developing a suitable convergence theorem of a sequence of fuzzy sets. (cf.
[4, 5, 6, 14, 15, 16, 17]) Also, the theory of metric space of fuzzy sets has been developed
by many authors (cf. [2, 9, 13]), in which several convergence theorems of fuzzy sets are
given. On the other hand, in multiple criteria decision making, the rewards from dynamic
system are described in terms of fuzzy sets and the model is often optimized under some
order or pseudo order relation among fuzzy sets. In this case, it is more important to
study the convergence theorem related to fuzzy order relation.

Recently, Kurano et al [7] have introduced a pseudo order < in the class of fuzzy sets
on an n-dimensional Euclidian space R", which is natural extension of fuzzy max order
(cf. [3], [11}) in fuzzy numbers on R and induced by a closed convex cone K in R". For a
lattice-structure of the fuzzy max order, see [1], [19]. Here, we study the convergence of a
sequence of fuzzy sets on R™ which is monotone w.r.t. a pseudo order <. Our study is
done by restricting the class of fuzzy sets into the subclass in which <x becomes a partial
order and a monotone convergence theorem is proved. This restricted subclass of fuzzy
sets is created and characterized in the concept of a determining class. These results are
applied to obtain the limit theorem for a sequence of fuzzy states defined by the dynamic
fuzzy system with a monotone fuzzy relation.
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In the remainder of this section, we will give some notations and basic concepts of
fuzzy sets and review a vector ordering of R™ by a convex cone. In Section 2, a pseudo
order of fuzzy sets on R" is reviewed referring to Kurano et al [7] and the related new
results are given. In Section 3, we introduce a concept of determining class and give a
convergence theorem for a sequence of convex compact subclass R”. In Section 4, these
results are applied to obtain a monotone convergence theorem for fuzzy sets on R”. In
Section 5, we consider the limit of a sequence of fuzzy states defined by the monotone
dynamic fuzzy system.

We write fuzzy sets on R™ by their membership functions 5 : R* — [0, 1] (see Novék [10]
and Zadeh [18]). The a-cut (« € [0,1]) of the fuzzy set 5 on R™ is defined as

5o ={zeR"|5(z) >a} (@>0) and 35 :=cl{z € R"|3(z)> 0},
where cl denotes the closure of the set. A fuzzy set s is called convex if
sAz+(1-Ny) 25(x) A5(y) z,yeR", Ae0,1],

where a A b = min{a,b}. Note that 5 is convex if and only if the a-cut 3, is a convex
set for all & € [0,1]. Let F(R") be the set of all convex fuzzy sets whose membership
functions 8 : R® — [0,1] are upper-semicontinuous and normal (sup,cg~ 5(z) = 1) and
have a compact support. In the one-dimensional case n = 1, F(R) denotes the set of all
fuzzy numbers. ‘

Let C(R™) be the set of all compact convex subsets of R™, and C,(R™) be the set of all
rectangles in R". For 5 € F(R™), we have 5, € C(R™) (a € [0, 1]). We write a rectangle in
Cr (Rn) by :

[z, y] = [z, 1] X [2,92] X -+ X [T, Yn]
for . = (21,29, ,Zn), ¥ = (Y1,Y2," "+ ,Yn) € R® with z; < y; (¢ = 1,2,--- ,n). For the
case of n = 1, C(R) = C,(R) and it denotes the set of all bounded closed intervals. When
s € F(R™) satisfies 5, € C.(R™) for all @ € [0, 1], 5 is called a rectangle-type. We denote
by F.(R™) the set of all rectangle-type fuzzy sets on R™. Obviously F,(R) = F(R).

The definitions of addition and scalar multiplication on F(R") are as follows: For
5,7 e F(R™ and A > 0,

(8t G+7E) = s {5 AFE))
5z/N) ifA>0 .
12 0o = { {0 20 em,

where 1;4(-) is an indicator.
By using set operations A+ B:={z+y |z € A,y € B} and A := {\z | z € A} for
any non-empty sets A, B C R, the following holds immediately.

(1.3) (54+7)a:=84+T, and (AS)e=2A5, (a€]0,1}).
We need a representative theorem (cf. [7, 10]).

The representative theorem:



(i) For any 5 € F(R"), 5(z) = sup {a Al (z)}, ze€R™
a€l0,1]
(ii) Conversely, for a family of subsets {Do € C(R") | 0 < o < 1} with Dy C Dy

for o/ < a and Ny'<cogDo = Dg, if we set 5(z) := sup {a A lp_ (z)}, z € R"
a€l0,1]

then 3 belongs to F(R™) and satisfies 5, = Do, o € [0,1].

\ aAls, ()

Figure 3: 5(z) = sup {a@ A 1l5 (z)}, z€R"
a€[0,1]

2. A Pseudo-Order on F(R")
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In this section, we review a pseudo order introduced by [7] and give a related result
necessary in the sequel. Henceforth we assume that the convex cone K C R” is given. A
pseudo order < on C(R") is defined, whose idea is based on a set-relation treated in [8],

as follows.

For A,B € C(R"), A g B means the following (C.a) and (C.b) :
(C.a) For any = € A, there exists y € B such that x <g ¥.

(C.b) For any y € B, there exists z € A such that © <x v.

()

Q

(C.a) (C.b)
Figure 4: The binary relation A <x B on C(R?)

-K
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When K = R7, the relation g on C(R") will be written simply by <, with some
abuse of notation and for [z,y], [#/,v] € C.(R"), [z,y] <» [2',¥'] means z <, 2’ and
y <, y'. Note that =<, on C(R") is partial order.

Using a pseudo order <x on R”, a pseudo order <k on F(R") is defined as follows.

For 3,7 € F(R"), § <k T means the following (F.a) and (F.b):
(F.a) For any v € R", there exists y € R™ such that © <x y and 5(z) < 7(y).
(F.b) For any y € R, there exists z € R" such that z g y and 5(z) > 7(y).

X
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NN

.\\\\\\\\\\
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\\\\\\\\\\\\§

-K
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Figure 5: The binary relation 3 <x 7 on F(R) and F(R?)

The following lemma says the correspondence between the pseudo order on F (R™) and
the pseudo order on C(R™) for the a-cuts.

Lemma 2.1([7]). Let 3,7 € F(R"). 5=k 7on F(R") if and only if So <g T onC(RY)
for all o € (0,1].

Define the dual cone of a cone K by
Kt:={ae€R"|a-z>0forallz € K},

where z - y denotes the inner product on R" for z,y € R™ For a subset A C R™ and
a € R™, we define '

(2.1) a-A:={a-z|ze A} (CR).

The equation (2.1) means the projection of A on the extended line of the vector a if
a-a=1. It is trivial that a - A € C(R) if A € C(R") and a. € R™.
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Lemma 2.2([7]). Let A,B € C(R"). A <xx B on C(R") ifand only if a-A <, a-B on
C(R) for alla € K.

a€ Kt CR?

a-A #1 a-B
Figure 6: The image of Lemma 2.2
For a € R" and 5 € F(R"), we define a fuzzy number a -5 € F(R) by

(2.2) a-5(z) := sup min{e, 1,5, (z)}, z€R.
a€l0,1]

The following theorem gives the correspondence between the pseudo-order <y on
F(R™) and the fuzzy max order <; on F(R).

Lemma 2.3([7]). Fors,7€ F(R™),S<x 7 ifandonlyif a-3<,a-7 foralla e K~.

a € Kt C R?

a-s<1a-T
Figure 7: The image of Lemma 2.3

A closed cone K is said to be acute (cf. [12]) if there exists an a € R" such that
a-zx>0forall z € K with z # 0.
We have the following lemma.

Lemma 2.4. Let K be a closed, acute convex cone and zg,yy € R™ with zo <x .
Then, (zo + K) N (yo — K) is nonempty and bounded.
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Let p be the Hausdorff metric on C(R™), that is, for A,B € C(R"), p(4,B) =
max d(a, B) V max d(b, A), where d is a metric in R and d(z,Y) = mi}r} d(z,y) for x € R™
a ye

and Y € C(R™). It is well-known that (C(R™), p) is a complete metric space. A sequence
{D,}2, C C(R™) converges to D € C(R™) w.r.t. pif p(Dy, D) — 0 as £ — oo.

Definition(Convergence of fuzzy set, [17]). _
For {5;}32, C F(R™) and 7 € F(R"), 5; converges to T w.r.t. p if p(Spa,Ta) — 0 as
¢ — oo except at most countable « € [0, 1].

3. Sequences in C(R")

In this section, restricting C(R") into the subclass by use of the concept of determining
class, we prove the monotone convergence theorem.

Let K be a convex cone. The sequence {D,}%, C C(R") is said to be bounded w.r.t.
<k if there exists F, D € C(R") such that F g Dy g D for all £ > 1 and said to be
monotone w.r.t. g if Dy <g Dy <g ---

Let £ € C(R®) and A C R™ Then we say that A is a determining class for £ if
a-D=a-Fforalla € Aand D, F € £ implies D = F. For example, the set of unit
vectors {ej,eq, - ,e,} in R" is a determining class for C,(R"). Also, by the separation
theorem, R" is a determining class for C(R").

62€R2

A

beR?

set in C,(R?)

€1 €R2

Figure 9: The example of determining class

Theorem 3.1. Let K be a closed convex cone of R™. Suppose that K+ is a determining
class for £ C C(R™). Then, the pseudo order <k becomes a partial order in the restricted
class £.

As a simple application of Theorem 3.1, we have the following.

Corollary 3.1. Let K be a closed convex cone of R® and £ C C(R") closed. Suppose
that K* is a determining class for £. Then, any sequence {D;} C £ which is monotone
w.r.t. <y and satisfies D; C X (I > 1) for some compact subset X of R™ converges w.r.t.

p.

In order to continue a further discussion, we need the acuteness of the ordering cone
K.
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We have the following.

Lemma 3.1. Let K be a closed, acute convex cone and D, F,G € C(R™) with D <5x F < G.
Let

(3.1) X= |J @+K)ny-K).

TIKY
z€D,y€G

Then, it holds that F' C X and X is bounded.

Theorem 3.2. Let K be a closed, acute convex cone of R™ and £ C C(R™) closed.
Suppose that K+ is a determining class for £. Then, any sequence {D,}{°, C £ which is
bounded and monotone w.r.t. g converges w.r.t. p.

As applications of Theorem 3.2, we have the following Corollaries.

Corollary 3.3. Any sequence in C,(R™) with monotonicity and boundedness w.r.t. <,
converges w.r.t. p.

For any D € C(R"™) and ¢ > 0, the e-closed neighborhood of D will be denoted by
(3.2) Se(D) :={z € R" | d(z, D) < ¢},
which is a compact convex subset of R”. Note that

(3.3) S.(D) = D + U,

where Uy is the closed unit ball (cf. [2]).
The following lemma is useful in the sequel.

Lemma 3.2. The following (i) to (iii) hold.

(i) For any D, F € C(R"), if S5,(D) C S5, (F) for some 61,02 > 0,
then Ss,1¢(D) C Ss,+:(F) for any € > 0.
(ii) For any D € C(R™) and A > 0, S;(AD) = AS./x(D).
(iii) For any sequence {D;} C C(R™) and D € C(R"), if Dy — D as | — oo,
then S5(D;) — Ss(D) as I — oo (6 > 0).

For any closed convex cone K C R", let £(K*) be the set of all D € C(R") satisfying
that for any zo € R™ and € > 0 with zg & S.(D) there exists a € K+ (a # 0) such that

a-y>a-zo forall yeS.(D).
The properties of £(K ™) are stated in the following lemma.

Lemma 3.3. The following (i) to (iii) hold.
(i) K* is a determining class for £(K™).
(i) £(K™) is closed w.r.t. p.
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(iii) For any D € £(K*), AD + uD € £(K™) (A, 1 > 0).

Noting that K = R} when K = R? in R the sets included in £(R2) are illustrated
in Figure 10.

Figure 10: The example of sets in £(R2)

Theorem 3.3. Let K be a closed, acute convex cone of R®. Then, any sequence
{D;}, C £(K™*) which is bounded and monotone w.r.t. g converges w.r.t. p.

4. Sequences in F(R")

In this section, the monotone convergence theorem for a sequence in F(R™) is given.

Let £ C F(R™) and A C R”. Then we call A a determining class for £ifa-§=a-7
forall a € A and 5,7 € g implies s = T.

A natural extension of Theorem 3.1 to fuzzy sets will be given in the following theorem.

Theorem 4.1. Let K be a closed convex cone of R* and £ C F(R™). Suppose that K+
is a determining class for £. Then, a pseudo order < is a partial order in £.

Let K be a convex cone. The sequence {s5;} C F(R") is said to be bounded w.r.t. g
if there exists u,v € F(R™) such that © <k 5 <x v for all [ > 1 and said to be monotone
w.r.t. _\<K lfgl %K gg <K

In order to obtain the convergence theorem, we need the concept of directionality given
in [17]. Denote the surface of the unit ball by U := {z € R" ||| z ||=1}. Let V C U. Then,
for D, D' € C(R™) with D C D', we call D' V-directional to D (written by D' Dy D) if
there exists a real A > 0,y € D and z € D' such that
(i) d(z,y) = p(D', D) and (ii) 2 —y = Av for some v € V.

Definition (V-directional). Let V C R™. For’s € F(R"), 5 is called V-directional if
Sy, Dy sy for0<a<d <1. v

Corollary 4.1. Let K be a closed convex cone of R™ and £ cC F(R™) closed. Suppose
that K+t is a determining class for £. Let a sequence {5;} C F(R") be satisfied that

(a) {3} is bounded and monotone w.r.t. g,
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(b) each 3, is V-directional for a finite set V C R™ and

(c) there exists a compact subset D of R™ such that 5,9 C D for alll > 1, where S0 18
the support or the 0-cut of s;.

Then the sequence {3,} converges w.r.t. p.

The following monotone convergence theorem is thought of as an extension of Theorem
3.2 to fuzzy sets.

Theorem 4.2. Let K be a closed, acute convex cone of R* and £ C F(R") closed.
Suppose that K* is a determining class for £ closed. Then, any sequence {5;}j2; C £
which satisfies (a) and (b) in Corollary 4.1 converges w.r.t. p.

Now, for any closed convex cone K, we define £(K*) by
LK) :={5€ FR") | 5, € £(K™) for all a € [0,1]}.
The previous Lemma, 3.3 is extended to that for 7(R™) in the following lemma.

Lemma 4.1. The following (i) to (iii) hold.
(i) Kt is a determining class for (K.
(ii) £(K*) is closed w.r.t. the convergence defined in Section 2.
(iii) For any s € S(KT), N5+ pus € SK+) (A, pu>0).
We have the following.

Theorem 4.3. Let K + be a closed, acute convex cone of R*. Then, any sequence
{5}, € £(K™) which satisfies (a) and (b) in Corollary 4.1 converges.

5. Applications to Monotone Dynamic Fuzzy Systems

In this section, as an application of the results obtained in the preceding section, we
consider a limit theorem for a sequence of fuzzy states defined by the dynamic fuzzy
system (cf. [5, 6, 14, 15, 16, 17]) with a monotone fuzzy relation.

Let §: R* x R® — [0,1] be a continuous fuzzy relation such that g(z,-) € F(R") for
each z € R™ and ¢(-, -) is convex, that is,

(5.1) qOzt + (1= Nz Mt + (1= N)y?) > qlat, v A g(z?, y?)

for any z*, 22,4y, 4> € R and A € [0,1]. From this fuzzy relation g, we define ¢ : F(R™) —
{the set of fuzzy sets on R"} as follows.

(5.2) q(u)(y) = f:@ww Nq(z,y)}, € RY,

where a A b = min{a, b}. Also, for any o € [0,1], ¢o : C(R™) — 28" will be defined by

(5.3) Gu(D) = { y|q(z,y) > a for some z € D}, for a >0, D€C(R")
' “ ' cl{ v | q(z,y) > 0 for some z € D}, for a=0, D e C(R"),
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where cl denotes the closure of a set and 28" the set of all closed subsets of R™. For
simplicity, we put ¢(z) := ¢({z}) for z € R™.

The following facts are well-known (cf. [4, 5, 17]).

Lemma 5.1 The following (i) to (iii) hold.
(i) ga(D) € C(R™) for any D € C(R") and g (-) is continuous in C(R™) for each o € (0, 1].
(i) q(u) € F(R™) for any u € F(R™).
(iii) ¢(¥)q = Gu(©)q for any u € F(R™) and « € [0, 1], where q(u), is the a-cut of q(u).

The sequence of fuzzy states, {5;}32, C F(R"), for the dynamic system with fuzzy
transition q is defined as follows. '

(5.4) S =9(5) (t>1),

where 57 € F(R™) is the initial fuzzy state.

The problem in this section is to consider a convergence of the sequence {5;}2; defined
by (5.4), so that we derive the monotone property of the fuzzy relation ¢ w.r.t. the pseudo
order < defined by the ordering cone K in R".

Definition (xx-monotone). The fuzzy relation q is called < g-monotone
if ' <g 2 (21,22 € R®) means q(z},-) <x q(2?,-).

Remark. Yoshida et al [17] has introduced a monotone property concerning the fuzzy
relation ¢ whose definition is as follows: G,(y) C Go(z) + 4(z,y) for z,y € R", where
{(z,y) == {v(y — z) | v > 0}. Obviously, if ¢ is monotone in the sense of [17], then g is
=<,-monotone, but the converse is not necessarily true.

The following lemma is useful for our further discussion.

Lemma 5.2. Suppose that § is <x-monotone. Then, for any u,v € F(R™) withu <k U,
it holds that q(u) <k q(v). »
Assumption A. The following (i) to (iii) hold.

(i) The ordering cone K is a closed, acute convex one in R".

(i) The fuzzy relation g is <g-monotone.

(i) There exists a finite subset V' C U such that, for any D, D' € C(R") (D' > D), if
D' Dy D then Gu(D') Dy qu(D) for all ¢,/ (0 <o/ <a < 1).

For any given 4 € F(R™), putting 5, := %, we define the sequence {5;}{2; by (5.4).
Then, we have the following. ,
Theorem 5.1. In addition to Assumption A, suppose that the following (iv) to (vi) hold.
(iv) 7 € &(K*) and T <k §(T). |
(V) U Dv Gy for all a, o (0 < of < <1), where V is as in Assumption A(iid).
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(vi) {5,} C £(K*) and bounded from above.

Then, the sequence {s;} converges and the limit 5 := lim;_,, 5; satisfies the following fuzzy
relational equation:

(5.5) §=4(s).

Theorem 5.2. In addition to Assumption A, suppose that the following (iv’), (v) and
(vi’) hold.
(iv)) & e £(KT) with Gy C K and §(3) <k U.
(V) Uo Dv Qo for all o, & (0 < o < o < 1)), where V is as in Assumption A(iii).
(vi’) {3} € £(K™).

Then, the sequence {s;} converges and the limit s := lim,_,, 5; satisfies the fuzzy relational
equation (5.5).

As an example of < g-monotone fuzzy relation, we put the fuzzy relation g by
(5.6) i(z,y) =7(y) + Pl (2,9 €R"),

where 7 € E(K*) with 7y Dy T, for some finite set V C U and o,/ (0 < o < o < 1)
and 0 < f < 1.

Obviously, Assumption A is satisfies for g of (5.6). Also, we observe from Lemma 4.1
that the assumptions (iv) to (vi) in Theorem 5.1 hold for u = 7. So that by Theorem 5.1,
the sequence {s;} defined by (5.4) with 53 =7 converges.

Remark. Note that the fuzzy relation g of (5.6) satisfies the contraction property intro-
duced in [4]. Thus, we see that the limit 5§ = lim; ,, $; is a unique solution of the fuzzy
relational equation (5.5) and given by 5= (1 — 3)~'7.

Example. We give a one-dimensional numerical example whose fuzzy relation ¢ is given
by
q(z,y)=(1-2ly-B-2))VvO0 (z>0).

For a € [0, 1], it holds that by (5.3)
Gar)=B-(1-a)2 ' ~2723+(1-0a)27' —277].

This is illustrated in Figure 2. So, we observe that ¢ is <;-monotone in (0, c0) x (0, 00),
also that 1(1y <1 ¢(1¢1y) and g(z,-) <1 L{z/2y (%)

Applying Theorem 5.1, the sequence {5:(z)} defined by (5.4) with 51(z) = 1y(=)
converges. The convergence is shown in Figure 2 and 3 with the limit $(z) = lim;_, 5:(2),
where the a-cut 3, of the limit 3(z) for @ = 0 and @ = 1 are min3, = 2.313099034,
max 5o = 3.414213562 and 57 = 2.879385242.
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y=7/2 Y=z

y 2]

N

0 1 2 . 3 4 5

Figure 11: g,(z) and the limit 5(z) of {5:(z)}
$1 So 5
0 1 2 x 3 4 5
Figure 12: The sequence {s;(z)}

References

[1] W.Congxin and C.Cong, “The supremum and infimum of the set of fuzzy numbers
and its application,” J. Math. Anal. Appl. 210 (1997) 499-511.



70

[2] P.Diamond and P.Kloeden, Metric Spaces of Fuzzy Sets, Theory and Applications
(World Scientific, 1994).

[3] N.Furukawa, “Parametric orders on fuzzy numbers and their roles in fuzzy optimiza-
tion problems,” Optimization 40 (1997) 171-192.

[4] M.Kurano, M.Yasuda, J.Nakagami and Y.Yoshida, “A limit theorem in some dynamic
fuzzy systems,” Fuzzy Sets and Systems 51 (1992) 83-88.

[5] M.Kurano, M.Yasuda, J.Nakagami and Y.Yoshida, “Markov-type fuzzy decision pro-
cesses with a discounted reward on a closed interval,” European Journal of Operations
Research 92 (1996) 649-662.

[6] M.Kurano, M.Yasuda, J.Nakagami and Y.Yoshida, “The time average reward for
some dynamic fuzzy systems,” Computers and Mathematics with Applications 37
(1999) 77-86.

[7] M.Kurano, M.Yasuda, J.Nakagami and Y.Yoshida, “Ordering of fuzzy sets — A brief
survey and new results,” J. Operations Research Society of Japan 43 No.1 (2000)
138-148.

[8] D.Kuroiwa, T.Tanaka and T.X.D.Ha, “On cone convexity of set-valued maps,” Non-
linear Analysis, Theory & Applications 30 (1997) 1487-1496.

[9] Nanda,S., “On sequences of fuzzy numbers”, Fuzzy Sets and Systems 33 (1989) 123-
126.

[10] V.Novédk, Fuzzy Sets and Their Applications (Adam Hilder, Bristol-Boston, 1989).

[11] J.Ramik and J.Rimanek, “Inequality relation between fuzzy numbers and its use in
fuzzy optimization,” Fuzzy Sets and Systems 16 (1985) 123-138.

[12] J.Stoer and C.Witzgall, Converity and Optimization in Finite Dimensions I
(Springer-Verlag, Berlin and New York, 1970).

[13] Y.R.Syau, “Sequences in a fuzzy metric spacé,” Computers and Mathematics with
Applications 33 (1997) 73-76.

[14] Y.Yoshida, M.Yasuda, J.Nakagami and M.Kurano, “A potential of fuzzy relations
with a linear structure: The contractive case,” Fuzzy sets and Systems 60 (1993)
283-294.

[15] Y.Yoshida, M.Yasuda, J.Nakagami and M.Kurano, “A potential of fuzzy relations
with a linear structure: The unbounded case,” Fuzzy sets and Systems 66 (1994)
83-96.

[16] Y.Yoshida, “A time-average fuzzy reward criterion in fuzzy decision processes,” In-
formation Sci. 110 (1998) 103-112.

[17] Y.Yoshida, M.Yasuda, J.Nakagami and M.Kurano, “A limit theorem in dynamic fuzzy
systems with a monotone property,” Fuzzy sets and Systems 94 (1998) 109-119.

(18] L.A.Zadeh, “Fuzzy sets,” Inform. and Control 8 (1965) 338-353.

[19] K.Zhang and K.Hirota, “On fuzzy number lattice (R, =), Fuzzy sets and Systems
92 (1997) 113-122.



