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1 Introduction and Main Results

In this paper, we estimate smoothing properties of local solu-
tions to nonlinear Schrodinger equations with initial data which
belong to Sobolev spaces H®, s > 0.

We consider the following equation;

i = —Au + F(u), (1)
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where u is a complex-valued function of (¢,z) € Ry x R*, 0, =
d/0t, A is the Laplacian on R", and F(u) = F owu is a local
nonlinear operator given by a complex-valued function F on C.

Here we consider the following assumptions on the nonlinear

term F' in Kato[8];
Assumption (F1) F € CU}(C;C), with F(0) = 0, where

{s}=[s]+1if s¢Z and {s} =sif s € Z, and {0} = 1.

Assumption (F2) If s > n/2, no assumption.
If s <n/2and if F is a polynomial in ¢ = &+ iy and (, then
degree of F'is equal to kK <1+ 4/(n — 2s).

If s <n/2 and if F is not a polynomial,

0<j<i

D) = max {09559} < MG, for [¢] > 1,

fori=0,1,..., {s}, where O; = (9¢ — i0,)/2, ¢ = (0 +idy)/2,



and k is a finite number such that

4
n—2s

{s}<k<1+

We denote 0, = (0, . .., 0,), for amulti-index a = (o, ..., o)
0 = (07", ...,0%) and we often denote d; by 0, and use O as

0% if |af = 1.

The Cauchy problems of equation (1) with above assumptions
were studied by many authors. In Kato[6], T'sutsumi[17], they
discussed about local or global wellposedness in the case that
the initial data belongs to L?, in Ginibre and Velo[3], Kato[5][6],
they discussed about local wellposedness in the case that the ini-
tial data belongs to H', and in Ginibre and Velo[4], Kato[5][6],
about the existence of global solution. Sjolin’s result[15] that
we noted below was based on the existence of local solutions
discussed in Kato[5]. In Kato[6], he discussed about local well-

posedness in the case that the initial data belongs to H?, and in

9
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Kato[5][6], Tsutsumi[18], about the existence of global solution.
We try to estimate regularity of local solutions to equation (1)

with u(0) = ug € H?, for s > 0, which were obtained by Kato[8].

In Sjolin[14], he obtained the following inequality; For some

C > 0, depending on ¢ € CP(R™1),

2,, VfelL’ (2

/ / B, )(1 — A)se"® fdzdt < C| /]
] |

This inequality manifests that the free Schrodinger propagator
2 has the smoothing effect which can improve the properties
of differentiability locally in time and space. Independently,
Vega[19] was obtained the same as the local smoothing property
for the free Schrodinger equation, Constantin and Saut[2] were
obtained the same as the one for general dipersive equations in
homogeneous or inhomogeneous cases.

Later the similar property for e where H = —~A+V is a

self-adjoint operator and V = V() or V (¢, x) are various scalar
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potentials, was studied by many authors(Ben-Artzi[1], Ruiz and
Vega[12], etc.). In particular, Kato and Yajimal[9] obtained the
inequality replacing ¢ in (2) by (1 + |:13[2)“%_5, e > 0, and Ya-
jima[21] obtained the similar estimate for the propagators of
Schrodinger equations with time dependent magnetic and scalar
potentials which may increase at infinity |x| — oc.

In Sjogren and Sjolin[13], they obtained the extension of (2)

in the following form; They defined

A={p e C°(R") | There exists ¢ > 0 such that
0%0(@)] < Call+ [2])727%, Va,
where introduced mixed Sobolev spaces H™* = H"™? (]R x R™) =
(Gr Q G,) * L*(R™), where G, and G, are Bessel kernels in R
and R"™, respectively. If » > 0, p > 0, then, for each p € A,

b e Cg°(R),

lpipe= |

Hre < 07/190HU’HH-mT+p~%(m-1>’ (3)
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for some C,, > 0. Here H = —P + V, where P is a elliptic
operators with constant coefficient which degree is m > 2 and
V = V(z) is a real-valued function in C*° with D*V bounded
for every a.

In Sjolin[15][16] he adapted these estimates for equation (1),
nonlinear Schodinger equation, with H' or H*initial data. The
author extended in [10] p’s range when the initial data belong

to H2.

Kato[8] proved that assume (F1) and (F2), if s > n/2, or if

s <n/2and k < 1+max{4,2s+2}/(n—2s), and k < 2/(1—2s)
if k=1, then there exists a number 7" > 0 and a unique solution
u e C(I; H%) of eQuation (1) with u(0) = ug € H®, s > 0, where
I = [0,T]. Moreover u € Yy(I) = {u € X(I)|A% € X(I),0 <

o < s}, where

X(I)= ([ L°(I; L)) N C(I; L?), (4)
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where [ is the intersection in (g, s) satisfying 1/q+2/ns = 1/2
and 1/2 —1/n < 1/¢ < 1/2 and A%u = (—A)°/?u. In this paper
we shall adapt Sjolin’s estimates to the solution of equation (1)

with H*-initial values. We obtain the following Theorem.

Theorem 1. Assume (F1) and (F2). If s > 1, then the
unique solution v € C(I; H®) of the equation (1) with u(0) =
uy € H® satisfies pu € L3(I; H**Y?) for each ¢ € A. If 0 <
s <1, then, in 1 < n < 2s+4, gpu € L*(I; H*/?) forv each
¢ € A. When n > 2s + 5, under the additional condition

p<1+2/(n—2s—2)puc LAI; H**1/?) for each ¢ € A.

Remark 1 Applying this theorem to Theorem 1 in Yajima[21],
we can obtain the regularity estimate of solutions to nonlinear
Shrodinger equations with magnetic fields in the case that the
initial data belongs to H*. The author[11] obtained the results

in the case of H!.
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We use the standard notations. We abbreviate LP(R™) and
H*(R™) to L? and H*, respectively. We denote usual LP-norm
by || |l,- For I =1[0,7], put L»" = L"(I; L"), where 1 < p <

00,1 <7 < oo, with its norm denoted by

I£10r = ([ 1700

We denote various constants by C, M, etc. They may differ from

line to line.

2 Proof of Theorem
We introduce the following linear operators.
(L)1) = Ult)p = 2, tel, (5)

t
©Nw= [ ve-nf@an.  tel @
Jo
The following lemmas is well known. (see,for example, Kato[5][6][7],

Yajimal[20])
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Lemma 2.1 T is a bounded operator from L? to LP*™, where
(p1,71) satisfies 1/p1+2/nri =1/2and 1/2—1/n < 1/p; < 1/2.
The bound is independent of T', and is uniform for any (p1,71).

Here L>* may be replaced by C(I; L?).

- Lemma 2.2 G is a bounded operator from LP>™ to LFv™,
where (p1,71) and (pe, 7o) satisty 1/p1 + 2/nr; = 1/2 and 1/2 +
1/n < 1/pr <1/2,1/pe+2/nre=1/2+2/nand 1/2 < 1/py <
| 1/2 + 1/n, respectively. The bound is independent of T', and is
uniform for any (py,r1) and (ps, 7). Here L**° may be replaced

by C(I; L?).
For the nonlinear term £, the following lemma is well known.

Lemma 2.3 (Kato[8]) Assume (F1) and (F2) with s < n/2.

If F is a polynomial of degree k, it is obviously the sum of

homogeneous polynomials of degree 1 to k. Otherwsie, F' can
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be written in the form
FZF1+F2+"'+F{s}_1+F{S}+Fk,

where the F; for j = 1,2,...,{s} — 1 are homogeneouse poly-
nomials of degree j, while Fys} and Fj are quasi-homogeneouse
of order {s} and of degree {s} and k, respectively. If k = {s},
Fig 1s redundunt and should be omitted.

We say that a function F': C — C is quasi-homogeneouse of

degree k and order m, if the following estimate hold;
|ID'F(¢)] < M|¢FE, for0 <i<m, ¢ € C.
Lemma 2.4 (Kato[8]) Let FF € C7(C;C), j € Z. Assume
that there is £ > j such that
ID'FQI < MG, i=1,2,...,].
If0 <0<y, then

[A7F()]lr < ¢

Sls AT Gl 1/r = 1/p+ (k= 1)/q, p,g,7 € (1,00),
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where ¢ depends on o, p, ¢ and r. Moreover,

A7 F () 7y < cllullgy

q1.q2

AUU’HPl,P‘z? for, 1/T.j = 1/pj + (l‘ - 1)/(].7'7 J=12,

where ¢ depends on 03, p;, ¢; and rj. And if F(() is a polynomial
in ¢ and ¢ of degree k > 1, then the above inequalities are true

for any o > 0.

Lemma 2.5 Assume (F1) and (F2). Suppose u € YVs(lo),
where Iy = [0, To] with Ty < oo, and X (o) is defined in (6) with
Iy instead of I. If s > 1, then F(u) E LY(Ip; H?). 0 < s < 1,
and 1 < n < 2s+ 4, then F(u) € L*(Io; H%). If 0 < s < 1,
and n > 2$ + 5, then F(u) € L'(Io; H®) with the additional

assumption k < 1+2/(n —2s — 2).

Proof. We may estimate each F;(u), j = 1,2,...,{s},k, in

Lemma 2.3. It suffices to find (p;,71), (p2, r2) which satisty

+— = (7)



-1 1
Iy

— < (8)
el 9
1 s+1 1 1
— — <— < - 9
2 i p -2 )
1 1 1 1 .
- — — < — S a (10)
2 n P2 2
and
1 n.1 s 1 :
— = ax{0, =(= — — — —)/2}. 11
= wax(0.5(5 5~ )/2), (11)
1 n, 1 1 ‘
— = G- )
Ty 22 Do

Indeed, by (10), (12) and the definition of X (1)), we have X (Iy) C
Lpre and}, set 1/ps3 = 1/p1 + s/n, then, from (9) and (11), it
follows X (Iy) € LP»™. Hence, by Sobolev’s embedding theorem,
we have Vi(Io) C L, AArid, if (7) and (8) hold, then we have,

by Holder inequality,

IA"uE; ()20 < MTYPulod ATy, p,  (13)

P1.71

where (p —1)/r1 + 1/ry = 1/ry <1 and for j = 1,2,...,{s}. k

and 0 < o < s. Hence the right hand side of (13) converge,



respectively.
Actually, there are (p1, 1) and (pg, 72) satistying the equalities
and inequalities from (7) to (12). Solving () and (). we obtain

that 1/p1 = 2/nra(j—1). By 1/2—(s+1) < 1/p; < 1/2, we have

1/2—(s+1) < 2/nre(j—1) < 1/2, namely (n—2s—2)(j—1)/4 <

1/rs <n(j—1)/4. By 1 <j <k, (n—2s—2)(k—1)/4 < 1/ry <
n(k —1)/4. (10) and (12) implies that 2 < rp < co. Since we
assume the condition p < 1+2/(n — 2$ —2), there is a desirable

.

Proof of Theorem 1.  Recall that u = Tug — iGF(u) is
the unique solution of equation (1). Let ¢ € A. Then pu =

olug — ipGF(u). Since [[¢TMug

L2(1;Hs+1/2) S CHUOHH’ by (3)
with H = —A, r = 0, p = s+ 1/2, it suffices to estimate

lpGF (u)|

L2(r.H=+1/2)- But it is easily seen that Theorem 3.1 in

Canstantin and Saut[2] holds for ¢ € A instead of eC (R’”l).
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We note p(&;) € L*(R,,), where &; = (&1,..., Tj—1, Tjs1s-- - Tn),
for 7 = 1,2,...,n. Thus it suffices to prove F(u) € LY(I; H?),

s > 0. By Lemma 2.5, we can prove Theorem.
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