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ABSTRACT. In the generalized BVP system, its local model can not be induced well.
By choosing an adequate regular transformation, which contains a new parameter $u$ ,
it can be proved that this local model becomes well induced after that. $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{n}\rangle$ the
winding number for a duck solution tends to infinity as a regular limit for the new
parameter. In case $u-1$ is fixed sufficiently small, the number becomes large as the
value of a $\mathrm{c}\mathrm{o}$-parameter $b$ embedded originally tends to $\mathrm{o}_{+}$ , or $-1-\cdot$

1. INTRODUCTION.

The modified Bonhoeffer-van der Pol(BVP) equations were proposed by
H.Kawakami et al. [5] in 1999. Their results of a computor simulation for this system
show that there exist winding orbits on some projected phase space. Furthermore,
the winding number increases when some parameter contained originally in this
system decreases,

The BVP equations are described as follows:

$L_{1}di_{1}/dt=E_{1}-R_{1}i_{1}-v$ ,

(1.1) $L_{2}di_{2}/dt=E_{2^{-}}R2i2-v$ ,
$Cdv/dt=i_{1}+i_{2}+\rho(v)$ ,

where $i_{1},$ $i_{2}$ are the currents through the inductors $L_{1},$ $L_{2}$ and the registors $R_{1},$ $R_{2}$ ,
respectively. Moreover, $E_{1},$ $E_{2}$ are the constant voltages, $v$ represents at the non-
linear registor $\rho(\rho(v)=v-v^{3}/3)$ and $C$ is a capacitor with very small capacitance.
Let consider the following generalized BVP system:

$dx/dt=c_{0}-aX-a\mathcal{Z}$ ,

(1.2) $dy/dt=-by-bz$ ,

$\epsilon dz/dt=x+y+z-\mathcal{Z}3/3$ ,

where $\epsilon$ is infinitesimally small. In other words, in this paper, we use non-standard
analysis by $\mathrm{N}\mathrm{e}\mathrm{l}\mathrm{s}\mathrm{o}\mathrm{n}[8]$ . In the equation (1.1), put $i_{1}=x,$ $i_{2}=y,$ $v=z,$ $C=\epsilon$ and
then assume that $E_{1}/L_{1}=c_{0}$ (some $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}$ ), $E_{2}=0$ (for simplicity), $R_{1}=R_{2}=1$ ,
$1/L_{1}=a,$ $1/L_{2}=b$ .
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As the generalized BVP system satisfies the generic conditions; Al, . . . , $\mathrm{A}5(\mathrm{s}\mathrm{e}\mathrm{e}$

Section2), some orbit expresses ajumping state with delay (duck solution, or simply
duck). It may have a limit cycle containing a duck (proper duck, or duck with head)
in the system. This system seems to have minimal order of the constrained surface
when $\epsilon$ equals to zero. The ”minimal” means for the existence of the proper duck.
So, the generalized BVP system is sometimes called a minimal system. By giving
a relation between two parameters like as $a-b=1$ , this system can be reduced to
the problem of one parameter family with incomplete ducks. See Section3.

In the generalized BVP system, the local model could not be induced well by
itself. By introducing a certain regular transformation, which contains a parasitic
parameter $u$ , it turns to be well induced. Furthermore, it becomes clear that the
winding number for the explicit duck tends to infinity (i.e.,an incomplete duck ex-
ists) as the parameter $b$ embedded originally in the system tends to $0$ near the
singular value of $u(u\simeq 1)$ . To be brief, there exists a regular coordinate transfor-
mation containing some parameter to realize them in the minimal system. In this
paper, under the above assumptions, we will provide the following two theorems
and one corollary.

Theoreml. In the case $c_{0}=0$ , if the parameter $b$ satisfies $-1<b<0$ , then the
pseudo singular points are saddle, that is, the generalized BVP system has ducks.
If $b$ satisfies $-1/2-\sqrt{8/5}/2<b<-1,0<b<-1/2+\sqrt{8/5}/2$ , then the pseudo
singular points are node.

Theorem2. In the case $c_{0}\neq 0$ (some $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}$ ), $\mathrm{i}\mathrm{f}$ the parameter $b$ giving a node
point satisfies $b=O(\epsilon^{2})$ when the $\mathrm{c}\mathrm{o}$-parameter $u$ holds $u-1=\epsilon$ , then it can
be obtained that there exist explicit incomplete ducks for the local model in the
system.

Corollary. In the case $c_{0}=0$ , if the parameter $b$ satisfies $b=O(\epsilon^{2})$ or $b=$

$-1-o(\epsilon^{2})$ under the same conditions in the Theorem2, there exist approximately
explicit ducks for the local model of the system.

2. PRELIMINARIES

Let consider a constrained system:

$dx/dt=f(x, y, z, u)$ ,

(2.1) $dy/dt=g(x, y, z, u)$ ,

$h(x, y, z, u)=0$ ,

where $u$ is a parameter (any fixed) and $f,g,h$ are defined on $R^{3}\cross R^{1}$ . Furthermore,

let consider the singular perturbation problem of the system (2.1):

$dx/dt=f(x, y, z, u)$ ,

(2.2) $dy/dt=g(x, y, z, u)$ ,
$\epsilon dz/dt=h(x, y, z, u)$ ,

where $\epsilon$ is infinitesimally small.
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We assume that these systems satisfy the following conditions $(A1)-(A5)$ :
$(A1)f$ and $g$ are of class $C^{1}$ and $h$ is of class $C^{2}$ .
$(A2)$ The set $S=\{(x, y, z)\in R^{3} : h(x, y, z, u)=0\}$ is a 2-dimensional differen-

tiable manifold and the set $S$ intersects the set
$T=\{(x, y, z)\in R^{3} : \partial h(x, y, z, u)/\partial z=0\}$ transversely so that the set $PL=$
$\{(x, y, z)\in S\cap T\}$ is a 1-dimensional differentiable manifold.

$(A3)$ Either the value of $f$ or that of $g$ is nonzero at any point $p\in PL$ .
Let $(x(t, u),$ $y(t, u),$ $z(t, u))$ be a solution of the system(2.1). By differentiating

$h(x, y, z, u)$ with respect to the time $t$ , the following equation holds:

(2.3) $h_{x}(x, y, z, u)f(x, y, z, u)+h_{y}(x, y, z, u)g(x, y, z, u)+h_{z}(x, y, z, u)dZ/dt--\mathrm{O}$ ,

where $h_{i}(x, y, z, u)=\partial h(x, y, z, u)/\partial i,$ $i=x,$ $y,$ $z$ . The above system(2.1) becomes
the following system:

$dx/dt=f(x, y, z, u)$ ,
$dy/dt=g(x, y, Z, u)$ ,

(2.4)
$dz/dt=-\{hx(x, y, z, u)f(X, y, z, u)+$

$h_{y}(x, y, z, u)g(X, y, Z, u)\}/h_{z}(x, y, z, u)$ ,

where $(x, y, z)\in S\backslash PL$ . The system(2.1) coincides with the system(2.4) at any
point $p\in S\backslash PL$ . In order to study the system(2.4), let consider the following
system:

$dx/dt=-h_{z}(x, y, z, u)f(x, y, z, u)$ ,

(2.5) $dy/dt=-h_{z}(x, y, z, u)g(x, y, z, u)$ ,
$dz/dt=h_{x}(x, y, z, u)f(x, y, z, u)+h_{y}(x, y, z, u)g(x, y, z, u)$ .

As the system(2.5) has well posedness at any point of $R^{3}$ , it has well posedness
indeed at any point of $PL$ . The solutions of the system(2.4) coincide with those
of the system(2.1) on $S\backslash PL$ except the velocity when they start from the same
initial points.

. $(A4)$ For any $(x, y, z)\in S$ , the implicit function theorem holds;

(2.6) $h_{y}(x, y, z, u)\neq 0,$ $h_{x}(x, y, z, u)\neq 0$ ,

that is, the surface $S$ can be expressed by using $y=\varphi(x, z, u)$ or $x=\psi(y, z, u)$ in
the neighborhood of $PL$ . Let $y=\varphi(x, z, u)$ exist, then the projected system, which
restricts the system(2.5) is obtained:

$dx/dt=-h_{z}(x, \varphi(X, z, u), z, u)f(x, \varphi(x, z, u), Z, u)$ ,

(2.7) $dz/dt=h_{x}(x, \varphi(x, z, u), z, u)f(x, \varphi(X, Z, u), Z, u)+$

$h_{y}(x, \varphi(x, Z, u), Z, u)g(X,$ $\varphi(x, \varphi(X, Z,.u), z, u)$ .

$(A5)$ All the singular points of the system(2.7) are nondegenerate, the matrix
induced by linearizing the system(2.7) at a singular point has two nonzero eigen-
values. Note that all the points contained in $PS=\{(x, y, z)\in PL : dz/dt=0\}$ ,
which is called pseudo singular points are the singular points of the system(2.5).

133



Definition2.1. Let $p\in PS$ and $\mu_{1}(u),$ $\mu_{2}(u)$ be two eigenvalues of the matrix
associated with the linearized system of (2.7) at $p$ . The point $p$ is called pseudo
singular saddle if $\mu_{1}(u)<0<\mu_{2}(u)$ and called pseudo singular node if $\mu_{1}(u)<$

$\mu_{2}(u)<0$ or $\mu_{1}(u)>\mu_{2}(u)>0$ .

Definition2.2. A solution $(x(t, u),$ $y(t, u),$ $z(t, u))$ of the system(2.2) is called $a$

duck, if there exist standard $t_{1}<t_{0}<t_{2}$ such that
(1) $*(x(t_{0}, u),$ $y(t_{0}, u),$ $z(t_{0}, u))\in S,$ $\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}*(X)$ denotes the standard part of $X$ ,
(2) for $t\in(t_{1}, t_{0})$ the segment of the trajectory $(x(t, u),$ $y(t, u),$ $z(t, u))$ is infinitesi-

mally close to the attracting part of the slow curves,
(3) for $t\in(t_{0}, t_{2})$ , it is infinitesimally close to the repelling part of the slow curves,

and
(4) the attracting and repelling parts of the trajectory are not infinitesimally small.

If a duck exists as a part of a limit cycle, it is called a proper duck.

Definition2.3. Let $E$ be a set in $R^{3}$ . We call a point $p$ is a $\delta-$ micro-galaxy of $E$

when the distance from $p$ to $E$ is less than $exp(-n/\delta)$ , where $n$ is some positive
integer and $\delta=\epsilon/\alpha^{2}$ (a is infinitesimally small).

Definition2.4. Let $\theta$ is an angle of the polar coordinate after changing the coor-
dinates in the ”local model” such as the orbit passing through the pseudo singular
point becomes the $z$-axis itself. See $[3],[4]$ . Then, the winding number $N(\psi)$ of a
duck $\psi$ is defined as follows:

(2.8) $N( \psi)=(1/2\pi)\int_{\psi}d\theta$ ,

where $\psi$ is contained partially in the $\delta- \mathrm{m}\mathrm{i}\mathrm{c}\mathrm{r}\mathrm{o}^{-}$ galaxy of $\gamma_{\mu}$ .

Theorem2.1 (Benoit). In the system(2.1), if the following two conditions at a
pseudo singular saddle or node point;

(1) $f(O, u)\simeq h(O, u)\simeq h_{y}(O, u)\simeq h_{z}(O, u)\simeq 0$ ,
(2) $g(O, u)\not\simeq \mathrm{O},$ $h_{x}(O, u)\not\simeq \mathrm{O},$ $h_{zz}(O, u)\not\simeq \mathrm{O}$ , where $O=(0,0, \mathrm{o})\in PS$ ,

are satisfied, the explicit duck solutions $\gamma_{\mu_{i}(u)}$ in the first approximation of the
local model can be constructed:

(2.9) $\gamma_{\mu_{i(}}u)(t)=(-\mu_{i}(u)^{2}t^{2}-\delta\mu i(u), t, \mu i(u)t)(i=1,2)$ ,

wehere $\delta$ is an infinitesimally small constant.

The above Definition2.3 is based on the following fact. If $\epsilon$ is fixed arbitrarily
and $\gamma(t)$ is a duck near $\gamma_{\mu(u)}(t)$ within $exp(-n/\delta)$ in some neighborhood of the
pseudo singular point. $\mathrm{S}\mathrm{e}\mathrm{e}[15]$ .

In the system(2.2), under the conditions (1) and (2) in the Theorem2.1, making
the following coordinate transformations (2.10) and (2.11) successively;

(2.10) $=,$ $(\alpha\simeq 0, \epsilon/\alpha^{2}\simeq 0)$
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(2.11)

$=(^{h_{x}(\mathrm{o},u})hzz(0, u)\tilde{x}_{h^{/2((0,)}yz(}+h\mathrm{o}-0,u)\tilde{y}yy\tilde{y}/2-/\mathit{9}(,u)uh_{z}\mathcal{Z}(0,uh_{zz}(\mathrm{o},u))_{\tilde{Z}/}-hz(y)^{2}20,$$u)\tilde{y}^{2}/4)$ ,

the following local model is obtained:

$dX/dt=pY+qZ+\xi(X, Y, z, u)$ ,

(2.12) $dY/dt=1+\eta(X, Y, z, u)$ ,

$\delta dZ/dt=-(Z^{2}+X)+\zeta(X, Y, z, u)$ ,

where

$p=g(\mathrm{O}, u)hx(\mathrm{o}, u)(f_{y}(\mathrm{o}, u)hzz(0, u)-fz(0, u)h_{yz}(0, u))/2$

$+g(\mathrm{O}, u)^{2}(h_{yy}(0, u)hzz(\mathrm{o}, u)-h_{y}z(\mathrm{o}, u)^{2})/2$ ,
(2.13)

$q=-h_{x}(0, u)fz(\mathrm{o}, u)$ ,
$\delta=\epsilon/\alpha^{2}$ .

Here $\xi(X, Y, Z, u),\eta(x, Y, z, u)$ and $\zeta(X, Y, z, u)$ are infinitesimally small when $X,$ $Y$

and $Z$ are limited. Note that the solutions (2.9) are in the first approximation of
the system(2.12).

By applying the following transformations of the $\mathrm{c}$’oordinates as mentioned above,
in Definition2.4, successively;

$u=X+z^{2}+\delta\mu$ ,
(2.14) $v=\mathrm{Y}-Z/\mu$ ,

$z=Z$,

$u=7^{\cdot}cos\theta$ ,
(2.15)

$v=rsin\theta$ ,

the Hermite equation is obtained. This equation associated with $\gamma_{\mu_{i}(u)}(i=1,2)$ is
the following:

(2.16) $\delta\ddot{z}-\mathcal{T}\dot{z}+K_{i}z=0,\dot{z}=dZ/d\tau,$ $t=\tau/\alpha,$ $(i=1,2)$ ,

where $K_{i}$ is a positive integer and $K_{1}=1+\mu_{2}(u)/\mu_{1}(u),$ $K_{2}=1+\mu_{1}(u)/\mu_{2}(u)$ .
See [3].

It is said that a duck $\psi(t)$ has $k$ jumps if the shadow of it contains $k$ vertical
segments and that $\psi(t)$ is long if it lies in an infinitesimally small neighborhood at
the pseudo singular point. It can be proved that if $\psi$ is not long, the standard part
of the winding number $N(\psi_{i})$ associated with $\mu_{i}$ is an integer. If the pseudo singular
point is node, it is positive. If the point is saddle, it needs a certain condition such
as $K_{i}$ is positive. The relation between $N(\psi_{i})$ and $K_{i}(i=1,2)$ is as follows.
$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}2.2(\mathrm{B}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{t})$. If the duck $\psi_{1}$ , which is not long has 2 jumps,
$N(\psi_{1})\approx-[K_{1}/2]$ , and if the duck $\psi_{2}$ has 2 jumps, $N(\psi_{2})\approx 0$ .
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3.INCOMPLETE DUCKS.

Definition3.1. In the system(2.12), if the following conditions (1) and (2):
(1) for any limited parameter $u$ ,

it satisfies the conditions $(A1)-(A5)$ and has a duck,
(2) when the parameter $u$ tends to infinity, one of the winding numbers

tends to infinity and the other tends to zero,
and the system does not have a duck as a singular limit,
are established, this solution is called an $\omega$-incomplete duck.

Definition3.2. A solution $\psi(x, u)$ is called $S^{1}$ at a,
if there exists a real number $b$ such that

(3.1) $\frac{\psi(_{X},u)-\psi(y,u)}{x-y}\approx b$,

for any $x,$ $y(x\approx a, y\approx a)$ .
A duck is called an $S^{1}$ duck if it is $S^{1}$ in some neighborhood
of the pseudo singular point.

Theorem3.1 (Benoit). In the first approximation of the system(2.12),
if $\mu_{1}(u)/\mu_{2}(u)$ is positive $(>3)$ but no an integer, then all the $S^{1}$ ducks are expo-
nentially close to one of the two explicit ducks and there exists non $S^{1}$ ducks.

Now, we assume that the coefficient $q$ can take an unlimited number:

(3.2) $q=c_{1}u+o(1),$ $c1\not\simeq 0$ .

Then, putting the variable $Z$ as

(3.3) $Z=(1/u)\tilde{Z}$ .

Then, the first approximation of the system(2.12) becomes the following:

$dX/dt=pY+c_{1}\tilde{Z}$ ,

(3.4) $dY/dt=1$ ,

$(\delta/u)d\tilde{Z}/dt=-(\tilde{Z}^{2}/u^{2}+X)$ ,

where $c_{1}$ is a limited constant and $\delta/u\simeq 0$ . The explicit duck solutions of the
system(3.4) are

(3.5) $\gamma_{\mu_{i(}}u)(t)=(-\mu_{\dot{x}}(u)^{2}t^{2}-\delta\mu i(u), t, u\mu i(u)t)(i=1,2)$,

where $\mu_{1}(u),$ $\mu_{2}(u)(\mu_{1}(u)>\mu_{2}(u))$ are the solutions of the characteristic equation:

(3.6) $2\lambda^{2}+q\lambda+p=0$ ,

that is, they are the eigenvalues of the corresponding linearized system.
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Theorem3.2. In the first approximation of the system(2.12), if $\mu_{1}(u)/\mu_{2}(u)$ is
positive but no integer under the condition (3.2), and all the coefficients of higher
order (more than 2) for $u$ is negligible are satisfied, then this system has an $\omega-$

incomplete duck.

Corollary3.3. In the system(2.12), if the coefficient $q$ satisfies $q=c_{1}u+O(1)$ , that
is, $q=c_{1}u+c_{2}$ where $c_{1},$ $c_{2}\not\simeq 0$ and $p>0$ or $0>p\geq-1/32$ , then there exists a
finite value $u_{0}$ which makes the winding number infinite when $u$ tends to $u_{0}$ ; the
corresponding duck is called incomplete , simply. If the other coefficient $p$ tends
to zero, one of the eigenvalues in the equation(3.6) tends to zero. As the other
eigenvalue keeps non zero, in this state, the winding number for a corresponding
duck tends to infnity, that is, the duck is incomplete.

Remark. In this situation, the singular perturbation problem is equivalent to the
following system of two parameters family with $\epsilon_{1}$ and $\epsilon_{2}$ :

$\epsilon_{1}dX/dt=\epsilon_{1}pY+qZ+\xi(X, Y, z, \epsilon_{1}, \epsilon_{2})$ ,

(3.7) $dY/dt=1+\eta(X, Y, z, \epsilon_{1}, \epsilon_{2})$ ,

$\epsilon_{2}dZ/dt=-(Z^{2}+X)+\zeta(X, Y, z, \epsilon_{1}, \epsilon_{2})$ ,

where $\epsilon_{1}$ and $\epsilon_{2}$ are infinitesimally small.

4. THE TRANSFORMED BVP SYSTEM

The system(1.2) could not have the local model because the third equation does
contain the variable $y$ and its coefficient is 1 (not sufficiently small). There exists a
problem how to avoid this trouble in order to obtain the local model describing the
explicit solution for the linearized system. This problem will be solved as follows.

Lemma4.1. In the system$(1.2)$ , there exists a regular coordinate transformation in
order to induce the local model well.

(proof)
Choosing the following transformation:

(4.1) $=$,

where $u(\neq 1)$ is a parasitic parameter, the system(1.2) become-s
$dX/dt=c_{0}-aX+u(a-b)Y-(a+bu)Z$,

(4.2) $dY/dt=-bY-bZ$,

$\epsilon dZ/dt=X+(1-u)Y+Z-Z^{3}/3$ .

Considering the time scaled constrained system of the equation(4.2) with $a-b=1$ ,
the following

$dX/dt=(c_{0}-(b+1)X+uY-(bu+b+1)Z)(1-Z^{2})$ ,

(4.3) $dY/dt=(-bY-bz)(1-Z^{2})$ ,

$dZ/dt=-c_{0}+(b+1)X-(bu+u-b)Y+(2b+1)Z$ ,
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is obtained, where $b,$ $u$ are parameters. Substituting the following

(4.4) $\mathrm{Y}=(X+Z-Z^{3}/3)/(u-1)$ ,

for the above equation(4.3), the equation can be projected to (X-Z) plane:

$dX/dt=(c_{0}-(b+1-u/(u-1))X-(bu+b+1-u/(u-1))Z$
$-uZ^{3}\backslash /3(u-1))(1-Z^{2})$ ,

(4.5)
$dZ/dt=-c_{0}+(1-u/(u-1))X+(b+1-u/(u-1))Z$
$+(b+u/(u-1))Z3/3$ .

It is important to note that there exists a singularity at $u=1$ . Then, there exist
two pseudo singular points $P_{0-},$ $P_{0+}\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}\mathrm{f}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{g}$ the generic condition $(A5)$ :

$P_{0-}=(X_{0-,Y_{0}}-, Z0-)$ ,

$X_{0-}=(-(4b+1)u+4b+3)/3-c_{0}(u-1)$ ,
(4.6)

$Y_{0-}=(-(4b+1)u+4b+1)/3(u-1)-c0$ ,

$Z_{0-}=-1$ ,

and
$P_{0+}=(X_{0+}, Y_{0+}, Z0+)$ ,

$X_{0+}=((4b+1)u-4b-3)/3-c0(u-1)$ ,
(4.7)

$Y_{0+}=((4b+1)u-4b-1)/3(u-1)-c_{0}$ ,

$Z_{0+}=1$ ,

where

(4.8) $c_{0}-ax_{0}+uY_{0}-(a+bu)Z0\simeq 0,$ $(X_{0}, Y_{0}, Z_{0})\in PS$ .
The values of $p,$ $q$ in the equation(2.13) at these points are

$p_{-}=-ub(Y_{0-}-1)$ ,

$q_{-}=b(u+1)+1$ ,
(4.9)

$p_{+}=ub(Y_{0+}+1)$ ,

$q_{+}=q_{-}$ .

Since the equation(4.3) satisfies the assumptions (1), (2) in Theorem2.1, it be-
comes clear that the local model can be induced well. This completes the proof of
Lemma4.1.

Lemma4.2. The local model of the system$(4.2)$ is an approximation of this system
in the neighborhood of the pseudo singular point.

(proof)
In generally, after the changing the coordinates(2.11), the following new system is
obtained:

$du/dt=(dX/dt)/\alpha^{2}=f(\alpha^{2}u, \alpha v, \alpha w)/\alpha^{2}$ ,

$dv/dt=(dY/dt)/\alpha=g(\alpha^{2}u, ov, \alpha w)/\alpha$ ,
(4.10)

$\epsilon dw/dt=\epsilon(dZ/dt)/\alpha=h(\alpha^{2}u, \alpha v, \alpha w)$ ,
$(\epsilon/\alpha^{2})dZ/dt=h(\alpha^{2}u, \alpha v, \alpha w)/\alpha^{2}$ .
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Furthermore, after the transformation(2.11), the higher terms of $f/\alpha^{2}$ and $g/\alpha$ are
zero in the system(4.2) $(\xi(X, Y, z, u)=\eta(X, Y, z, u)=0)$ . The higher term of $h/\alpha^{2}$

is negligible. In fact,

$\zeta(X, Y, z, u)=(h_{XX}\mathrm{x}(P0_{-})x^{3}+h_{YYY}(P0-)Y^{3}+h_{ZZ}z(P_{0-})z^{3}$

$+3(h_{XxY}(P_{0-})X^{2}Y+h_{XX}z(P_{0_{-}})x^{2}Z+h_{YY}z(P0-)Y^{2}Z$
(4.11)

$+h_{YZZ}(P_{0_{-}})YZ^{2}+h_{XYY}(P0-)XY^{2}+h_{X}zz(P_{0}-)XZ^{2})$

$+6h_{XYZ(}P_{0_{-}})XYZ)/3!\alpha^{2}=-2\alpha w^{3}/3!$ ,

since $h_{zzz}(P0-)=-2,$ $Z^{3}=\alpha^{3}w^{3}$ and other partial derivatives are all zeroes.
Then, by using the assumptions(l), (2) in Theorem2.1, the local model can be
obtained. It is confirmed that the model is an approximation of the system(4.2)
near the point $P_{0-}$ . In the case at $P_{0+}$ , it is confirmed also in the same way. This
completes the proof of Lemma4.2.

Lemma4.3. There exists an explicit duck in the local model for the system$(4.2)$

under the condition$(4.8)$ . If the duck is proper, that is, if there exists a limit cycle,
which has a duck as a part of the solution, the right hand side of the third equation
in the system$(4.2)$ has minimal order (minimal system) for the existence of the
proper duck.

(proof)
By the Theorem2.1, the explicit duck near the point $P_{0-}$ is obtained as follows:
(4.12)

$\gamma_{\mu_{x}(b,u)}(t)=(-\mu_{i}(b, u)2t^{2}-\delta\mu i(b, u)+X_{0-},$ $t+Y_{0_{-\mu_{i}(u)t}},b,+z_{0_{-}})(i=1,2)$ ,

where $\mu_{i}(b, u)$ is an eigenvalue for the linealized system of the system(4.5). If the
order of the polynomial is smaller than 3, there is no jumping orbit to return to an
initial point. Thus, there is no limit cycle, which contains a duck. This completes
the proof of Lemma4.3.

In this paper, the condition for the existence of the proper duck does not be
treated.

5.THE PROOFS OF THEOREMI AND THEOREM2

In the regularized system(4.3), if $c_{0}=0$ is satisfied, there are three singular
points in the time scaled reduced system:

$P_{0z}$ $(z= -, 0, +);P_{0-}=(1+4b/3, -1/3-4b/3, -1),$ $P_{00}=(0,0, \mathrm{o}),$ $P_{0+}=$

$(-1-4b/3, -5/3-4b/3,1)$ . In this state, only $P_{0+},$ $P_{0}$ -are pseudo singular points.
It is possible to induce them by calculating the Jacobian matrix of the time scaled
reduced system(4.4) directly. In fact, the constrained system for the system(4.2)
becomes the following equation corresponding to the equation(2.7):

$dx/dt=-(1+b)(x+z)(1-Z^{2})$ ,
(5.1)

$dz/dt=x+(1+b)z+bz^{3}/3$ ,

where only $b$ is a parameter. Now, let consider these two points $P_{0}$-and $P_{0+}$ .
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In both cases, the characteristic equation associated with the linearized system
of the system(5.1) are quite the same as follows:

(5.2) $\lambda^{2}-(1+2b)\lambda+8b(1+b)/3=0$ .

If $b$ satisfies $-1<b<0$ , the pseudo singular points $P_{0}$-and $P_{0+}$ are saddle, that
is, there exist ducks in this system. If $b$ satisfies $-1/2-\sqrt{8}/5/2<b<-1,0<$
$b<-1/2+\sqrt{8}/5/2,$ $P_{0-}$ and $P_{0+}$ are node points. This completes the proof of
Theoreml.

In the case $c_{0}\neq 0$ , under the condition (4.8), if the parameter $b$ satisfies $b=\epsilon^{2}$ ,
the pseudo singular points $P_{0}$-and $P_{0+}$ are node when the $\mathrm{c}\mathrm{o}$-parameter $u$ satisfies
$u-1=\epsilon$ . In fact, the characteristic equation of the local model is

(5.3) $2\lambda^{2}+q_{+}(-)+\lambda p+(-)=0$ ,

where $p_{+(-)},$ $q_{+(-}$ ) are in the equations(4.9). Note that the existence of the local
model is ensured from Lemma4.1. As $p_{+(-)}>0$ (the pseudo singular points are
node), the winding numbers are well defined. Furthermore, the value of $p$ satisfying
$O(\epsilon^{2})$ holds the relation in Corollary3.3. Therefore, the transformed system has an
incomplete duck. At that time, the corresponding index $\mathrm{K}$ in the equations(2.16)
tends to infinity, so the winding number of the duck tends to infinity by Theorem2.2.
In fact, let the parameter $u$ is fixed very near 1, then the winding number tends
to infinity as the $\mathrm{c}\mathrm{o}$-parameter $b$ tends to $0_{+0}$ . In this state, one of the eigenvalues
tends to zero and the other one keeps nonzero since $q_{+}=q$-tends to 1. Thus,
this system has an incomplete duck from Corollary3.3. It should be also available
if $u$ holds $u-1=O(\epsilon)$ whenever $b$ satisfies $b=O(\epsilon^{2})$ . This completes the proof of
Theorem2.

Remarkl. By using an affine transformation:

(5.4) $x=X-c\mathrm{o}/a,$ $y=Y,$ $z=^{z}$ ,

we can reduce the system(1.2) to the following:

$dx/dt=-ax-az$ ,

(5.5) $dy/dt=-by-bz$ ,

$\epsilon dz/dt=c_{0}/a+x+y+z-z^{3}/3$ .

Then, the time scaled reduced sysytem associated with the system(2.5) is

$dx/dt=(-ax-aZ)(1-z^{2})$ ,

(5.6) $dy/dt=(bx-bZ^{3}/3+bc_{0}/a)(1-Z^{2})$ ,

$dz/dt=-bc_{0}/a+x+az+bz^{3}/3$ .

Since the parameter $b$ tends to zero (the parameter $a$ tends to 1), $bc_{0}/a$ tends to
zero, the explicit duck near the pseudo singular point $P_{0+}$ in the local model tends
to the following:

$\gamma_{\mu_{x}(u)}b,+(t)=$

(5.7) $(\mu_{i}^{2}(b, u)t^{2}-\delta\mu_{i}(b, u)-x_{0+}-(aX_{0+}-Y_{0+}+(b+2)Z_{0+})/a$ ,

$t-Y_{0+},$ $\mu_{i}(b, u)t-z0+)(i=1,2)$ .
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In the above limit, the relation $c_{0}=0$ holds. When it is near on the point $P_{0-}$ , the
explicit duck is close to $\gamma\lambda_{i}(b,u)-$ :

$\gamma_{\lambda_{i}(b,u})-(t)=$

(5.8) $(-\lambda_{i}^{2}(b, u)t^{2}-\delta\lambda_{i}(b, u)+X_{0-}-(aX_{0-}-Y_{0-}+(b+2)Z_{0-)}/a$,
$t+Y_{0-},$ $\lambda_{i}(b, u)t+z_{0-})(i=1,2)$ .

Note that the condition (4.8) restricts the system(5.5).

Remark2. When the parameter $b$ tends to-l($b=-1-o(\epsilon^{2})$ and $a=O(\epsilon)$ ), the
value of $u-1$ can keep small $(u=1+O(\epsilon))$ . It is possible to hold $c_{0}=O(\epsilon^{2})$ in
this state. Therefore, the explicit ducks (5.8) are also available for this case. This
fact coinsides with the results of the simulation [5]: when $1/L_{1}$ becomes smaller,
the winding number becomes larger.

This completes the proof of Corollary.

Remark3. In the Bonhoeffer van der Pol system, the parameter $b$ is one of the two
inductances. It takes usually positive number. Though we assume that $a-b=1$
first, it might be natural physically to put $a+b=1$ and $a>0,$ $b>0$ in the circuit.
In this state, we can get the same result as $b$ tends to 1.
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