<table>
<thead>
<tr>
<th>Title</th>
<th>Fat solenoidal attractors (New developments in dynamical systems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tsujii, Masato</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2000), 1179: 99-102</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2000-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/64532</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Fat solenoidal attractors

Masato TSUJII
Department of Mathematics
Hokkaido University
November 8, 2000

Abstract
We study dynamical systems generated by skew products
\[T : S^1 \times \mathbb{R} \to S^1 \times \mathbb{R}, \quad T(x, y) = (\ell x, \lambda y + f(x)) \]
where \(\ell \geq 2, 1/\ell < \lambda < 1 \) and \(f \) is a \(C^2 \) function on \(S^1 \). We show that the SBR measure for \(T \) is absolutely continuous for almost every \(f \).

1 Introduction
In this paper, we study a class of dynamical systems that stably admit an absolutely continuous ergodic measure (acem) with a negative Lyapunov exponent. It is well-known that expanding dynamical systems generally admit acem's whose Lyapunov exponents are all positive. The aim of this paper is to study another kind of acem's which is produced by a quite different mechanism: overlap and sliding in short.

We can find a typical example of such acem's in a paper of Alexander and Yorke[1], where the so-called generalized baker's transformation is considered:

\[B : [-1, 1] \times [-1, 1] \cap, \quad B(x, y) = \begin{cases}
(2x - 1, \beta y + (1 - \beta)) & x \geq 0 \\
(2x + 1, \beta y - (1 - \beta)) & x < 0.
\end{cases} \]

When \(\beta = 1/2 \), this map \(B \) is nothing but the ordinary baker's transformation. Alexander and Yorke studied the case \(1/2 < \beta \leq 1 \). In such case, the images of left and right halves of the domain, i.e., \(B([-1, 0] \times [-1, 1]) \) and \(B([0, 1] \times [-1, 1]) \) overlap with some sliding. This makes the dynamical nature of the map \(B \) more complicated and interesting. They observed that the map \(B \) admits an acem if and only if the number \(\beta \) satisfies a delicate numerical condition: absolute continuity of the corresponding infinitely convoluted Bernoulli measure. As they noted, there are infinitely many numbers in \((1/2, 1] \) (e.g. \((\sqrt{5} - 1)/2 \)) for which \(B \) admits no acem's, according to a result of Erdős[2]. On the other hand, \(B \) admits an acem for Lebesgue almost every \(\beta \) in \((1/2, 1] \) according to a more recent result of Solomyak[3].
In this paper, we consider a class of dynamical systems generated by maps

\[T: S^1 \times \mathbb{R} \to S^1 \times \mathbb{R}, \quad T(x, y) = (\ell x, \lambda y + f(x)) \quad (1) \]

where \(\ell \geq 2 \) is an integer, \(0 < \lambda < 1 \) is a real number, and \(f \) is a \(C^2 \) function on \(S^1 = \mathbb{R}/\mathbb{Z} \). We may regard this class of maps as a conceptual generalization of the generalized baker’s transformations \(B \) in the sense that the translation in vertical direction depends smoothly on \(x \).

The map \(T \) is a skew product on the expanding map \(\tau : x \mapsto \ell x \) and it is uniformly contracting in the fiber direction. So \(T \) is an Anosov endomorphism.

The ergodic property of \(T \) is rather simple: there exists an ergodic probability measure \(\mu \) on \(S^1 \times \mathbb{R} \), for which Lebesgue almost every point \(x \in S^1 \times \mathbb{R} \) is generic, that is,

\[\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \delta_{T^i(x)} = \mu \quad \text{weakly}. \]

We will call this measure \(\mu \) the SBR measure for \(T \).

The question is smoothness of the SBR measure \(\mu \) with respect to the Lebesgue measure on \(S^1 \times \mathbb{R} \). In the case \(\lambda \ell < 1 \), the SBR measure is totally singular because \(T \) contracts area. The case \(\lambda \ell > 1 \), which corresponds to the case \(\beta > 1/2 \) for the generalized baker’s transformations, is more interesting. We will focus on this case. First we give two examples in opposite directions.

Example 1 Let \(\ell = 2, 0.5 < \lambda \leq 0.51 \) and \(f(x) = \sin 2\pi x \). Then the SBR measure \(\mu \) for \(T \) is absolutely continuous with respect to the Lebesgue measure of \(S^1 \times \mathbb{R} \). (See figure 1.)

Example 2 If \(f(x) = \varphi(\tau(x)) - \lambda \varphi(x) \) for some measurable function \(\varphi \) on \(S^1 \), the SBR measure for \(T \) is supported on the graph of \(\varphi \) and totally singular.

We claim that the SBR measure is absolutely continuous for almost every \(T \) and, moreover, that the absolute continuity is robust. Fix an integer \(\ell \geq 2 \). Let \(D \subset (0, 1) \times C^2(S^1, \mathbb{R}) \) be the set of combinations \((\lambda, f) \) for which the SBR measure is absolutely continuous w.r.t. the Lebesgue measure on \(S^1 \times \mathbb{R} \). We consider the interior \(D^o \) of \(D \) with respect to the topology that is defined as the product of the canonical topology on \((0, 1) \) and \(C^2 \)-topology on \(C^2(S^1, \mathbb{R}) \). The main result of this paper is the following.

Theorem 1 Let \(\ell^{-1} < \lambda < 1 \). There exists a finite collection of \(C^\infty \) functions \(\varphi_i : S^1 \to \mathbb{R}, \ i = 1, 2, \cdots, m \), such that, for any \(C^2 \) function \(g \in C^2(S^1, \mathbb{R}) \), the subset of \(\mathbb{R}^m \),

\[\left\{ (t_1, t_2, \cdots, t_m) \in \mathbb{R}^m \mid \left(\lambda, g(x) + \sum_{i=1}^{m} t_i \varphi_i(x) \right) \notin D^o \right\}, \]

is a null set with respect to the Lebesgue measure on \(\mathbb{R}^m \).
As simple consequences, we obtain

Corollary 2 \(\mathcal{D} \) contains an open and dense subset of \((1/\ell, 1) \times C^2(S^1, \mathbb{R}) \).

Corollary 3 For \(\ell^{-1} < \lambda < 1 \) and \(2 \leq r \leq \infty \), the set of functions

\[
\mathcal{D}_\lambda^r = \{ f \in C^r(S^1, \mathbb{R}) \mid (\lambda, f) \in \mathcal{D}^o \}
\]

is an open and dense subset of \(C^r(S^1, \mathbb{R}) \).

Moreover, the claim of theorem 1 implies that the subset \(\mathcal{D}_\lambda^r \) above occupies almost everywhere in \(C^r(S^1, \mathbb{R}) \). In fact, if \(C^r(S^1, \mathbb{R}) \) were a finite dimensional Euclidean space, the claim would imply that the subset \(\mathcal{D}_\lambda^r \) had full measure with respect to the 'Lebesgue measure' on \(C^r(S^1, \mathbb{R}) \). See [5] and [6] for discussions about measure-theoretical conditions that imply "almost everywhere" for subsets in infinite dimensional spaces.

The proof of theorem 1 is based on an idea that transversality of the unstable manifolds leads to absolute continuity of the SBR measure. We took this idea from a paper of Solomyak and Peres[4] where the authors gave a simplified proof of the above mentioned result of Solomyak.

One can download the full paper at

http://www.math.sci.hokudai.ac.jp/~tsujii/index.html
References

