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Cantor family of superstable manifolds of

a double root in the dynamics of Newton’s
method *1
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Abstract

In the local dynamics of Newton’s method, a generic double root
of a holomorphic function of two variables has a Cantor family of
holomorphic superstable manifolds.

1 Introduction

The aim of this paper is to give a geometric description on the local conver-
gence of Newton’s method toward a generic multiple root zj, in the case of
a holomorphic function of two variables.

Let F' : C> — C? be a holomorphic function defined locally on a neigh-
borhood of a point z;. Newton’s method of F' is the mapping NF(z) =
z— (DF);1F(z) where z = (z,y) € C?. If L : C* — C? is a linear automor-
phism, then we have N(Lo F) = NF and N(FoL) =L 'oNFoL. The
point 2 is called a multiple root of F' if F(z,) = (0,0) and det(DF),, = 0.
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Suppose that zy = (0,0) is a ‘non-degenerate’ multiple root, that is, F'is
written, after a linear coordinate change, by

F(2) = (v + a2’ + arzy + aoy® + O(|2]°), * — 2 + O([2[")) (1)
where ||z|| = max(|z]|, |y|) is the box norm. Suppose furthermore that
as + ag # *ay. (2)

We are going to show the followings. There exists a neighrborhood K 3 z,
that is divided into three subsets

K\{z}=AuBuUC (3)
where

e A is called an attracting set. NF(A) C A. For each z € A, we have
INE) I/ IINE) (2)]] = 1/2 as n — oo.

e Bis called a bursting set. B = J$2, B,, where By = (NF|g)™(C?\K),
B, = (NF|g)™™(By). The image (NF)"*!(B,) is unbounded. Each

B,, consists of 2" components.

e (' is called a chaotic set, or a Cantor family of holomorphic superstable
manifolds. There exist constants 0 < ¢; < ¢y such that ¢ |:z:[2 <
INF(2)|| < ¢, |z|* for each z € C.

Section 2 gives the decomposition (3). A keypoint is that the multiple
root zp of F' is an indeterminate point of NF. By choosing appropriate co-
ordinates, we find a local blow-up transformation that is defined on a pair
of polydiscs and is mapped to an unbounded region transversing themselves.
Section 3 studies such a mapping, which we call a critical ‘dango’ (or ‘bar-
becue’) transformation.

By the C" center manifold theorem (see [2]), we know that there exists a
C" invariant manifold of zy in the attracting set A, but its analyticity is not
known. In section 4 we consider this problem in a general situation.
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2 A multiple root in Newton’s method

Here we give the decomposition (3).
Newton’s method of F' as in (1) is written by

hi(z) y*—x®+ hz(z))

W+ hoZ) 2y 1 hal2) @

(X,Y) = NF(z) = (

where ho = O(||z||%), b1 = a12® + 2(az + ao)z?y + aryzy? + O(||z||*), and
hy = O(||2||°). Let cyo be the coefficient of 2 in hy.

Given0 < € < 1,let Ag = {|z| < e |y|}, By = {|y] < e|z|}, and Cp = Cf U
Cy ={ly—z| <elz|}U{ly+z| <e|z|}. Givene' > 0and 0 < § < £%/4,
there exists a 0 < p < 1/(3¢') such that (i) |ho| < 6]|2]), |h1| < &||2||%, and
lhal < 6]1=IF in K = {(z5) € C* | [s] < 8p,lul < p}, and (i) |§? + ha] <
Lle]? and |ho — oz < € |z|” in BY = {(z,y) € K | |2y + cooz?| < &' |},

Lemma 1 Bj C B, C BynK.

(proof) If (z,y) € K \ Bj we have

hl 6p2
X| = < < bp,
X 12y+h0 2p — bp p
2 2 2 2 2 2
—z°+h o o
2y + ho 2p —bp

Thus NF(z,y) € K. For (z,y) € By, we have

(ged)
Lemma 2 NF(K\ Cj) C A,.
(proof) If (z,y) & Co, we have [y* — 2?| > }e||z||” and

7l -l
x|

y? — x2 + hy

6 ||2||”

< €.
Lellzl* — s ll=l”

<




(qed)

By this Lemma, B, C Cy for n > 1. Define C = N2,C,, C, =
(NF|g)™(Co),and A= N\ (BUC) =U>2o(NF|k)™(Ao).

In the following three subsections, we describe the sub-dynamics in A,
B(), and Co.

2.1 Attracting set

Here we consider the dynamics in Ag. Let (z,y) = ¢(u,v) = (uv,v), (U,V) =
(U1, V1) where (U, V) = (¢ o NF 0 $)"(u,v). Both U and V are divisible
by v, and (U/v,V/v)|@ww)=(0,0) = (0,1/2). Thus by the standard argument
similar to Schréder’s equation (see [1]), ¢ = p(u,v) =lim, 0 2"V, = v +- -
is uniformly convergent in a neighborhood of (u,v) = (0,0). Since /v
is holomorphic around the origin (u,v) = (0,0), U is divisible by ¢, and
Y = U/ is also holomorphic. By the new coordinates (§,7) = (u,p), we
obtain the dynamics

(& m) = (mp(&,m),n/2). (5)

By the C” center manifold theorem (see [2], Appendix III), we know that
there exists a C" differentiable function ¢ = o(n) = o(re(n),im(n)) around
the origin, whose graph is invariant under the dynamics (5). In section 4,
we consider the problem whether this invariant manifold is holomorphic, in
a general context.

2.2 Bursting set
Lemma 3 The image NF(B{) C NF(B,) is unbounded.

(proof) Given any 0 < €” < ¢/, take a point z € B such that |2y + cy02?| <
e"|x|* and |hg — cyo2?| < €”|z|>. Then we have

vy =t 1

e |gv|2 + el [ml2 3!

(qed)

As a description by coordinate geometry, let (v, v) = (x,y/ z?)and (X,2) =

(X/Y,1/Y). Then (u,v) = (0,v) is mapped to (X,Z) = (0,—2v — cp). If
a1 # 0, this is a local diffeomorphism around each (u,v) = (0, v).
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2.3 Chaotic set

In (4), choose the coordinates (u,v) = (z,y/z), (U,V) = (X, X/Y). Let K;
and K, be neighborhoods of (u,v) = ¢; = (0,1) and ¢ = (0, —1) respectively.
Let K be a neighborhood of the line u = 0. Around each g¢;, the mapping
(u,v) — (vVU,v/UV) is a local diffecomorphism with

8(\/—U_,\/EV) N ( \/i%(ag—{-ao:tal) 0 )
(u,v)=(0,%1)

d(u, v) * \/:i:Z(az +ag+ay)!

where /U is any branch. Thus we can apply Theorem 4, given in Section 3, to
the local dynamics K1 U K, — K to obtain the Cantor family of holomorphic
curves o : %(2) — Hy; U Hy. By re-choosing ¢ sufficiently small if necessary,
we obtain the chaotic set C as the graph G(o).

3 Cantor family of superstable manifolds

Here we give a prototype of a local dynamics that makes a Cantor family of
holomorphic superstable manifolds. Let ¢,j = 1,2 throughout this section.

Let m(u,v) = (u,uv) and sq(u,v) = (u?,v) be mappings of C%. Let Kj
be a neighborhood of the origin in C?, and let K = 77 !(Kj). Consider two
points ¢; = (0, ;) and their neighborhoods K; > ¢;. Let g; : Ky — K,
9:(0,0) = g¢;, be a biholomorphic map with its linear part S;(u,v) = (a;u +
b;v, a; + c;u + d;v). We consider the local dynamics

f:K UKy, - K, where flg, =sqon 'og; "

(Note that the dynamics of a mapping like 771 0 g;' : K; — K was studied
in [3].)

Let B = D(0,p) x D(0,79) C D(0,,/p) x D(0,75) C Ko be closed
polydiscs where 0 < p < 1 and B; = D(0,p) x D(ay,7) C K;. Let L; =
Lip,,;(D(0, p), D(c, 7)) be the set of Lipschitz functions of D(0, p) to D(ay, )
with Lipschitz constant < M, and its subset

H; = {Ti € L; | 1ilpco,p) is holomorphic} .

Let $(2) = {1,2} 3 w = wow, - - - be a Cantor set.
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Theorem 4 Suppose that |a; + b;oj| # 0, 3,5 = 1,2. There exist r,79, M >
0, 0 < p <1, and a unique embedding (homeomorphzsm onto its image)
o : ¥(2) — Hy UH, such that '

1. graph(o(w))Ngraph(o(w )) = {que } for any w,w' € ¥(2) with wy = wy.

2. o 1s mwvariant under f: graph(o(w)) = By, N f~(graph(o(s(w)))) for
each w € 3(2). |

8. The graph G(0) = Uyex(2) graph(o(w)) is the mazimal local invariant
set in By UBy: G(o) =N, f(B; UB,).

4. G(0) is the local stable set of {q1, g2}, written by Wi _({q1,¢2}): f"(z) —
{q1,92} as n — oo for each z € G(o)\{q1, g2}

5. G(o) is the local ‘superstable’ set of {q1,q2}: there exist constants 0 <
¢ < ¢y such that ¢ |z|® < |pf(2)] < ¢ l|z|? for each z = (z,y) €

G(o)\ {a1, 3}

The remainder of this section is a proof of this theorem.
Let b = max([by], |ba], [di], |da). Given r > 0 and M > |24 there
exist ro > 0 and 0 < p < 1 that satisfy the followings: |/p(|as| + 1) < 7o,

pM < 7,6+ /p < |a; + bia], fg‘;—gjﬁ—%m 8y = (£+b)y/p(1+ M) <1

where £ = Lip(g; — ;) is the Lipschitz constant as a mapping of D(0, VP) X
D(0,79) and § = £ max(1, |a;| + 7 + 20> M) + b(r + 2p*M).

Denote by 7} (u) = 7(u, 7;(u*)) for 7; € L;. We are going to define the
graph transform

Ly, (Tj) = p2gi’f;(1’1gﬂ;)—1

Lemma 5 Ty (7;) : D(0, p) — C is well-defined.
(proof) As a function of D(0,/p), we have
Lip(u — u(r;(v®) — o)) < 7+ 2p° M.

Let 7jp € L; be the constant function Tjo(u) = o, k = 1, 2. Then, as a
function ofD(O V/P), we have Lip(7}) < max(1, |a]|+r+2p2M) Llp(kaT —
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PeSiTh) < b(r +2p*M), and

Lip(prgi7; — PrSiTjo
< Lip(pegiT; — prSiT;) + Lip(peSiT; — peSiTjo
= 6.
Since p;Si7jo(u) = (a; + b;j)u is a linear mapping with |a; + bij| > 6, the
Lipschitz Inverse Function Theorem ([2], Appendix I) can be applied. The
mapping p;g;7; is a homeomorphism of D(0, /p) onto its image, with

Lip([prgi7}] ™) < (lai + bicyj| — 6)71.
Thus the image contains D(0, \/p(|a; + bie;| — 6)) D D(0, p). (qed)
Lemma 6 I'y, : Li ULy — L; s well-defined.
(proof) As a mapping on D(0, p), we have

Lip([p1g:7;]) " = [p1SiT}o] ™)

Lip(['PlgiT;]_I)Lip(mgﬂf - PlSz'Tfo)LiP([PlsiT;o]_1)
)

(lai + bioij| = 6) |a; + biaj|

IN

IN

Then

Lip(Ty, (75) - FSi (0)) < Lip(ngi'r;-‘ - p25i7fo)LiP([P19iT;]-l)
+Lip(p2SiTi )Lip([p1gi7; 17! — [p1SiTjo] ™)
6
<
- Iai + biOsz ) (

q+@%)

a; + biajl)

Since T's,(Tj0)(u) = o + (c; + dir;)(a; + birj) "', we have
Lip(Ty,(73)) < Lip(Lg,(75) — I's,(7j0)) + Lip(T's(70)) < M.

We also have T'y,(7;)(0) = o; and pM < 7, so Tg,(7;) € L;. (qed)

Lemma 7 Ty, : Ly ULy, — L; is a contraction:
o) -ral <&l =l e,

where ||| denotes the sup norm of a function on D(0, p).
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(proof) For a point (u,v) € D(0,,/p) X D(ay,7) we have
‘Pkgﬂf(% v) — prgim(u, Tj(uz))] '
< Lip(p)Lip(g: — S |m(u, v) — 7(u, 75(u?))|
+ |peSim(u, v) — peSim (u, 75(u?)|
< (L+b)plv - ).

Since pagim(u, 7;(u?)) = Ly, (75)(p1gim(u, 75(u?))) we obtain

|p2gim (u, v) — T, (7) (prgi7 (w, v))]|
< |pagim(u,v) = pagim(u, ()]

+Lip(Tg,(5)) [prgim(u, 75(u?)) — prgim(u, )|
< 6 Iv - Tj(u2)| .

Let v = 7j(u?) and u' = p1gim(u, 7/(u?)) to obtain

Lo () @) = T () (@)] < 8 [r5(0®) = 7 u2)]

If 2 runs in D(0, p), ¥’ runs in a region containing D(0, p). (ged)
Two contraction mappings I'g, : Ly ULy — L; makes a homeomorphism
(onto its image) o : 3(2) — L; ULy by defining

o(w) = ﬂ Lguo = " Tou,_, (Lu,)-
n=1

Since I'y,(H; UH,) C H;, we have o(X(2)) C H; U H,. All the properties
1-5 are now clear from the construction of o.

4 Invariant curve in the attracting set

In this section we consider the local dynamics z = (z,y) — F(z) = (yf(2), \y)
where f(0) = 0 and 0 < |A| < 1, defined in a neighborhood of the origin.
Our problem is the existence of a local holomorphic curve z = o(y) pass-
ing through the origin, forward invariant under F'. If there exists such a
z =0(y) = Xo2, cuy", then it has to satisfy the functional equation

yf(o(y),y) =c(Ay) (6)
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so that the coeflicients c, are uniquely determined.

Proposition 8 If f(z) = az+by is a linear function with b # 0, there exists
no invariant holomorphic curve x = o(y) that passes through the origin.

(proof) From (6), we obtain ¢; = 0, c;A = b and ¢, A" = acy, n > 2. Thus
¢, = AU 1/2gn=2p and the radius of convergence of o is equal to 0. (ged)

Proposition 9 For any holomorphic function o(y) = 350, c,y" there exists
an f such that the graph x = o(y) is invariant under F'.

(proof) f(z,y) =z — o(y) + o(Ay)/y for instance. (qed)
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