On the topological orbit equivalence in a class of substitution minimal systems

慶應義塾大学大学院理工学研究科 湯浅 久利 (Hisatoshi Yuasa)

Department of Mathematics, Keio University (email address: hisatoc@math.keio.ac.jp)

In this note, a partial answer to the problem to characterize the topological orbit equivalence class of substitution minimal systems. The characterization is given in terms of the Perron-Frobenius eigenvalue of a matrix associated with a substitution.

1. TOPOLOGICAL ORBIT EQUIVALENCE IN CANTOR SYSTEMS

A topological dynamical system (X, ϕ) is called a Cantor system if X is a Cantor set and ϕ is a minimal homeomorphism on X.

Definition 1.1. Let (X, ϕ) be a Cantor system. We put

$$\tilde{K}^{0}(\phi) = C(X, \mathbb{Z})/Z_{\phi}$$

$$\tilde{K}^{0}_{+}(\phi) = C(X, \mathbb{Z}_{+})/Z_{\phi}$$

$$\tilde{u}_{\phi} = [1]$$

where $C(X,\mathbb{Z})$ is the abelian group of continuous functions on X with integer values, [1] is the equivalence class of the constant function 1 by the subgroup Z_{ϕ} and

$$Z_{\phi} = \{ f \in C(X, \mathbb{Z}) | \int_X f d\mu = 0 \text{ for every } \phi\text{-inv. prob. meas. on } X \}.$$

Definition 1.2. Let (X_i, ϕ_i) be Cantor systems for i = 1, 2. ϕ_1 and ϕ_2 are said to be topologically orbit equivalent if there exists a homeomorphism $F: X_1 \to X_2$ such that $F(\operatorname{Orb}_{\phi_1}(x)) = \operatorname{Orb}_{\phi_2}(F(x))$ for every $x \in X_1$ where $\operatorname{Orb}_{\phi_i}(y)$ is the orbit of y by ϕ_i .

Theorem 1.3 ([GPS]). The triple $(\tilde{K}^0(\phi), \tilde{K}^0_+(\phi), \tilde{u}_{\phi})$ is a complete invariant of the topological orbit equivalence in the class of Cantor systems.

Put

$$X = \prod_{i=1}^{\infty} \{0, 1, \dots, n_i\}, \quad n_i \ge 2,$$

 $\phi: X \to X, \text{ the addition of } (1, 0, 0, \dots) \text{ with carries.}$

Then, (X, ϕ) is a Cantor systems and called the odometer system with base $(n_1, n_2, n_3, ...)$. The invariant \tilde{K}^0 of ϕ is the group $\{l/m|l \in \mathbb{Z}, m \text{ divides some } \prod_{i=1}^k n_i\}$ and we denote the group of this form by $\mathbb{Z}_{(q)}$ where $q = \prod_{i=1}^{\infty} n_i$ as a formal product. The invariant \tilde{K}^0 of ϕ is $(\mathbb{Z}_{(q)}, \mathbb{Z}_{(q)} \cap \mathbb{R}_+, 1)$ as the triple.

2. Definition of substitution systems

Let A be an alphabet, i.e. a finite set, and A^+ be the set of words on A.

Definition 2.1. A map $\sigma: A \to A^+$ is called a substitution on A.

Let σ be a substitution on A. A substitution σ is naturally extended on A^+ and $A^{\mathbb{Z}}$. We put $\mathcal{L}(\sigma) = \{u \in A^+ | u \text{ occurs in some } \sigma^k(a), k \geq 1, a \in A\}$ and denote by $M(\sigma)$ the $A \times A$ matrix whose (a,b)-entry is the number of occurrences of b in $\sigma(a)$ and call it the composition matrix of σ . A substitution σ is said to be of constant length if the length of $\sigma(a)$ does not depend on the choice of a and to be primitive if there exists an integer $k \geq 1$ such that for every $a, b \in A$, a occurs in $\sigma^k(b)$, equivalently $M(\sigma)$ is a primitive matrix.

Remark 2.2. As the alphabet A is a finite set, there exist an integer $k \geq 1$ and letters a, b such that

- 1. a is a prefix of $\sigma^k(a)$;
- 2. b is a suffix of $\sigma^k(b)$;
- 3. $ba \in \mathcal{L}(\sigma)$.

Then $x = \lim_{n\to\infty} \sigma^{kn}(b).\sigma^{kn}(a)$ converges in $A^{\mathbb{Z}}$ where the dot means the separation between the -1-st coordinate and the 0-th one.

Remark 2.3. We always assume that every substitution σ in this note satisfies the following conditions:

- 1. there exists a letter a such that $\lim_{n\to\infty} \sigma^n(a) = \infty$;
- 2. a point x given as above is aperiodic.

Let T be a bilateral shift on $A^{\mathbb{Z}}$ and X_{σ} be the closure of the orbit of x by T. Put $T_{\sigma} = T|_{X_{\sigma}}$.

Definition 2.4. The substitution system arising from a substitution σ is (X_{σ}, T_{σ}) .

Proposition 2.5 ([Qu]). If a substitution σ is primitive, then T_{σ} is uniquely ergodic and minimal.

We always assume that every substitution in this note is primitive.

3. The invariant $\tilde{K}^0(T_{\sigma})$.

Definition 3.1. A substitution σ is said to be proper if there exist an integer $k \geq 1$ and letters a, b such that for every letter c, a is a prefix of $\sigma^k(c)$ and b is a suffix of $\sigma^k(c)$.

Remark 3.2 ([DHS]). A proper substitution is not a special one from the view point of dynamical systems because for every substitution σ there exists a proper substitution ζ such T_{ζ} is topologically conjugate to T_{σ} .

We first consider the case where a substitution σ is proper.

Definition 3.3. We put

$$K^0(T_\sigma) = \varinjlim_{n=1}^{\infty} (M(\sigma) : \mathbb{Z}^s \to \mathbb{Z}^s) \text{ where } s = |A|,$$

$$K^0_+(T_\sigma) = \bigcup_{n=1}^{\infty} \varphi_n(\mathbb{Z}^s_+),$$

$$u_{T_\sigma} = {}^t(1, \dots, 1),$$

where φ_n is a natural homomorphism, which satisfies that $\varphi_n = \varphi_{n+1} M(\sigma)$ and $K^0(T_\sigma) = \bigcup_{n=1}^{\infty} \varphi_n(\mathbb{Z}^s)$. Define $p_\sigma: K^0(T_\sigma) \to \mathbb{R}$ by $p_\sigma(\varphi_n(a)) = \lambda^{-(n-1)}\alpha(a)$ for $a \in \mathbb{Z}^s$ where λ is the Perron- Frobenius eigenvalue of $M(\sigma)$ and α is the left eigenvector corresponding to λ such that $\sum_i \alpha_i = 1$.

Theorem 3.4 (From a result of [DHS]). The invariant $(\tilde{K}^0(T_{\sigma}), \tilde{K}^0_+(T_{\sigma}), \tilde{u}_{T_{\sigma}})$ defined in Definition 1.1 of the topologically orbit equivalence for a substitution minimal system (X_{σ}, T_{σ}) is $(K^0(T_{\sigma})/\ker(p_{\sigma}), K^0_+(T_{\sigma})/\ker(p_{\sigma}), p_{\sigma}(u_{T_{\sigma}})) = (\operatorname{Im}(p_{\sigma}), \operatorname{Im}(p_{\sigma}) \cap \mathbb{R}_+, 1)$.

Therefore, if λ is rational,i.e. integral, then $\tilde{K}^0(T_{\sigma}) = \mathbb{Z}_{(d \cdot \lambda^{\infty})}$ for some integer $d \geq 1$.

Next, we consider the case where a substitution σ is not proper.

Definition 3.5. A word $u \in \mathcal{L}(\sigma)$ is a return word to ba, where a and b are letters, if

- 1. a is a prefix of u.
- 2. b is a suffix of u.
- 3. $bua \in \mathcal{L}(\sigma)$.
- 4. ba occurs in bua only twice.

Remark 3.6. The number of return words is finite because of the minimality of T_{σ} . The length of a return word u to ba is the first return time to the cylider set [b.a] of the points in the cylider set [b.ua] where $[u.v] = \{y \in X_{\sigma} | y_{[-|u|,|v|)} = uv\}$ for words u, v.

Fix an integer $k \geq 1$ and letters a, b such that the conditions of Remark 2.2 hold. Put $W = \{w_1, \ldots, w_r\}$ indexed in order of occurrence without multiplicities in $x_{[0,+\infty)}$. Define a substitution τ on the alphabet $R = \{1, \ldots, r\}$ by

$$\tau(i) = i_1 \dots i_l \text{ if } \sigma^k(w_i) = w_{i_1} \dots w_{i_l}.$$

Proposition 3.7 ([DHS]). The substitution τ defined as above is primitive and proper. The substitution system arising from τ is topologically conjugate to the induced transformation on [b.a] by T_{σ} .

Definition 3.8. We put

$$K^{0}(T_{\sigma}) = \varinjlim_{n=1} (M(\tau) : \mathbb{Z}^{r} \to \mathbb{Z}^{r}),$$

$$K^{0}_{+}(T_{\sigma}) = \bigcup_{n=1}^{\infty} \psi_{n}(\mathbb{Z}^{r}_{+}),$$

$$u_{T_{\sigma}} = {}^{t}(|w_{1}|, \dots, |w_{r}|),$$

where ψ_n is a natural homomorphism as in Definition 3.3. Define $p_{\sigma}: K^0(T_{\sigma}) \to \mathbb{R}$ by $p_{\sigma}(\psi_n(a)) = \mu^{-(n-1)}\beta(a), \ a \in \mathbb{Z}^r$, where μ is the Perron-Frobenius eigenvalue of $M(\tau)$ and β is the left eigenvector corresponding to β such that $\sum_i \beta_i |w_i| = 1$.

Theorem 3.9 (From a result of [DHS]). The invariant $(\tilde{K}^0(T_{\sigma}), \tilde{K}^0_+(T_{\sigma}), \tilde{u}_{T_{\sigma}})$ defined in Definition 1.1 of the topologically orbit equivalence for a substitution minimal system (X_{σ}, T_{σ}) is $(K^0(T_{\sigma})/\ker(p_{\sigma}), K^0_+(T_{\sigma})/\ker(p_{\sigma}), p_{\sigma}(u_{T_{\sigma}})) = (\operatorname{Im}(p_{\sigma}), \operatorname{Im}(p_{\sigma}) \cap \mathbb{R}_+, 1)$.

Therefore, if μ is integral, then $\tilde{K}^0(T_\sigma) = \mathbb{Z}_{(d' \cdot \mu^\infty)}$ for some integer $d' \geq 1$.

Remark 3.10. Given a substitution σ , there exist an infinite graph and a partial order on the edge set of the graph which induces a minimal homeomorphism on the infinite path space which is topologically conjugate to T_{σ} . If σ is proper, then the connection rule between vertices in the corresponding graph is given by $M(\sigma)$. If σ is not proper, then the connection rule is given by $M(\tau)$. This is the reason why the way to compute the invariant $\tilde{K}^0(T_{\sigma})$ is different between the case where σ is proper and the case where σ is not proper. See [DHS] for more details.

Theorem 3.11 ([Yu]). Let σ be a substitution whose $M(\sigma)$ has an integral Perron-Frobenius eigenvalue λ . Then, the substitution system arising from the substitution σ is topologically orbit equivalent to the odometer system with base $(d, \lambda, \lambda, \ldots)$ (called a stationary odometer system) for some integer $d \geq 1$. In particular, every substitution system arising from a substitution of constant length is topologically orbit equivalent to a stationary odometer system.

Key lemma for the proof is the following.

Lemma 3.12. $\mu = \lambda^k$.

Proof. Let S be an $R \times A$ matrix whose (a, i)-entry is the number of occurrences of a in w_i . Then $SM(\sigma)^k = M(\tau)S$. Therefore, $\mu = \lambda^k$ because of the Perron-Frobenius Theorem.

Remark 3.13. When σ is proper, $d = \sum_i \alpha_i$ where $\alpha = (\alpha_1, \dots, \alpha_s)$ is the left Perron-Frobenius eigenvector of $M(\sigma)$ such that every α_i is integral and $(\alpha_i, \alpha_j) = 1$ if $i \neq j$. When σ is not proper, $d' = \sum_i \beta_i |w_i|$ where $\beta = (\beta_1, \dots, \beta_r)$ is the left Perron-Frobenius eigenvector of $M(\tau)$ such that each β_i is integral and $(\beta_i, \beta_j) = 1$ if $i \neq j$.

The converse of Theorem 3.11:

Theorem 3.14 ([Yu]). Let (X, ϕ) be an arbitrary stationary odometer system and its base be $(d, \lambda, \lambda, \ldots)$. Then, there exists a proper and primitive substitution σ of constant length such that T_{σ} is topologically orbit equivalent to ϕ .

Proof. We may assume that d>1 and $\lambda>1$. It is enough to show that there exists a proper and primitive substitution σ of constant length λ^n on the alphabet $\{1,\ldots,d\}$ for some integer $n\geq 1$. Take $n\geq 1$ such that $\lambda^n>3\vee d$. Put $v={}^t(\lambda^m,\lambda^m,\ldots,\lambda^m,(\lambda^m-d+1)\lambda^m)$. Let M be the integral $d\times d$ matrix whose (i,j)-entry is the $\kappa^{j-1}(i)$ -th entry of v for $1\leq i,j\leq d$ where κ is the permutation on $\{1,2,\ldots,d\}$ defined by $\kappa(d)=1$ and $\kappa(i)=i+1$ if $1\leq i< d$. We can find a proper and primitive substitution σ such that $M(\sigma)=M$.

REFERENCES

- [DHS] F.Durand, B.Host and C.Skau, Substitution dynamical systems, Bratteli diagrams and dimension groups, Ergod. Th. & Dynam. Sys. 19(1999), 953-993.
- [GPS] T.Giordano, I.Putnam and C.Skau, Topological orbit equivalence and C^* -crossed products, J. reine angew. Math. 469(1995),51-111.
- [Qu] M.Queffélec, Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Math. 1294, Springer-Verlag, Berlin-New York, 1987.
- [Yu] H.Yuasa, On the topological orbit equivalence in a class of substitution minimal systems, Preprint.