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Mini-Maximizers for Reaction-Diffusion Systems
with Skew-Gradient Structure
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1 Introduction

In this paper, we deal with reaction-diffusion systems with skew-gradient structure,
which was introduced in [15] as a generalized activator-inhibitor system. Let us consider
(m + n)-component reaction-diffusion systems of the form

Suy = CAu+ f(u,v) in Q,

Tvy = DAv +g(u,v) in€, | (1.1)
0 0
o 0= 3" on 0f),

where u(z,t) = (uy, -, um)" and v(z,t) = (v1,- -, v,)% Q is a bounded domain in RV

with smooth boundary 02, 0/0v stands for the outward normal derivative on 99, S and
C are mth order positive definite symmetric matrices, T and D are nth order positive
definite symmetric matrices. We assume that for some C3-function H(u,v) : R™+" —
R, the nonlinear terms f = (fi,---, fn)' : R™" > R™and g = (g1, --,¢,)¢ : R™™" >
R"™ are expressed as

f(u,v) = +VU«H(U’U)’ g(uvv) = —VUH(U,’U), (12)

where V, and V, are gradient operators with respect to u and v, respectively, i.e.,

) o ) 9

i —— e — = —_— .. ——\t
vu ._(aul’ ,8um ) v'u- (a’ul, 7avn).

In this case, we say that the system (1.1) has skew-gradient structure.
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Any steady state (u,v) = (p(z),¥(z)) of (1.1) satisfies the system of elliptic equa-
Hons CAg + flp$) =0 in 9,
DAY +g(p,9) =0 inQ, (1.3)
% =0= %w on 0.

We note that the solution of this problem corresponds to a critical point of the functional
1 1
Elu,v] := /Q {5 (CVu,Vu) — 5 (DVv,Vu) — H(u,v)} dz, (1.4)

where V is a gradient operator with respect to x and

(CVu,Vu) := Y c;;Vu; - Vu;, (DVo,Vo) =Y d&;Vy; - Vo,
ij=1 ij=1
with C = (¢;;) and D = (d,; ). In fact, (1.3) is the Euler-Lagrange equation for Elu,v].
We say that (u,v) = (p,%) is a mini-mazimizer of Eu,v] if u = ¢ is a minimizer of
Elu,®] and v = v is a maximizer of E[p,v]. (More precise definitions will be given in
the next section.) The purpose of this paper is to study the relation between a stability
property of (u,v) = (¢, 1) as a steady state of (1.1) and a mini-maximizing property as
a critical point of Elu,v].
When v is fixed to ¥(z) in the first equation of (1.1), then we have a system for u

Suy = CAu+ f(u,v) in Q, o

1.5
gu =0 on Of}. i (15)
ov : :

For any solution u(z,t) of this equation, we have

iE[u(m,t),w(ax)] = /Q{(CVu,Vut) - f(u,w)-ut}dx

dt
= /Q { — CAu-us — fu, ) - ut}dx
= —/QS’LLt"LLtdeO.

Hence (1.5) describes a gradient flow of Efu,®]. Therefore, u = ¢ is a steady state of
(1.5) if and only if u = ¢ is a critical point of Efu,], and is stable if and only if it is a
local minimizer of E[u,¥(z)].

Similarly, when v is fixed to ¢(x) in the second equation of (1.1), then we have a
system for v

1.6
ﬁv =0 on 0f. (16)

{ Tv; = DAv+ g(p,v) inQ,
ov
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For any solution v(z,t) of this equation, we have

%E‘[(p(x),v(m,t)] = /Q{—(DVU,V’UH +9(p,v) - v} dx

= /Q{DAv-thrg(ap,v)wt} dx
_ /Tvt-vtdacz 0.
Q

Hence (1.6) describes a gradient flow of —FE[p,v]. Therefore, v = 4 is a steady state of
(1.6) if and only if v = 9 is a critical point of E[p,v], and is stable as a steady state of
(1.6) if and only if it is a maximizer of (1.6).

On the other hand, it follows from (1.2) that

o (of\ [ eH\
foi=Vof = (ij) = <+auiavj>

L . 891 N 82H
== (g0 ) = ()

and

Hence

Thus, roughly speaking, the reaction-diffusion system with skew-gradient structure is a
sort of activator-inhibitor system which consists of two gradient systems coupled in a
skew-symmetric way.

Even if u = ¢ is a minimizer of E[u,] and v = v is a maximizer of E[p,v], due to
the interaction between v and v, it does not automatically mean that (u,v) = (¢, ) is
stable as a steady state of (1.1). In fact, if (u,v) is a solution of (1.1), then

& Blu(a,0), (2 1)

:/ﬂ{%(cw,vfut) —%(DW,VM —f(u,'v)-w+9(u7v)vt}dw

:/n{—-Sut-ut—I—T'ut-Ut}d:E.

Hence E[u,v] is not necessarily nonincreasing or nondecreasing in ¢, and cannot be used
as a Liapunov functional. Nonetheless, we can show that (u,v) = (p, 1)) is stable as a
steady state of (1.1) for any S and T if it is a mini-maximizer of E[u,v].

Let (¢, %) be a solution of (1.3). As is well-known [7], stability of (u,v) = (p,9) as
a steady state of (1.1) can be determined by analyzing the eigenvalue problem

{ ASU = CAU + f,U + f,V,

(1.7)
XI'V = DAV + g,U + ¢,V,
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on ) under the Neumann boundary conditions, where f,, f,, g and g, are evaluated
at (¢,%). Since this is not a self-adjoint eigenvalue problem, there may exist complex
eigenvalues. Usually, in such a situation, it is extremely difficult to locate the eigenvalues.
However, if (u,v) = (y, ) is a mini-maximizer of E[u,v], we can show by using the skew-
symmetric structure that any eigenvalue has a negative real part regardless of the choice
of S and T'. Conversely, if (u,v) = (p,%) is not a mini- -maximizer of E[u,v], then there
exists a positive eigenvalue for some S and 7.

A remarkable property is that any mini-maximizer must be spatially homogeneous
if the domain 2 is convex. This kind of result was proved by Casten and Holland [1]
and Matano [10] for scalar reaction-diffusion equation, and by Jimbo and Morita [5]
and Lopes [9] for gradient systems. From this property together with the spectral
characterization of mini-maximizers, we can derive qulte a general instability criterion
for some activator-inhibitor systems. :

This paper is organized as follows. In Section 2, we give some definitions and pre-
liminary results. In Section 3, the stability of steady states of skew-gradient systems is
precisely investigated. In Section 4, we prove that if the domain is convex, any mini-
maximizer must be spatially homogeneous. Then we derive a general criterion for the
instability of spatially inhomogeneous steady states. Finally, in Section 5, we apply our
results to the diffusive FitzHugh-Nagumo system and the Gierer-Meinhardt system.

2 Definitions and preliminaries

In this section, we give precise definitions concerning critical points of E[u,v], and
then describe their fundamental properties.

We say that (u,v) = (@, ) is a mini-mazimizer of E[u,v] if u = ¢ is a local minimizer
of Efu,| and v =9 is a local maximizer of E[p,v]. More precisely, (u,v) = (p,9) is a
mini-maximizer of Elu,v] if .

- ElU Y| > Elp, ¥
for any U in a neighborhood of ¢ in H'(f2), and

Elp, V] < Elp, Y]

for any V in a neighborhood of ¢ in H'(2). A critical point u = ¢ of Elu,] is said to
be nondegenerate if the linearized operator - ' :

A:=CA+ f, , - (2.1)

is invertible, where fi, = fu(p,%) is an m x m symmetric matrix given by

B ofi\ _ O*H
Jui=Vuf = (8%-) i (+8uz-8uj> '
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Similarly, a critical point v = ¥ of E[p,v] is said to be nondegenerate if the linearized
operator
B:= DA + g, (2.2)

is invertible, where g, = ¢,(, %) is an n X n symmetric matrix given by

o (8a\ _( HY\
Go = va o <8vj) N ( 8viavj) '

Finally, we say that (u,v) = (p,%) is a nondegenerate critical point of Elu,v] if u = ¢
and v = 9 are nondegenerate critical points of E[u,®] and E[p,v], respectively.
‘Next, we describe some properties of the eigenvalue problem

{ ASU =AU in Q,

d (2.3)

EU =0 on 0},

where A is given by (2.1).

Lemma 2.1 All eigenvalues of (2.3) are real. Méreover, there exists a maximal eigen-
value \* with finite multiplicity that is characterized by

/Q{—‘ (CVU,VU) + fuU - U} dz

AY'= sup
VeH () / SU - Udg
Q

?

and the supremum is attained by an eigenfunction of (2.3) associated with A*.

Proof. Since f, is symmetric, it is shown by a standard argument that A is self-adjoint
and all eigenvalues of (2.3) are real. Moreover, from the variational principle for self-
adjoint eigenvalue problems, there exists a maximal eigenvalue with finite multiplicity
that is characterized as above. O

We see from the above lemma that the maximal eigenvalue A* depends on S but its
sign does not depend on S. We say that u = ¢ is linearly stable if \* < 0 and linearly
unstable if \* > 0 as a steady state of (1.5).

Lemma 2.2 Let (p,v) be a solution of (1.3). Then the following holds.

(i) u = @ is linearly stable as a steady state of (1.5) if and only if it is a nondegenerate
local minimizer of Elu,1).

(i) Ifu = y is linearly unstable, then it is not a local minimizer of Eu,].
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Proof. Let U € H!(Q) be fixed and let € > 0 be a small parameter. Since ¢ is a
critical point of E[u,], we have

Elp +eU, 9] — Elp, ¢
= [ {30V +e0), V(o +e0)) - 5 (CVp, Vo)
~H(p+£U,9) + H(p,¥) |da
g2 /Q {(CVU,VU) - fU - U}dz + O().
Suppose that ¢ is a local minimizer. Then we have
/Q{(CVU,VU) — fU-Uldz >0

for any U € H'(). By Lemma 2.1, this implies A* < 0. Moreover, if ¢ is nondegenerate,
then A* # 0. Thus, if u = ¢ is a nondegenerate local minimizer of Efu,], then A* < 0.
Conversely, if A* < 0, then

[A(CYU,VU) — fU-U}dz >0

for any U € H*(Q) with U # 0. Hence u =  is a nondegenerate local minimizer. Thus
the proof of (i) is complete.
Next, suppose A* > 0. In this case, by Lemma 2.1, we have

/ﬂ{(CVU,VU) ~ fU-U}dz <0
for some U € HY(Q) with U # 0. Then

Elp +eU, ] — Elp, 9] < 0

if ¢ > 0 is sufficiently small. Hence u = ¢ is not a local minimizer. This proves (ii).
O ;

Next, we consider the eigenvalue problem

' 2.4
iV =0 on 0N. (24)
ov
The following lemmas can be obtained in the same manner as the above lemmas for

(2.3).

{ATVBV in €,
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Lemma 2.3 All eigenvalues of (2.4) are real. Moreover, there exists a mazximal eigen-
value A* with finite multiplicity that is characterized by

/{— (DVV,VV) + g,V - V}dz
A= su Q
VEH(Q) v / TV - Vdx
Q

Y

and the supremum is attained by an eigenfunction of (2.3) associated with \".

We note that the maximal eigenvalue ¥ depends on 7" but its sign does not depend
on T'. We say that u = 1) is linearly stable if \Y < 0 and is linearly unstable if AV > 0
as a steady state of (1.6).

Lemma 2.4 Let (p,v) be a solution of (1.3). Then the followmg holds.

(1) v =19 is linearly stable as a steady state of (1.6) if and only if it is a nondegenemtc
local mazimizer of E[p,v].

(i) If v =1 is linearly unstable, then v =1 is not a local mazimizer of Elp,v].

We see from the above lemmas that (¢,%) is a nondegenerate mini-maximizer of
E[u,v] if and only if both © = ¢ and v = 1 are linearly stable.

3 Stability of steady states

Let (y,1) be a solution of (1.3). In order to study the stability of (u,v) = (p,9) as
a steady state of (1.1), we rewrite the eigenvalue problem (1.7) as

(3.1)

ATV = BV + guU,

where A and B are the operators defined by (2.1) and (2.2), respectively, f, = f.(¢, %)
and g, = gu(p,¥). We note that the eigenvalue A and the eigenfunction (U, V) of (3.1)
may be complex-valued. We say that (u,v) = (p, %) is linearly stable as a steady state
of (1.1) if for some & > 0, all eigenvalues of (3.1) satisfy R{\} < —4. Conversely, the
steady state is said to be linearly unstable if there exists an eigenvalue of (3.1) with a
positive real part. It is well-known [7] that the linearly stable (resp. unstable) steady
state is stable (resp. unstable) in the sense of Lyapunov.

First we consider the case where (¢,) is a nondegenerate mini-maximizer of E|u, v].

Theorem 3.1 Let (u;v) = (p,%) be a nondegenerate mini-mazimizer of Efu,v]. Then,
for any S and T, (u,v) = (p,) is linearly stable as a steady state of (1.1).
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Proof. From :
ASU = AU + £,V
NIV =BV +g,U0,
and f, = —g.,, we have
/\/SU de+/\/TV Vd:v—v/AU Udac+/BV Ve,  (3.2)

Here, since S and T are positive definite symmetric matrices, the integrals
[.SU-Tdz, [TV.-Vaa,
Q Q
must be positive. On the other hand, by partial integration, we have
/AU Ud.r—/ c Sig Udac+/ (CYUVT) + fU-Tlde.  (33)

The first term in the right-hand side vamshes due to the boundary COHdlthD and the
second term satisfies

[ {=(evU,vT) + fU-T}de <X [ sU-Tda |
Q Q
by Lemma 2.1. Hence we obtain v

[AU-Tdz<x* [ sU-Tda.

Q Q

Similarly, we have
[ BV -Vdz<x' [ TV-Vda.
Q Q

Since A* < 0 and A\Y < 0 by Lemmas 2.2 and 2.4, there exists ¢’ > 0 such that
| AU-Tdz+ [ BV Vda < —5'{/ scf-Uda:+'/ TV-de}"{

Then it follows from (3.2) that for some 6 > 0, all eigenvalues satlsfy R{A} < —5<0.
This implies the linear stability of (¢,7). O

Next, we consider the case where u = ¢ is linearly unstable so that ¢ is not a local
minimizer of Efu,]. (The case where v = 1 is linearly unstable can be treated in the
same manner. )

Theorem 3.2 Let (¢, 1) be a solution of (1.3). Suppose that u = @ is linearly unstable
as a steady state of (1.5). Then for each S fized, if | T~} is sufficiently small, (u,v) =
(¢, ) is linearly unstable as a steady state of (1.1).
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Proof. Let d > 0 be a small constant, and As be a set of complex numbers defined by
As:={AeC; A= 2" <o}

Since A* > 0 by assumption, we can take § > 0 so small that R{A} > 0 for all A € A;.
If || is sufficiently small, the operator AT — B is invertible for any A € As. In this
case, the second equation in (3.1) is equivalent to

V = (AT — B) 'g,U.
Substituting this in the first equation of (3.1), we obtain
ASU = {A+ Ai(\T)} U, _ (3.4)

where _
A = f (AT — B)lg,=T7'f, (M - T-'B)7!

Since the multiplicity of A\* is finite and .4; depends on A € As smoothly, it follows
from the perturbation theory of linear operators (see Chapter IV, Section 3.5 of [6]) that
the eigenvalue problem

pSU = {A+ A (\T)}U

has an eigenvalue u = u(\,T) that is continuous in A € As; and T. Moreover, since
| A1 ll — 0 as |7} — 0, we have p(X, T) — A* uniformly in As as [T — 0.

Thus, if ||77|| is small, we can define a mapping from As to itself by A — u(X,T)).
Since this mapping is continuous in A, by Brouwer’s fixed point theorem, there exists a
fixed point in As. Namely, u(A,T) = A for some A = AMT) € As. Clearly, A = \(T ) is
an eigenvalue of (3.4). Since §R{A( )} >0, (u,v) = (p,%) is linearly unstable. O

4 Convex domains

For reaction-diffusion systems with gradient structure, it was proved by Jimbo and
Morita [5] (see also [9]) that if the domain is convex, then any spatially inhomogeneous
steady state is linearly unstable. In other words, any local minimizer for the gradient
system must be spatially homogeneous.

“We will show that the same property holds for reaction-diffusion systems with skew-
gradient structure.” The following result implies that any mini-maximizer must be spa-
tially homogeneous if the domain is convex. :

Theorem 4.1 Let Q) be a convez domain with C3-boundary, and let (@,1) be a solution
of (1.3). If (i, %) is spatially inhomogeneous, then A* > 0 or A” > 0.



Proof. We follow the idea of Jimbo and Morita [5]. For U,V € H'(Q), define
JUU] = - (CVU U -
U] /Q{ (CVU,VU) + fuU - Ude

nd
) J[V] :/Q{ — (DVV,VV) +g.V - V}de.

Then we have
] = /Q {_ (CVY2;,Vu,) + fulpa; - ‘P%‘} dz
.: " Jon C‘Pm’ ) %‘p%’dm T /Q (CA%”J' + f“%”j) Pz Az

and ,
_ _ 2
Ploa) = [ {= DV, ;) + gulths, '} da
_ 0 _
=~ [ Dy tda+ /Q (DAYa,; + guths,) - b da.
Differentiating (1.3) by z;, we obtain

CA%:, + fu(ij + .f’Uw(Ej =0,
Dsz] + GuPz; + ngzj =0.

Hence

(CASOa:j + quOmj) “Pz; T (DA"?[}-T]' + ngil?j) Yy = = foz; - Vo — Gulfa; wz,- =0

in view of f, = —g~. Thus we obtain

v 0 ' 0
Ju[%cj} +J [wx,] == /69 {C‘ij : 5%34' + D‘ij : Esozj}d‘r'

Summing up in j yields

> {Tes] + )
:_% aﬂ%{(cw,w) + (DVy, Vo) }d. |

have 5 5
- < — . < Q.
= (CVp,Vp) <0, 5 (DVY-Vg) <0

219

()

Here, from the convexity of 2 and the homogeneous Neumann boundary condition, we
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(See {10] for more precise argument.) ' :
Suppose here that A* < 0 and AY < 0. Then J“[;pmj] <0 and J*[t),;] < 0O for all j
by Lemmas 2.1 and 2.3, respectively. Since the right-hand side of (4.1) is nonnegative,
J*[pe;] = 0 and J*[1),,] = O for all j.
Assume that ¢, # 0 for some j. By Lemma 2.1, U = ¢,, must be an eigenfunction
of (2.3) associated with \* = 0. Then, ¢,; satisfies '

0
Somj = E(pwg =0

at some point on Of). By the Calderén unique continuation theorem (see, e.g., [11]),
this implies ¢o; = 0, a contradiction.

Similarly, we can derive a contradiction by assuming that ¢, # 0 for some j. Thus
we conclude that A* >0or \? >0. O

The following result is immediately obtained.

Corollary 4.2 LetQ be a convex domain with C3-boundary, and let (o,v) be a solution
of (1.3). If (v,%) is spatially inhomogeneous, then (u,v) = (p,1) is linearly unstable as
a steady state of (1.1) for some S and T

Proof. By virtue of Theorem 4.1, we see that X* > 0 or AV > 0. Then, by Theorem 3.2,
(u,v) = (p,) is linearly unstable as a steady state of (1.1) for some S and 7. O

5 Applications

In this section, we give a few applications of the above results. First we consider the
diffusive FitzHugh-Nagumo system [2, 12]

u = Au+ flu) —v in Q,

T = dAv + e(u —yv) in Q, (5.1)
0 e,
5“’ =0= 51} on 0f),

where 7,d,e > 0 and y > 0 are positive parameters.

Theorem 5.1 Let Q) be a convex domain with C*-boundary, and let (u,v) = (p,9) be
a steady state of (5.1). If (v, ) is spatially inhomogeneous, then there exists a constant
T > 0 such that (p,v) is linearly unstable for all T > 7.



221

Proof. The maximal eigenvalue of

w=9Av_w ma
5 €
0
—V =0
5 | on 02, |
satisfies AV = —ey/7 < 0. Then, by Theorem 4.1, the maximal eigenvalue of
{AU:AU+hU in Q.
3 _
EJ_U =0 on 89,

must satisfy A* > 0. Hence, by virtue of Theorem 3.2, the steady state (u,v) = (¢, %)
must be unstable if 7 is sufficiently large. O

Next, we consider the Gierer-Meinhardt system [3]

( uP
w=eAu—u+—+o in Q,
4
-
T =dAV — v+ — in Q, (5.2)
/US
0 0
—u=0==
{ Byu &/v on {2,
where the exponents are assumed to satisfy p > 1, ¢, > 0, s,0 > 0 and
-~ 1
L
q s+1

It is easy to verify that there exists a unique positive spatially homogeneous steady state
(u,v) = (a, §), where o and G are positive numbers satisfying

ap
-+ E + o= O,
o (5.3)
B+ = =0. '
It was shown first by Takagi [14] and Ni-Takagi [13] that the system on a bounded
domain has a spiky stationary solution when € > 0 is small.

Theorem 5.2 Let Q be a convex domain with C®-boundary, and let (u,v) = (p,7)
be a positive steady state of (5.2) withp+ 1 =1r and g+ 1 = s. If (p,¥) is spatially
inhomogeneous, then there exists a constant 7. > 0 such that the steady state is unstable
for all 7 > ..
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Proof. Since s > 0, the maximal eigenvalue of

{ gt AV = qdAV — q(1 + s [tV in Q,
5,

—V =
5 0 on 0f},

satisfies \” < 0. Then, by Theorem 4.1, the maximal eigenvalue of

{ rAU = re? AU + r(—1 + pp?P~ Jy)U in 0,

0
5U 0 on 052,

satisfies A* > 0. Thus, by virtue of Theorem 3.2, the steady state (u,v) = (p,%) must
be unstable if 7 is sufficiently large. O

Notice that both of the above examples are of activator-inhibitor type. In general,
any two-component, reaction-diffusion system

T = diAu + f(u,v), (5.4)
ToUs = dzAU + g(u,v), '

has a skew-gradient structure if the nonlinear terms satisfy

of _ g <:8H2)

oudv

This implies that if f, = —g,, Z 0, the skew-gradient system (5.4) is neither a cooperation
system nor a competition system so that it is not order-preserving. In the above two
examples, we used the fact that g, < 0. In this situation, we can obtain the same
instability result as Theorems 5.1 and 5.2 for the steady state of (5.4).
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