Multiple solutions of inhomogeneous H-systems with zero Dirichlet boundary conditions

Futoshi Takahashi (高橋 太)
Department of mathematics, Faculty of Science,
Tokyo Institute of Technology

1. Introduction

This article is an abbreviated version of [TF1].

In this paper, we study the existence of multiple solutions to the Dirichlet problem of the inhomogeneous H-system:

$$\begin{cases} \Delta u = 2Hu_x \wedge u_y + f & \text{in } \Omega, \\ u|_{\partial\Omega} = 0, \end{cases}$$
 (1.1)

where $\Omega \subset \mathbf{R}^2$ is a bounded smooth domain, H > 0 is a given constant, and $f \in H^{-1}(\Omega; \mathbf{R}^3)$ is a given function. $a \wedge b$ denotes the usual vector product of $a, b \in \mathbf{R}^3$.

Solutions of (1.1) in $H_0^1(\Omega; \mathbf{R}^3)$ correspond to critical points of the energy functional:

$$E(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 + \frac{2H}{3} Q(u) + \int_{\Omega} f \cdot u,$$

where

$$Q(u) = \int_{\Omega} u \cdot u_x \wedge u_y$$

is the oriented volume functional.

This problem is interesting from the variational view point because the functional E does not satisfy the Palais-Smale(PS) compactness condition globally on $H_0^1(\Omega; \mathbf{R}^3)$. In the case $f \equiv 0$, it is known that the existence or the non-existence of multiple solutions of (1.1) depends on the topology of the domain. More precisely, it is known that when $f \equiv 0$ and Ω is simply-connected, then $u \equiv 0$ is the only solution of (1.1); on the other hand, when Ω is doubly-connected, there exists at least one non-trivial solution [W].

In [Ta1], G.Tarantello treated the following Dirichlet problem of semilinear elliptic equations involving critical Sobolev exponent:

$$\begin{cases} -\Delta u = u|u|^{2^*-2} + f & \text{in } \Omega, \\ u|_{\partial\Omega} = 0, \end{cases}$$
 (1.2)

where $\Omega \subset \mathbf{R}^N(N \geq 3)$ is a bounded smooth domain, $2^* = \frac{2N}{N-2}$ is the critical Sobolev exponent for the embedding $H_0^1(\Omega) \hookrightarrow L^{2^*}(\Omega)$ and $f \in H^{-1}(\Omega)$. It is well known that when $f \equiv 0$ and Ω is star-shaped, (1.2) has the only solution $u \equiv 0$ [P]. On the other hand, there is a vast literature on the effect of the domain topology

or geometry on the existence of multiple positive solutions of (1.2) when $f \equiv 0$; see [BaC], [Co], [Pa] and references therein. In spite of a possible lack of compactness, she obtained the existence of at least two non-trivial weak solutions of (1.2) for $f \not\equiv 0$ satisfying some suitable smallness condition.

Here, following her methods, we pursue the analogous results for the problem (1.1).

Before stating our results, we introduce a set of assumptions on the function f:

(f.1)
$$f \in H^{-1} \cap L^1(\Omega; \mathbf{R}^3)$$
,

(f.2)
$$-\int_{\Omega} f \cdot u < \frac{(\int_{\Omega} |\nabla u|^2)^2}{-8HQ(u)}$$
 for all $u \in H_0^1(\Omega; \mathbf{R}^3)$ with $Q(u) < 0$,

(f.3)
$$||f||_{H^{-1}} < \frac{\sqrt{3\pi}}{12H}$$
. ((f.3) implies (f.2))

We remark that by the isoperimetric inequality for H_0^1 -mappings [BC]:

$$S|Q(u)|^{\frac{2}{3}} \leq \int_{\Omega} |\nabla u|^2$$
 for all $u \in H_0^1(\Omega; \mathbf{R}^3)$,

where $S = (32\pi)^{1/3}$, it is easy to see that the assumption (f.2) always holds if $f \in H^{-1}(\Omega; \mathbf{R}^3)$ satisfies

$$||f||_{H^{-1}} < \frac{S^{3/2}}{8H} \left(= \frac{\sqrt{2\pi}}{2H} \right),$$

so, the assumption (f.2) appears essentially the smallness condition of f. Our main results are the following:

Theorem 1. Let $f \not\equiv 0$ satisfy the assumptions (f.1) and (f.2), then the problem (1.1) admits at least one solution \underline{u} in $H_0^1(\Omega; \mathbf{R}^3)$.

Theorem 2. Let $f \not\equiv 0$ satisfy the assumptions (f.1) and (f.3), then, \underline{u} obtained in Theorem 1 is a strict local minimum for the functional E in $H_0^1(\Omega; \mathbf{R}^3)$, and the problem (1.1) admits at least one more solution \overline{u} in $H_0^1(\Omega; \mathbf{R}^3)$.

This paper is organized as follows. In section 1, we prove Theorem 1 by using Ekeland's variational principle and Nehari variational method.

In section 2, we prove Theorem 2 by utilizing the strict local minimality of the first solution and the Mountain Pass Theorem.

2. Existence of the first solution

In this section, we prove Theorem 1 by considering a suitable minimization problem for the functional E. To this end, let us denote

$$\Lambda = \{ u \in H_0^1(\Omega; \mathbf{R}^3) : \langle E'(u), u \rangle = 0 \}$$
(2.1)

$$= \{ u \in H_0^1(\Omega; \mathbf{R}^3) : \int_{\Omega} |\nabla u|^2 + 2HQ(u) + \int_{\Omega} f \cdot u = 0 \},$$
 (2.2)

where \langle , \rangle denotes the usual dual pairing of H^{-1} and H_0^1 , and

$$\Lambda_0 = \{ u \in \Lambda : \int_{\Omega} |\nabla u|^2 + 4HQ(u) = 0 \},$$
(2.3)

$$\Lambda_{+} = \{ u \in \Lambda : \int_{\Omega} |\nabla u|^{2} + 4HQ(u) > 0 \},$$
 (2.4)

$$\Lambda_{-} = \{ u \in \Lambda : \int_{\Omega} |\nabla u|^{2} + 4HQ(u) < 0 \}.$$
 (2.5)

Recall that Q is analytic on $H_0^1(\Omega; \mathbf{R}^3)$ and $\langle Q'(u), u \rangle = 3Q(u)$. Λ is called the "Nehari manifold" and it contains all critical points for E in $H_0^1(\Omega; \mathbf{R}^3)$. Therefore, to obtain the solution of the problem (1.1), it is natural to consider the minimization problem:

$$c_0 = \inf_{u \in \Lambda} E(u). \tag{2.6}$$

We shall prove that under the assumptions (f.1) and (f.2), the infimum in (2.6) is achieved by some $\underline{u} \in \Lambda$ and \underline{u} defines a critical point for E in $H_0^1(\Omega; \mathbf{R}^3)$.

We note that if we set

$$K(u) = \int_{\Omega} |\nabla u|^2 + 2HQ(u) + \int_{\Omega} f \cdot u, \quad u \in H_0^1(\Omega; \mathbf{R}^3),$$

then $\Lambda = \{u \in H_0^1(\Omega; \mathbf{R}^3) : K(u) = 0\}$ and Λ is in fact a smooth submanifold of $H_0^1(\Omega; \mathbf{R}^3)$ if $K'(u) \neq 0$ for any $u \in \Lambda$. Now we calculate

$$\langle K'(u), u \rangle = \int_{\Omega} |\nabla u|^2 + 4HQ(u), \text{ for } u \in \Lambda,$$

so, for the minimizer \underline{u} for (2.6) (if it exists) to be a critical point of E in $H_0^1(\Omega; \mathbf{R}^3)$, we must ensure that $\Lambda_0 = \{0\}$.

We start with a lemma which shows the assumption (f.2) is indeed a sufficient condition for $\Lambda_0 = \{0\}$.

Lemma 2.1. Suppose the assumption (f.2) holds, then for any $u \in \Lambda$, $u \not\equiv 0$, we have

$$\int_{\Omega} |\nabla u|^2 + 4HQ(u) \neq 0.$$

Proof: Assume

$$\int_{\Omega} |\nabla u|^2 + 4HQ(u) = 0 \tag{2.7}$$

holds for some $u \in \Lambda, u \not\equiv 0$. Then Q(u) < 0 and, because u also satisfies

$$\int_{\Omega} |\nabla u|^2 + 2HQ(u) + \int_{\Omega} f \cdot u = 0, \qquad (2.8)$$

we have

$$\int_{\Omega} f \cdot u = 2HQ(u) \tag{2.9}$$

by (2.7),(2.8).

Now from (f.2),(2.9) and (2.7) we derive:

$$0 < \int_{\Omega} f \cdot u + \frac{(\int_{\Omega} |\nabla u|^2)^2}{-8HQ(u)} = 2HQ(u) + \frac{(\int_{\Omega} |\nabla u|^2)^2}{-8HQ(u)}$$
$$= |Q(u)| \cdot \{-2H + \frac{(-4HQ(u))^2}{8H|Q(u)|^2}\} = 0,$$

which is a contradiction.

Lemma 2.2. Suppose the assumption (f.2) holds. Then for any $u \in \Lambda$, $u \not\equiv 0$, there exist an $\varepsilon > 0$ and a smooth function

$$t: \{w \in H_0^1(\Omega; \mathbf{R}^3) : ||w||_{H_0^1} < \varepsilon\} \to \mathbf{R}$$

such that

$$t(0) = 1$$
, $t(w) \cdot (u - w) \in \Lambda$ for $||w||_{H^1_o} < \varepsilon$,

and

$$\langle t'(0), w \rangle = \frac{2 \int_{\Omega} \nabla u \cdot \nabla w + 6H \int_{\Omega} w \cdot u_x \wedge u_y + \int_{\Omega} f \cdot w}{\int_{\Omega} |\nabla u|^2 + 4HQ(u)}.$$
 (2.10)

Proof: Define a smooth map $F: \mathbf{R} \times H_0^1(\Omega; \mathbf{R}^3) \to \mathbf{R}$ as

$$F(t,w) = t \int_{\Omega} |\nabla(u-w)|^2 + 2Ht^2 Q(u-w) + \int_{\Omega} f \cdot (u-w).$$

Since F(1,0) = 0 for $u \in \Lambda$ and

$$F_t(1,0) = \int_{\Omega} |\nabla u|^2 + 4HQ(u) \neq 0$$

by Lemma 2.1, we can apply the Implicit Function Theorem at the point $(1,0) \in \mathbf{R} \times H_0^1(\Omega; \mathbf{R}^3)$ and the result follows.

Lemma 2.3. Let $f \not\equiv 0$ satisfy the assumption (f.1), then

$$\mu_0 := \inf_{\substack{u \in H_0^1(\Omega; \mathbf{R}^3) \\ Q(u) = -1}} \left\{ \frac{1}{8H} \left(\int_{\Omega} |\nabla u|^2 \right)^2 + \int_{\Omega} f \cdot u \right\}$$
 (2.11)

is achieved. In addition if f satisfies (f.2), then $\mu_0 > 0$.

The proof of Lemma 2.3 is a modification of that for the minimization problem treated in [TF2], so we omit it. (However, different from [TF2], the extra assumption that $f \in L^1(\Omega; \mathbf{R}^3)$ is needed in the current case.)

In the following, we proceed to the proof of Theorem 1 assuming that $f \not\equiv 0$ satisfies (f.1) and (f.2) simultaneously.

First, we give an upper and lower bound for c_0 in (2.6).

Proposition 2.1. There exists a $t_0 > 0$ such that

$$-\frac{2}{3}||f||_{H^{-1}}^2 \le c_0 < -\frac{t_0^2}{6}||f||_{H^{-1}}^2 \tag{2.12}$$

holds.

Proof: First, we show that E is bounded from below on Λ . Indeed, by definition (2.2),

$$\int_{\Omega} |\nabla u|^2 + 2HQ(u) + \int_{\Omega} f \cdot u = 0$$

for $u \in \Lambda$. Thus we have

$$\begin{split} E(u) &= \frac{1}{2} \int_{\Omega} |\nabla u|^2 + \frac{2H}{3} Q(u) + \int_{\Omega} f \cdot u \\ &= (\frac{1}{2} - \frac{1}{3}) \int_{\Omega} |\nabla u|^2 + (1 - \frac{1}{3}) \int_{\Omega} f \cdot u \\ &\geq \frac{1}{6} \|\nabla u\|_{L^2}^2 - \frac{2}{3} \|f\|_{H^{-1}} \|\nabla u\|_{L^2} \geq -\frac{2}{3} \|f\|_{H^{-1}}^2 \end{split}$$

for any $u \in \Lambda$. In particular,

$$c_0 \ge -\frac{2}{3} \|f\|_{H^{-1}}^2.$$

In order to obtain an upper bound for c_0 , let $v \in H_0^1(\Omega; \mathbf{R}^3)$ be the unique solution of $\Delta v = f$ in Ω .

Then for $f \not\equiv 0$, we have

$$\int_{\Omega} f \cdot v = -\int_{\Omega} |\nabla v|^2 < 0.$$

Now we divide the proof according to the sign of Q(v).

If Q(v) > 0, then

$$\varphi(t) = \varphi^{\nu}(t) := t \int_{\Omega} |\nabla v|^2 + 2Ht^2 Q(v) \tag{2.13}$$

is a convex quadratic function in $t \in \mathbf{R}$ with $\varphi(0) = \varphi\left(\frac{\int_{\Omega} |\nabla v|^2}{-2HQ(v)}\right) = 0$. Note that, if $\varphi'(t) > 0$ at some $t \neq 0$ satisfying $\varphi(t) = -\int_{\Omega} f \cdot v$, then $tv \in \Lambda_+$.

Now we have $-\int_{\Omega} f \cdot v > 0$, so easy observation shows there exists a unique $t_0 > 0$ such that $t_0 v \in \Lambda_+$. Thus, by definition of Λ and Λ_+ , we have

$$E(t_0 v) = -\frac{1}{2} \int_{\Omega} |\nabla(t_0 v)|^2 - \frac{4H}{3} Q(t_0 v)$$

$$< -\frac{1}{2} \int_{\Omega} |\nabla(t_0 v)|^2 + \frac{1}{3} \int_{\Omega} |\nabla(t_0 v)|^2$$

$$= -\frac{t_0^2}{6} \int_{\Omega} |\nabla v|^2 = -\frac{t_0^2}{6} ||f||_{H^{-1}}^2,$$

which yields an upper bound of c_0 in this case.

Next if Q(v) < 0, then $\varphi(t)$ in (2.13) is a concave quadratic function in t and

$$\max_{t \in \mathbf{R}} \varphi(t) = \varphi(\frac{\int_{\Omega} |\nabla v|^2}{-4HQ(v)}) = \frac{\left(\int_{\Omega} |\nabla v|^2\right)^2}{-8HQ(v)}.$$

Now, by the assumption (f.2) we again obtain unique $t_0 > 0$ with $t_0 v \in \Lambda_+$, so the rest is the same as in the former case.

Finally if
$$Q(v) = 0$$
, then $v \in \Lambda_+$ and we can choose $t_0 = 1$.

At this point, we are ready to apply the Ekeland's variational principle [AE] to the minimization problem (2.6).

Ekeland's variational principle. Let M be a complete metric space with metric d, and let $E: M \to \mathbf{R} \cup +\infty$ be lower semicontinuous, bounded from below, and $\not\equiv \infty$.

Then for any $\varepsilon, \delta > 0$, for any $u \in M$ with

$$E(u) \le \inf_M E + \varepsilon,$$

there exists an element $v \in M$ such that

- (1) $E(v) \leq E(u)$,
- (2) $d(u,v) \leq \delta$,
- (3) $E(v) < E(w) + \frac{\varepsilon}{\delta} d(v, w)$, for all $w \neq v$.

Proposition 2.2. There exists a minimizing sequence $\{u^n\} \subset \Lambda$ for (2.6) with the following properties:

- (a) $E(u^n) < c_0 + \frac{1}{n}$,
- (b) $E(w) \ge E(u^n) \frac{1}{n} \|\nabla (u^n w)\|_{L^2}$, for any $w \in \Lambda$,
- (c) $\frac{t_0^2}{4} ||f||_{H^{-1}} < ||\nabla u^n||_{L^2} < 4||f||_{H^{-1}}$, where t_0 is given by Proposition 2.1, and
- (d) $||E'(u^n)||_{H^{-1}} \to 0$ as $n \to \infty$.

Sketch of Proof: Λ is closed with respect to the strong H_0^1 -topology and E is bounded from below, continuous, and $\neq \infty$ on Λ . Therefore we can apply Ekeland's variational principle to (2.6), and the statements (a),(b) are the direct consequences of this.

By taking n large enough, from (a) and (2.12) we have

$$E(u^n) = \frac{1}{6} \int_{\Omega} |\nabla u^n|^2 + \frac{2}{3} \int_{\Omega} f \cdot u^n < c_0 + \frac{1}{n} < -\frac{t_0^2}{6} ||f||_{H^{-1}}^2 < 0.$$
 (2.14)

This implies $u^n \not\equiv 0$ and

$$\frac{1}{6} \int_{\Omega} |\nabla u^n|^2 < -\frac{2}{3} \int_{\Omega} f \cdot u^n \le \frac{2}{3} ||f||_{H^{-1}} ||u^n||_{H^1_0}.$$

The transfer of the state of the state of

Consequently, we have

$$||u^n||_{H_0^1} < 4||f||_{H^{-1}}.$$

On the other hand, (2.14) implies

$$0 < \frac{t_0^2}{6} \|f\|_{H^{-1}}^2 < -\frac{2}{3} \int_{\Omega} f \cdot u^n \tag{2.15}$$

for n large, which gives

$$\frac{t_0^2}{4} \|f\|_{H^{-1}} < \|\nabla u^n\|_{L^2}.$$

This proves (c).

Finally, to obtain (d), we shall argue by contradiction and assume $||E'(u^n)||_{H^{-1}} > 0$ for n large. Then we can get the contradiction, using Lemma 2.2 and Lemma 2.3.

Proof of Theorem 1: From Proposition 2.2 we have obtained a minimizing Palais-Smale sequence $\{u^n\}$ for E, with a uniform H_0^1 -bound. Let $\underline{u} \in H_0^1(\Omega; \mathbf{R}^3)$ be the weak limit of (a subsequence of) $\{u^n\}$. From (2.15) we note that $-\int_{\Omega} f \cdot \underline{u} > 0$.

By Proposition 2.2(d) and the fact that

$$\langle E'(u^n), w \rangle \to \langle E'(\underline{u}), w \rangle, \quad \forall w \in H_0^1(\Omega; \mathbf{R}^3)$$

(this follows from the weak continuity of $u_x^n \wedge u_y^n$:

$$u_x^n \wedge u_y^n \to \underline{u}_x \wedge \underline{u}_y \quad \text{in } \mathcal{D}'(\Omega; \mathbf{R}^3),$$

See [BC:Lemma A.9]), we have

$$\langle E'(\underline{u}), w \rangle = 0$$
 for any $w \in H_0^1(\Omega; \mathbf{R}^3)$.

That is, \underline{u} is a weak solution of (1.1) and in particular $\underline{u} \in \Lambda$. Therefore

$$c_0 \le E(\underline{u}) = \frac{1}{6} \int_{\Omega} |\nabla \underline{u}|^2 + \frac{2}{3} \int_{\Omega} f \cdot \underline{u} \le \liminf_{n \to \infty} E(u^n) = c_0.$$

Consequently $u^n \to \underline{u}$ strongly in H_0^1 and $E(\underline{u}) = c_0 = \inf_{\Lambda} E$. This proves Theorem 1.

3. Existence of the second solution

In this section, we shall prove the existence of the second solution of problem (1.1) by the Mountain Pass Theorem of Ambrosetti-Rabinowitz [AR].

To this end, we first derive that \underline{u} is a strict local minimum for E in $H_0^1(\Omega; \mathbf{R}^3)$, if f satisfies the assumption (f.3).

Proposition 3.1. Let $f \not\equiv 0$ satisfy (f.1) and (f.3), then \underline{u} obtained in Theorem 1.1 is a strict local minimum for E in $H_0^1(\Omega; \mathbf{R}^3)$.

Proof: For any $v \in H_0^1(\Omega; \mathbf{R}^3)$ we expand:

$$\begin{split} E(\underline{u}+v) &= \frac{1}{2} \int_{\Omega} |\nabla(\underline{u}+v)|^2 + \frac{2H}{3} Q(\underline{u}+v) + \int_{\Omega} f \cdot (\underline{u}+v) \\ &= \frac{1}{2} \int_{\Omega} |\nabla \underline{u}|^2 + \frac{2H}{3} Q(\underline{u}) + \int_{\Omega} f \cdot \underline{u} + \left[\int_{\Omega} \nabla \underline{u} \cdot \nabla v + 2H \int_{\Omega} \underline{u}_x \wedge \underline{u}_y \cdot v + \int_{\Omega} f \cdot v \right] \\ &+ \frac{1}{2} \int_{\Omega} |\nabla v|^2 + 2H \int_{\Omega} \underline{u} \cdot v_x \wedge v_y + \frac{2H}{3} Q(v) \\ &= E(\underline{u}) + \frac{1}{2} \int_{\Omega} |\nabla v|^2 + 2H \int_{\Omega} \underline{u} \cdot v_x \wedge v_y + \frac{2H}{3} Q(v). \end{split}$$

Now, by Wente's L^2 -estimate and the isoperimetric inequality, we have

$$\frac{1}{2} \int_{\Omega} |\nabla v|^{2} + 2H \int_{\Omega} \underline{u} \cdot v_{x} \wedge v_{y} + \frac{2H}{3} Q(v)
\geq \frac{1}{2} ||\nabla v||_{L^{2}}^{2} - 2HC_{L^{2}} \cdot ||\nabla \underline{u}||_{L^{2}} ||\nabla v||_{L^{2}}^{2} - \left(\frac{2H}{3}\right) \left(\frac{1}{S}\right)^{3/2} ||\nabla v||_{L^{2}}^{3},$$
(3.1)

where $C_{L^2} = \sqrt{\frac{3}{16\pi}}$ is the best constant for Wente's L^2 -estimate [Ge] and $S = (32\pi)^{1/3}$.

We denote

$$h(x) = \left(\frac{1}{2} - 2HC_{L^2}||\nabla \underline{u}||_{L^2}\right)x^2 - \left(\frac{2H}{3}\right)\left(\frac{1}{S}\right)^{3/2}x^3, \quad x \ge 0,$$

then it is easy to see that h(x) > 0 for sufficiently small x > 0 if $\frac{1}{2} - 2HC_{L^2}||\nabla \underline{u}||_{L^2} > 0$, that is,

$$||\nabla \underline{u}||_{L^2} < \frac{1}{4HC_{L^2}}. (3.2)$$

Recall that \underline{u} satisfies the estimate $||\nabla \underline{u}||_{L^2} \le 4||f||_{H^{-1}}$ (by Proposition 2.2(c)), therefore if

$$||f||_{H^{-1}} < \frac{1}{16HC_{L^2}},$$

that is, under the assumption (f.3), we certainly have (3.2).

In conclusion, (f.3) implies that

$$E(\underline{u}+v) = E(\underline{u}) + h(||v||_{H_{\alpha}^{1}}) > E(\underline{u})$$

for every sufficiently small $v \in H_0^1(\Omega; \mathbf{R}^3)$, so \underline{u} is a strict local minimum for E. \square

Next, we study the compactness properties of the functional E. The following proposition is now more or less a standard result in this direction.

Proposition 3.2 (local compactness). E satisfies the $(PS)_c$ condition for all $c < c_0 + \frac{4\pi}{3H^2}$. That is, every sequence $\{u^n\} \subset H^1_0(\Omega; \mathbf{R}^3)$ satisfying:

(a)
$$E(u^n) \to c < c_0 + \frac{4\pi}{3H^2}$$
,

(b)
$$||E'(u^n)||_{H^{-1}} \to 0$$
,

has a strong convergent subsequence.

To proceed further, we need some definition. Let

$$\varphi^{\varepsilon}(x,y) = \frac{2\varepsilon}{\varepsilon^2 + x^2 + y^2} \begin{pmatrix} x \\ y \\ \varepsilon \end{pmatrix}, \qquad \varepsilon > 0$$
 (3.3)

be an extremal function for the isoperimetric inequality in \mathbb{R}^2 .

For $a=(x_0,y_0)\in\Omega$, denote $\varphi^{\varepsilon,a}(x,y)=\varphi^{\varepsilon}(x-x_0,y-y_0)$, and let $\zeta_a\in C_0^{\infty}(\Omega)$ be the cut-off function with $0\leq \zeta_a\leq 1$, $\zeta_a=1$ near a. We set

$$v^{\varepsilon,a}(x,y) = \zeta_a(x,y)\varphi^{\varepsilon,a}(x,y). \tag{3.4}$$

Now, by calculating directly along the explicit path, we get the following proposition.

Proposition 3.3. For every R > 0 and almost everywhere $a = (x_0, y_0) \in \{(x, y) \in \Omega : \nabla \underline{u}(x, y) \neq 0\}$, there exist an $\varepsilon_0 = \varepsilon_0(R, a) > 0$ and an orthonormal basis $(\vec{i}, \vec{j}, \vec{k})$ in \mathbb{R}^3 having the same orientation as the canonical basis of \mathbb{R}^3 , such that

$$E(\underline{u} - Rv^{\varepsilon,a}) < c_0 + \frac{4\pi}{3H^2}$$

holds for every $0 < \varepsilon < \varepsilon_0$. Here we assume that $\varphi^{\varepsilon,a}$ is written with respect to $(\vec{i}, \vec{j}, \vec{k})$.

At this point, we recall the famous Mountain Pass Theorem of Ambrosetti-Rabinowitz [AR] in its standard form.

Mountain Pass Theorem. Let F be a C^1 -functional on a Banach space V. Suppose

- (1) F(0) = 0;
- (2) $\exists \rho, \alpha > 0 \text{ such that } ||v||_V = \rho \Longrightarrow F(v) \ge \alpha;$
- (3) $\exists v^* \in V \text{ such that } ||v^*||_V \ge \rho \text{ and } F(v^*) < 0.$

Define

$$\Gamma = \{ \gamma \in C^0([0,1]; V) : \gamma(0) = 0, \gamma(1) = v^* \}$$

and

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} F(\gamma(t)) \ (\geq \alpha).$$

Then, there exists a sequence $\{v^n\} \subset V$ such that

$$F(v^n) \to c$$

and

$$F'(v^n) \to 0$$
 in V^* .

Further if F satisfies the $(PS)_c$ condition, then there exists a critical point at the level c.

Proof of Theorem 2:

We only need to apply the Mountain Pass Theorem to the functional $F(v) = E(\underline{u} + v) - E(\underline{u})$ on $V = H_0^1(\Omega; \mathbf{R}^3)$. (1) is trivially satisfied and Proposition 3.1 implies (2). (3) is also verified because $E(\underline{u} - Rv^{\epsilon,a}) \to -\infty$ as $R \to \infty$; we set $v^* = R_0(-v^{\epsilon,a})$ for some $R_0 > 0$ large enough.

Proposition 3.2 and 3.3 implies the $(PS)_c$ condition for F. Therefore we have a critical point v^0 of $F, F(v^0) = c \ge \alpha > 0$, that is, we conclude there exists a critical point $\overline{u} := \underline{u} + v^0$ of $E, \overline{u} \ne \underline{u}$.

The proof is completed.

References

- [AE] J.P. Aubin, and I. Ekeland. *Applied Nonlinear Analysis*, Pure and Applied Mathematics, Wiley Interscience Publications, 1984.
- [AR] A. Ambrosetti, and P.H. Rabinowitz. Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381.
- [BaC] A. Bahri, and J.M. Coron. On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Apll. Math. 41 (1988) 253-294.
- [BC] H. Brezis, and J.M. Coron. Multiple solutions of H-systems and Rellich's conjecture, Comm. Pure Apll. Math. 37 (1984) 149-187.
- [Cha] J. Chabrowski. Variational Methods for Potential Operator Equations, (Studies in Math. 24) Walter de Gruyter, Berlin New York 1997.
- [Co] J.M. Coron. Topologie et cas limite des injections de Sobolev, C. R. Acad. Paris Ser. I. 299 (1984) 209-212.

- [DW] Y. Deng, and G. Wang. On inhomogeneous biharmonic equations involving critical exponents, Proc. Royal Soc. Edinburgh. 129A (1999) 925-946.
- [Ge] Y. Ge. Estimations of the best constant involving the L^2 norm in Wente's inequality, (Preprint) 1996.
- [Pa] D. Pasasseo. Relative category and multiplicity of positive solutions for the equation $\Delta u + u^{2^*-1} = 0$, Nonlinear Anal. T.M.A **33** (1998) 509-517.
- [P] S. Pohozaev. Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet Math. Dokl. 6 (1965) 1408-1411.
- [S] M. Struwe. Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 2nd edition, Springer-Verlag, Berlin, 1996.
- [TF1] F. Takahashi. Multiple solutions of inhomogeneous H-systems with zero Dirichlet boundary conditions, (Preprint) 2000.
- [TF2] F. Takahashi. A minimization problem related to the isoperimetric inequality for H_0^1 -mappings, (Preprint) 2000.
- [Ta1] G. Tarantello. On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. Henri Poincaré. 9, No.3 (1992) 281-304.
- [Ta2] G. Tarantello. Multiplicity results for an inhomogeneous Neumann problem with critical exponent, manuscripta math. 81 (1993) 57-78.
- [W] H. Wente. The differential equation $\Delta x = 2Hx_u \wedge x_v$ with vanishing boundary values, Proc. Amer. Math. Soc. **50** (1975) 131-137.