0oooo0O0oooo
11810 2001 0 199-209 199

Multiple solutions of inhomogeneous H-systems
with zero Dirichlet boundary conditions
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1. Introduction

This article is an abbreviated version of [TF1].

In this paper, we study the existence of multiple solutions to the Dirichlet prob-
lem of the inhomogeneous H-system:

{AuzZHuz/\uy-{—f in Q,
ulag =0,

(1.1)

where 0 C R? is a bounded smooth domain, H > 0 is a given constant, and
f € H'(Q;R3 is a given function. a A b denotes the usual vector product of

a,be R3.
Solutions of (1.1) in H(; R?) correspond to critical points of the energy func-
tional: ) o]
B(u) = 3 [ 1Vl + ZQw + [ f-u,
where

Q(u):/gfwuz/\uy

is the oriented volume functional.

This problem is interesting from the variational view point because the func-
tional E does not satisfy the Palais-Smale(PS) compactness condition globally on
H}(; R?). In the case f = 0, it is known that the existence or the non-existence of
multiple solutions of (1.1) depends on the topology of the domain. More precisely,
it is known that when f = 0 and ) is simply-connected, then v = 0 is the only
solution of (1.1); on the other hand, when {2 is doubly-connected, there exists at
least one non-trivial solution [W]. '

In [Tal], G.Tarantello treated the following Dirichlet problem of semilinear el-
liptic equations involving critical Sobolev exponent:

{ —Au=ulul¥ 2+ f inQ, (1.2)

u|aQ = 0,
where @ C RV(N > 3) is a bounded smooth domain, 2* = 2 is the critical
Sobolev exponent for the embedding H3(Q) — L*(Q) and f € H'(Q). It is well
known that when f = 0 and Q is star-shaped, (1.2) has the only solution u = 0 [P].
On the other hand, there is a vast literature on the effect of the domain topology
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or geometry on the existence of multiple positive solutions of (1.2) when f = 0; see
[BaC], [Co], [Pa] and references therein. In spite of a possible lack of compactness,
she obtained the existence of at least two non-trivial weak solutions of (1.2) for
f # 0 satisfying some suitable smallness condition.

Here, following her methods, we pursue the analogous results for the problem

(1.1).

Before stating our results, we introduce a set of assumptions on the function f:

(1) fe HT'n LY(QR?),

Vu2 2 .
(£2) = fo f u< L2l X for all u € HI(R) with Q(u) < 0,
(£3) ||flla-1 < 2. ((£3) implies (f.2))

We remark that by the isoperimetric inequality for Hi-mappings [BC]:
SlQ))3 < /Qwuﬁ for all u e HMQ;R),

where S = (32m)Y/3, it is easy to see that the assumption (£.2) always holds if
f € H1(Q; R?) satisfies

53/2 B \/2_,/.r
|- < SH (— —ﬁ[-) )

so, the assumption (f.2) appears essentially the smallness condition of f.
Our main results are the following:

Theorem 1.  Let f # 0 satisfy the assumptions (f.1) and (f.2), then the problem
(1.1) admits at least one solution u in H}(Q;R3).

Theorem 2.  Let f # 0 satisfy the assumptions (f.1) and (f.8), then, u obtained
in Theorem 1 is a strict local minimum for the functional E in H}(Q; R?), and the
problem (1.1) admits at least one more solution u in Hy(Q; R?).

This paper is organized as follows. In section 1, we prove Theorem 1 by using
Ekeland’s variational principle and Nehari variational method.

In section 2, we prove Theorem 2 by utilizing the strict local minimality of the
first solution and the Mountain Pass Theorem.

2. Existence of the first solution

In this section, we prove Theorem 1 by considering a suitable minimization prob-
lem for the functional E. To this end, let us denote

A = {ue H}(QR?) : (E'(u),u) =0} (2.1)
= {ue HY{(%RY): /Q IVul? + 2HQ(x) —I—/Qf-u — 0}, (2.2)



where (,) denotes the usual dual pairing of H~! and Hj, and

Ao = {ueA: /Q |Vu]* + 4HQ(u) = 0}, (2.3)
Ay = {uc A /Q [Vul* + 4HQ(u) > 0}, (2.4)
Al = {ueh: A;|‘Vu|2 +4HQ(u) < 0}. (2.5)

Recall that @ is analytic on Hj(; R3) and (Q'(u),u) = 3Q(u). A is called the
“Nehari manifold” and it contains all critical points for £ in H}(Q; R?). Therefore,
to obtain the solution of the problem (1.1), it is natural to consider the minimization
problem: v ‘

co = 1151611{ E(u). (2.6)

We shall prove that under the assumptions (f.1) and (f.2), the infimum in (2.6)
is achieved by some u € A and u defines a critical point for E in Hj(9; R?).
We note that if we set

K() = [ IVuf +2HQ) + | f-u, we H(QGR),

then A = {u € Hj(;R?) : K(u) = 0} and A is in fact a smooth submanifold of
Hi(Q;R?) if K'(u) # 0 for any u € A. Now we calculate

(K'(u),u) = /Q IVul® + 4HQ(u), foru € A,

so, for the minimizer u for (2.6) (if it exists) to be a critical point of E in H}(Q; R?),
we must ensure that Ay = {0}. '
We start with a lemma which shows the assumption (f.2) is indeed a sufficient

condition for Ag = {0}.

Lemma 2.1.  Suppose the assumption (f.2) holds, then for any u € A, u # 0, we
have

/Q IVul? + 4HQ(u) # 0.

Proof : Assume
/ﬂ IVul? + 4HQ(u) = 0 (2.7)
holds for some u € A,u #Z 0. Then Q(u) < 0 and, because u also satisfies

/Q |Vu|?* + 2HQ(u) + /Q fru=0, (2.8)

we have

/Q fou=2HQ() (2.9)
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by (2.7),(2.8).
Now from (£.2),(2.9) and (2.7) we derive:

(JolVul?)* _ (Jo [Vu?)?
0 < /Qf cu+ —%HQ(u) =2HQ(u) + —QSHQ(U)
_4H 2
— lewl- -2t + Wy <o
which is a contradiction. a

Lemma 2.2.  Suppose the assumption (f.2) holds. Then for any u € A, u # 0,
there exist an € > 0 and a smooth function

t:{w e HY (&R : uly <} — R

such that
t0)=1, tw) (u-—w)eA for [uw|gy <e,

and : ‘
, _2JqVu-Vu+6H [qw-uz ANuy + o f-w
{t'(0), w) = IVaP TiHOW (2.10)

Proof : Define a smooth map F': R x Hj(Q;R?) — R as

F(t,w):t/ﬂlV(u—w)|2—|—2Ht2Q(u—w)+/Qf-(u—w).

Since F(1,0) = 0 for u € A and

Fi(1,0) = [ [Vul* +4HQ(u) #0

by Lemma 2.1, we can apply the Implicit Function Theorem at the point (1,0) €
R x Hj(Q;R?) and the result follows. a

Lemma 2.3. Let f # 0 satisfy the assumption (f.1), then

1 2
'qu ueH:}I(lQ;R3) {SH ( Q Vul®) + Qf v (2.11)

Q(u)=-1

is achieved. In addition if f satisfies (f.2), then po > 0.

The proof of Lemma 2.3 is a modification of that for the minimization problem
treated in [TF2], so we omit it. (However, different from [TF2], the extra assumption
that f € L'(92; R?) is needed in the current case.)



In the following, we proceed to the proof of Theorem 1 assuming that f % 0
satisfies (f.1) and (f.2) simultaneously.
First, we give an upper and lower bound for ¢ in (2.6).

Proposition 2.1.  There exists a to > 0 such that

——IIfIIH 1S ¢ < ——llfllH— (2.12)

holds.

Proof : First, we show that F is bounded from below on A. Indeed, by definition
(2.2),

Vul? =
/| ul +2HQ(u)+/f u=20
for u € A. Thus we have

B = o [IVef+ 50w+ [ £

= G-3) [IVuP -3 [ fou
IVl — 2l Vel > =2 -

for any v € A. In particular,

AV

2
Co 2 —gﬂflﬁf—l-

In order to obtain an upper bound for ¢y, let v € H}(9;R3) be the unique
solution of Av = f in (.

Then for f # 0, we have

/Qf~v=v—/Q|Vv|2<0.

Now we divide the proof according to the sign of Q(v).
If @Q(v) > 0, then

olt) = (1) ==t [ Vol + 2HQ(v) (2.13)
Q

%) = 0. Note that, if

©'(t) > 0 at some t # 0 satisfying () = — Jo f - v, then tv € A,

Now we have — [, f - v > 0, so easy observation shows there exists a unique
to > 0 such that ¢ov € A;. Thus, by definition of A and A4, we have
1 4H
E(tw) = —= / [V(tov)|* — - Qtov)
< ——/ |V (tov)|? + / |V (tov)]?

= 5 [ vp = t?’HfH .
, 6 Jo A=

is a convex quadratic function in ¢t € R with ¢(0) = ¢ (
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which yields an upper bound of ¢y in this case. '
Next if Q(v) < 0, then ¢(¢) in (2.13) is a concave quadratic function in ¢ and

O RIVP L (Ve
maxe(t) = w(—ZHQ(v)) T 8HQ(v)

Now, by the assumption (f.2) we again obtain unique ¢, > 0 with ¢{ev € Ay, so the
rest is the same as in the former case.
Finally if Q(v) = 0, then v € A, and we can choose t; = 1. a

At this point, we are ready to apply the Ekeland’s variational principle [AE] to
the minimization problem (2.6).

Ekeland’s variational principle. Let M be a complete metric space with metric
d, and let £ : M — R U 400 be lower semicontinuous, bounded from below, and

# o0.
Then for any €,8 > 0, for any u € M with

E(u) < i]x\L/IfE +e,

there exists an element v € M such that
(1) E@) < B(w),
(2) d(u,v) <9,
(3) E(v) < E(w) + $d(v,w), for allw # v.
Proposition 2.2.’ There exists a minimizing sequence {u"} C A for (2.6) with
the following properties:
() B(u") <o+,
() B(w) > B(u) - V(" — w)lz2, for any w € A,
(c) zflef”H—l < ||Vu™||zz < 4||f]|g-1, where to is given by Proposition 2.1, and
(d) ||E'(u™)||g-+ — 0 as n — oo.

Sketch of Proof : A is closed with respect to the strong Hj-topology and F is
bounded from below, continuous, and # oo on A. Therefore we can apply Ekeland’s

variational principle to (2.6), and the statements (a),(b) are the direct consequences
of this.
By taking n large enough, from (a) and (2.12) we have

1 2 1 12
E(u") = g/ﬂlvunP + §/Qf Ut <t~ < —Eollfllfq_l < 0. (2.14)
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This implies ©™ # 0 and.

1 " 26 .2 il
S L1vwrP <=2 [ fw < Sl g
Consequently, we have o ' -

|y < 4|!f||H o
On the other hand, (2.14) implies

Booa 2 [sw
—- - - -~y ' 2.1
0 < <llfllg- <=3 ) fru (2.15)
for n large, which gives
t2
) s < IV

This proves (c).
Finally, to obtain (d), we shall argue by contradiction and assume || E'(u™)||g-1 >

0 for n large. Then we can get the contradiction, using Lemma 2.2 and Lemma 2.3.
O

Proof of Theorem I: From Proposition 2.2 we have obtained a minimizing Palais-

Smale sequence {u"} for E, with a uniform Hl-bound. Let u € H}(Q;R?) be the

weak limit of (a subsequence of) {u"}. From (2.15) we note that — [ f-u > 0.
By Proposition 2.2(d) and the fact that

(")) = ('), w), Y € HY%RY)
(this follows from the weak continuity of uj A uj
ul Aul = u, Ay, inD'(RY),
See [BC:Lemma A.9]), we have
| (E'(w),w) =0 for any w € H}(S:R?).

That is, u is a weak solution of (1.1) and in particular u € A.

Therefore
co < E(u f |Vu|2 3/ f- “<11,{£ng( ") = co.
Consequently u™ — u strongly in Hj and E( u) = ¢o = infy E.

This proves Theorem 1. : : - a
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3. Existence of the second solution

In this section, we shall prove the existence of the second solution of problem
(1.1) by the Mountain Pass Theorem of Ambrosetti-Rabinowitz [AR).

To this end, we first derive that u is a strict local minimum for £ in H}(Q; R3),
if f satisfies the assumption (f.3).

Proposition 3.1.  Let f # 0 satisfy (f.1) and (f.8), then u obtained in Theorem
1.1 is a strict local minimum for E in Hj(Q; R?).
Proof : For any v € H}(Q; R?) we expand:

Butv) = o [IVa+o)l + 5 Qutv)+ [ f-(+v)
= l/|Vu|2—|-— +/f u+[/Vu Vv+2H/ -'u+/9f-v]
+ /IVU|2+2H/u vm/\vy-l-—:—}——Q(v) |
= E(u /|Vv|2+2H/u vx/\vy-i—%Q( )

Now, by Wente’s L?-estimate and the isoperimetric inequality, we have

1 2H :
§/Q|Vv|2+2H/;l_q~vm/\vy+ TQ(U) (3.1)
1 2H\ (1\%?
> ZIVellt: ~ 2HC - [Vl Vol — (5) (5) - 1Volls
— 2 3 S
where C: = (/72- is the best constant for Wente’s L*-estimate [Ge] and S =
(32m)2/3,
We denote
’ 3/2
h(z) = (% - 2HCL2||W||L2) 2? — (?) (%) 2, 7 >0,

then it is easy to see that h(z) > 0 for sufficiently small z > 0 if 2 —2H Cr2||Vu/|> >
0, that is,
1

4HCe

Recall that u satisfies the estimate ||Vu||r2 < 4||f]|g-1 (by Proposition 2.2(c)),
therefore if

IVullze < (3.2)

1
il < o7

that is, under the assumption (f.3), we certainly have (3.2).
In conclusion, (f.3) implies that

E(u+v) = E(u) + h(||v][my) > E(w)
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for every sufficiently small v € H}(9; R?), so u is a strict local minimum for E. O

Next, we study the compactness properties of the functional E. The following
proposition is now more or less a standard result in this direction.

Proposition 3.2 (local compactness). FE satisfies the (PS). condition for all
¢ < co+ 5p5- That is, every sequence {u™} C H}(Q; R?) satisfying :

(a) E(u™) = c<co+ 34%,
) \E"(w™)||g-1 — 0,

has a strong convergent subsequence.

To proceed further, we need some definition. Let

2e T

£ == . 3.3
(10(:1:7y) €2+x2+y2 y 9 6>0 ( )

be an extremal function for the isoperimetric inequality in R2.

For a = (2¢,y0) € {1, denote ¢**(z,y) = ¢*(z — o,y — Yo), and let G € C3°(R)
be the cut-off function with 0 < {, <1, {, =1 near a. We set

v (2,9) = Cu(z, 1) (,9). - (34)

Now, by calculating directly along the explicit path, we get the following proposition.

Proposition 3.3.  For every R > 0 and almost everywhere a = (zo;y0) €
{(z,y) € Q : Vu(z,y) # 0}, there exist an go = €9(R,a) > 0 and an orthonormal

-

basis (1,7, k) in R® having the same orientation as the canonical basis of R3 such
that A
T
E(u — Rv®*® =
(u— Rv™") < ¢+ Ve

holds for every 0 < € < €9. Here we assume that ©*® is written with respect to

- = -

(¢,7,k).

At this point, we recall the famous Mountain Pass Theorem of Ambrosetti-
Rabinowitz [AR] in its standard form.

Mountain Pass Theorem. Let F be a Cl-functional on a Banach space V.
Suppose
(1) F(0)=0;

(2) dp,a > 0 such that ||v||y = p = F(v) > «

)

(3) Jv* € V such that |[v*|ly > p and F(v*) < 0.
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Define :
['={y € C°([0,1;V): 7(0) = 0,7(1) = v"}
and

¢ = inf max F(v(t)) (2 @).

Then, there exists a sequence {v"} C V such that
F(v™) = ¢

and

F'(v") =0 in V™
Further if F' satisfies the (PS). condition, then there exists a critical point at the
level c.

Proof of Theorem 2 :

We only need to apply the Mountain Pass Theorem to the functional F(v) =
E(u+v) — E(u) on V = Hj(Q;R®). (1) is trivially satisfied and Proposition 3.1
implies (2). (3) is also verified because E(u — Rv®®) — —c0 as B — oo; we set
v* = Ro(—v>?) for some Ry > 0 large enough.

Proposition 3.2 and 3.3 implies the (PS). condition for F. Therefore we have a
critical point v° of F,F(v°) = ¢ > a > 0, that is, we conclude there exists a critical
point ¥ := u + v° of E, U # u.

The proof is completed. |
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