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1 Introduction

The main purpose of the present paper is to give a regularity result of solutions to
the following problem:

' PROBLEM (F). Find u € KX(Q) and p € L?(Q) satisfying
(L1 a(u,v—u) = (p,div(v—u) +4(v) —j(w) > (fv—u), (Ve K (Q)).

Here and hereafter the following notation is employed: 2 is a bounded domain in
R™, m = 2 or 3. The boundary 0f2 is composed of two connected components I’y
and I' which are assumed to be suitably smooth. For the sake of simplicity, we
assume that I'y N T" = ). We introduce ‘

K'(Q) ={ve H(Q)™|v=0onTy},

then K1(Q2) denotes the solenoidal (div v = 0) subspace of K'(f2). (-,-) denotes the
inner product in L?(Q2) or L?(Q)™ according as scalar-valued functions or vector-

valued functions. We set
1
awo) =3 [ 3 eslwe() ds
R 1<i,5<m
for u = (u1, -+ ,um) and v = (v, -+, vy,), where

_ a’Ui n 6vj

€)= 5o * o,

denotes an element of the defomation tensor E(v) = [e; ;(v)]. Finally

(1.2) jlv) = /g|v| ds, (ds = the surface element of '),
r



183

where ¢ is a given scalar function defined on I'.

As was described in Fujita and Kawarada [7], the variational inequiality (1.1)
arises in the study of the steady motions of the viscous imcompressible fluid under
the frictinal boundary condition, where u denotes the flow velocity, p the pressure,
f the external forces acting on the fluid, and ¢ is called the modulus function of
friction. We now review the boundary condition of this type. Let o(u,p) be the
stress vector to I'. That is, we let o(u,p) = S(u, p)n, where S(u,p) = —pI + E(v)
stands for the stress tensor and n the unit outer normal to I'. Then we pose on
o(u,p) that

(1.3) lo(u,p)| < g
and
lo(u,p)l <g = u=0,
u=0oru#0,
u# 0= o(u,p) = —gu/|u|

(14) o) =g =

almost everywhere on I'. The classical form of the firictional boundary value problem
for the Stokes equations dealt with in [7] consists of

(1.5) ~Au+Vp=finQ, divu=0inQ, u=0onT

together with (1.3) and (1.4). (F) is a weak form of this problem.
The existence theorem was established in [7]. Assume that

(H) ferl* Q™ geL®), g>0a.e onl.

Then (F) admits of a solution {u,p}. The velocity part u is unique. However the
uniqueness of the pressure part p depends on cases. That is, in general, p is unique
up to an additive constant and the constant is restricted via (1.3).

Theorem 1.1. Assume that (H) and moreover that g € H'(I'). Let {u,p} be a
solution of (F). Then u € H*(Q)™ and p € H*(Q) with

lullz + llpll < CIfII+ lgllr),

where C = C(Q) is a positive constant. Moreover {u,p} satisfies (1.5) almost
everywhere in Q. Furthermore we have o(u,p) € HY/*()™ and

—o(u,p) € g0lu| ae. onT.

In the above and in what follows, we write || - ||, || - ||s and || - ||sr instead of
Il - ll2@)s || - llas ) and || - ||zs(ry respectively. For vector-valued functions, as long
as there is no possibility of confusion, we use the same symbols. Furthermore, 9| - |
denotes the subdifferential of the function |z| = (2% + - - - + 22)!/2. Namely,

o = {1 ( #0)
{CeR™ (<1} (:=0)
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In order to prove Theorem 1.1, we follow the method of Brézis [2]. Namely, we
approximate a solution {u, p} of the inequality (1.1) by solutions {u., p } of equations
which are obtained by replacing j by a regular functional j. in (1.1). Then the
regularity of {u,p.} is studied.

The organization of the present paper is as follows. In §2, we describe a specific
definition of the above mentioned regularized problem, which we will refer as (F,).
The well-posedness and the approximation result are also discussed there. §3 is
devoted to a regularity result for (F¢). In §4, we have the proof of Theorem 1.1.
From the view point of physics, some modififcations of (F') are much more interesting.
With this connection, in the final section (§5), we state leak or slip boundary value
problems of friction type and give regularity results for these problems without the

proofs.
Before concluding Introduction, we shall mention a few remarks.

Remark 1.1. To be rigorously, j should be understood as the functional on H'/2(I")™;
j(n) = /Fglnl ds,  (ne H/*D)™).

However, for the sake of simplicity, we will regard j as the functional on H'()
through

3ole) = [ glohl ds,
r
where
v|r = the trace of v on T,
and we write as (1.2).

Remark 1.2. It is well-known that (eg., for example, Duvaut and Lions [4]) there
are positive constants dy and d; such that '

a(u,v) < Gollullilloly  (Vu,v € H'(Q)), a(v,v) 2 &l (Yo € KH(Q)).

Remark 1.3. Suppose that {u,p} is suitably regular and satisfies (1.5) in the clas-
sical sense. Multiplying the both sides of —Au + Vp = f by v € K'() then
integrating over {2, we have

afu, ) — [ pdivy do = [owp) wdss [ fvdo, (e K@),

According to this identity, we can say that
o(u,p) =wonT

is the Neumann or natural boundary condition corresponding to a(:,-) as the H'-
ellipticity form. Concerning such boundary conditions, we refer to Ladyzhenskaya
[10] or Saito [13].

Remark 1.4. In the subsequent sections, C denotes various generic constant. If it
depends on parameters qi, - -+ , gy which may not be numbers, we shall indicate it

by C:C(qh ;QM)



2 Regularized Problem (F.)

Let € > 0. We introduce

(2.1) jo(w) = / gpevyds, (e H'Q™),
where

o [wl=e2 (ol >e),
22 ) {|v|2/(2e> (bl <o)

Then we consider

PrOBLEM (F.). Find u. € K1(Q2) and p, € L%(Q) satisfying

a(uea v — ue) - (pea div (’U - us)) + js('U) - je(u’e)

(2:3) > (fiv—u), (YveK'(Q)).

Theorem 2.1. Assume that (H) and let € > 0. Then (F;) admits a unique solution
{ue, pe } with
[l + llpell < CE U + llgllzary)-

Furthermore, {u.,p.} is a weak solution of (1.5) together with
—0(te,pe) = goe(u:) a.e. onT, (In particular o(u,,p.) € L*(T)™).

Namely, {uc,p.} satisfies

24)  a(w¥) - (p,dive) + / gon(u) - ds = (f,9) (Y € K (Q)),

r

where we have put

(2:5) a(v) = {U/M (lv] > )

vie (lv| <e).

Remark 2.1. In Theorem 2.1, o(u,p) is understood as a functional on H/2(T")™
defined by

(0’ 77) = a(u67 ":bn) - (pea div ¢77) - (f7 ¢n)7 (V?’] € HI/Z(F)m)’
where 9, € K'(f) is any extension of .

Proof of Theorem 2.1. From standard theory of convex analysis (e.g., Ekeland and
Temam [5], or Glowinski [8]), the minimization problem: Find u € K}(Q) satisfying

Tw) = inf J0), T.0) = 5a0) - (o) +0)

vEKL(Q)
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has a unique solution u which is characteraized by
(2.6) ‘ a(u,v—u) + j.(v) — je(u) > (f,v—u), (Yve KLQ)).

We are going to show that a scalar function p can be taken as {u, p} sloves (2.3). Le
¢ € K}(Q) and ¢t > 0. Substituting into (2.6) v = u + t¢ and letting ¢t — 0, we have

a(u, §) + /F gou(w)- ¢ ds = (f,9), (V€ KL(Q)).

By using this, in the same line as Solonnikov and Sé¢adilov [16], we can take a unique
p € L?(Q) satisfying (2.4).
Thanks to the convexity of j,,

(2.7) /Fgas(v) (w =) ds < je(w) — Je(v), (Yv,w e HY(Q)™).

In view of (2.4) and (2.7), we can easily verify that {u,p} solves (F;). On the other
hand, (2.4) yields

(0t} + [ gaclu) vy ds =0 (v € BT,
r
where ¢, € K'(Q) is any extension of 7. Consequently, it follows from go,(u) €
L*(T")™ that o(u,p) € L*>(I')™ and
—o(u,p) = gae(u) a.e. onT,
which completes the proof. |

Remark 2.2. As mentioned above, in order to derive (2.4), we follow the method
of [16], in which the following facts are applied. Through Riesz’s representation
theorem, we define an operator B from L?(Q2) to K'(Q) by

(Bg,v) gy~ = (p,divv), (Vg€ L*(Q); Vv € K'()).

The range R(B) of B forms a closed subspace of K1(Q2). Moreover, the orthogonal

decomposition
K'(Q) = R(B) ® KL()

holds. For the proof, we refer to Saito et al. [14].

Theorem 2.2. Assume that (H) holds. Let {u,p} and {u.,p.} be solutions of (F)
and (F,), respectively. Then we have:

(2.8) [lue — ulls + ||Be — BIl < C(2,9)VE,

where p stands for the normalization of p subject to
1
p=p-— ﬁ/p'dx, (|2]: the measure of ),
Q

and where the meaning of p. is same.
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Proof. Since the derivation of ||u — u.||; < C(Q, g)\/¢ is essentially same as Kikuchi
and Oden [9], we omit to mention it and proceed to the estimate of the pressure
part. Putting q. = p. — p, we have

(2.9) a(u ~ ue, §) = (¢, div ¢) (Vo € Hy(Q)™).

In view of Babugca-Aziz’s lemma ([2]), we can take w, € Hj(Q)™ subject to div w, =
ge in Q with ||w|l; < C(Q)]|¢¢||- Now substituting ¢ = w, into (2.9), we deduce

lgell* = a(u — ue, we) < Gollu — uellsllwells < 6C(Qllw — uellsflgel

Combining this with the estimate of the velocity part, we arrive at (2.8). O

3 Regularity Results for (F,)

Concering a regularity of a solution {u.,p.} of (F.), we have

‘Theorem 3.1. Assume that (H) and g € H'(T') hold. For any ¢ > 0, let {u.,p.}
be a solution of (F.). Then u, € H*(Q)™ and p. € H'(Q) with

(3.1) l[ellz + [lpells < CE) A + llgllhr)-

We firstly review a regularity result for the Stokes equations under the Neumann
boundary condition.

Lemma 3.1. Let f € L*(Q)™ and w € HY?(T')™. Suppose that {u,p} € H(Q)™ x
L2(2) is a weak solution of (1.5) with :

o(u,p) =w onT.

Namely, {u,p} satisfies
ofu, ) = (pdive) = [we ds=(£,0), (W € KA(@).

Then u € H*(Q)™ and p € H'(QY) with
llullz + llpll < CEUIS + llwlli/zr)-

Lemma 3.1 in the case of w = 0 was described in Solonnikov [15] with a mention
on Solonnikov and S¢adilov [16] concerning the method of the proof. However it
seems that the complete proof for the case of w # 0 is not explicitly stated in these
papers; In this connection, we refer to a forthcoming paper Saito [13].

Lemma 3.2. Let {uc,p.} be a solution of (F.), and put w, = gae(uc)|r. Then we
have w, € HY*(T')™. Thus, from Lemma 8.1, u. € H*(Q)™ and p. € H'(Q).
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Proof. Firstly we have o, (u.) € H'/?(T')™ with
(3.2) - lae(ue)lljar < C(Q, ) |luclr]l1/2,r-

This is essentially due to Brézis [2], where he dealt with the scalar case. It is possible
to extend his result into our vector-values case; See [14] or [12]. Let us denote by
g € H*(Q) the weak harmonic extension of g € HY/2(I'):

AG=0inQ, §=0onT,y, g=gonTl.

It follows from the maximum principle that ||g||z=~@) < [|g|lzeer)- On the other
hand, we take the weak harmonic extension &, € H'(f2) of o, (u.). That is, we extend
each component of o, (u.) into 2 by the harmonic function. By the definition of o,
and again using the maximum principle, we have ||G||z=(q) < || (V)| z=(r) < C(m).
Therefore, since §a. € H(Q)™, the trace w, € HY?(T")™. O

Remark 3.1. Our chooice of a regularized functional is based on the Yosida regu-
larization. Namely, putting p(z) = |z| for z € R™, then we have

(3.3) “the Yosida regularization of dp” = Vp, = c.
A property of the Yosida regularization (or a direct calculation) gives
0c() — ec(w)| < 2o =l (sweR™)
which is needed to prove (3.2). On the other hand, in view of (3.3) and Proposition
3 (Appendice I, Brézis [2]), we also have
| “the Yosida regularization of 077 = “ the Gateaux defivative of j.”.

We proceed to the derivation of (3.1); We need another device.

Lemma 3.3. Let . = u.|r. Under the same assumptions of Theorem 3.1, we have

(3-4) 1Bells/zr < CEUSI + ligllr)-

Because of the limitation of the page number, we cannnot state the complete
proof of Lemma 3.3; Below we shall describe a sketch of the proof under a simple
situation. Namely, we assume that

Q=R3_E{LL‘=(.’L'1,Z'2);.'L'2>O}, F:{x:(xl,xz);x2=0}

and, for R > 0, put
Or = {z = (z1,22); |z| > R} N Q.
Moreover we assume that u, = 0 in Og/,. We simply write as v = u, and p = p,.

Put
’ _ o
LR 0y
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Multiplying —Au + Vp = f by ¢ then integrating over {2, we have

i ,
(3.5) a(u,cp)—/(zpd?vwdxzf 0(u,p)-wdm1+Lf-¢dx.

-R
We obtain
a(u, p) = a(v,v) > & v|l},
since S 90 3
U; oYy U O ..
a 8.'1;'] axk T Q axj axk .'L', (1”.77 k7l ) )

By virtue of V,a.(z)w - w > 0 for z,w € R™, we get

/ Coup) pdn = - / Za%(gae(u))-v dz,

-R

= -—/R g ac(u)-vdz, — /R 9(Vya(u)v - v) dz;

-R -R

IN

R
/ 191+ ()] ol da
< Cllg'llezyllvll-

Moreover we can easily check that
[paveds=0 [ fpde<cifivl
Substituing these results of calculations into (3.5), we have
ol < CUIFI+ llgllr)
which implies that 8, € H%?(T) and

1Bells/zr < CUIFN + Nlgllvr)-

4 Proof of Theorem 1.1

Let € > 0, and let {u,,p.} be a solution of (F,). By virtue of Theorem 3.1, sequences
llue||l2 and ||pe||; are bounded as € | 0, respectively. Hence, there are subsequences
{ue} and {p.} such that

ue — u* weakly in H2(Q)™, po — p* weakly in H'(Q)

and

lw*llz + llp* Ml < CEQUIS+ llgllr)-

According to Theorem 2.2, {u*,p*} is a solution of (F). Next let {u,p} be any
solution of (F). By the uniqueness of the velocity part, we have u = u*. On the



190

other hand, p—p* = k and a constant k is restricted via (1.3). Therefore p € H'(Q2),
and we deduce
o(u,p) —o(u,p*) =kn -a.e. onT.

This, together with (1.3), implies that |k| < 2g holds almost everywhere on I". Hence
|k| < 2|T|7%/2||g||z2(r), where |T'| denotes the measure of I. By making use of this
estimate, we have

lullz +llpll < llullz + [l + K1V1€
< GO+ gllr),

which completes the proof.

5 Other Problems of Friction Type

In gerenal, for a vector-valued function v, let vy and vr denote the normal compo-
nent and the tangential components of v, respectively;

Uy =0vV-Nn, YU =V — UnNTI.

5.1 Leak Problem of Friction Type
We consider the Stokes flow {u,p} satisfying (1.5) together with

(5.1) lon(u,p)| < gn
and

lon(u,p)| < gn = un =0,
uy =0 oruy #0,
uy # 0= on(u,p)uny <0

(5:2) lon(wp) = gy =>

almost everywhere on I', and
(5.3) ur =0onT.

The above problem was introduced H. Fujita ([6]) and is called the leak boundary
value problem of friction type. As was described in [6], this can be reduced to

ProBLEM (LF). Find u € K} ,(Q) and p € L*(Q) satisfying
(5.4) a(u,v —u) = (p,div (v —w)) + jn(v) = jn(w) > (f,v —u), (Vv € KL(Q)),
where
Ki(Q) ={ve K'(Q); vr=00onT}, K, (Q)=KL(Q)NEK(Q),

and

Jn(v) :/FgNIUNI ds.
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Concerning the existence and the uniqueness/non-uniqueness, we know ([6]):
Assume that f € L2(Q)™, gv € L®(T) and gy > 0 a.e. Then there exists a solution
{u,p} of (LF). The velocity part u is unique and p is unique up to an additive
constant and the constant is restricted via (5.1).

The following theorem is proved in Saito [12].

Theorem 5.1. In additon to the assumptions mentioned above, we assume that
gn € HY(T). Let {u,p} be a solution of (LF). Then u € H*(Q)™ and p € H(Q)
with

l[ullz + llplly < C(If]] + llgnllLr)-

Moreover we have on(u,p) € HY/?(T) and

—on(u,p) € g0luy| a.e. on .

5.2 Slip Problem of Friction Type
The slip boundary value problem of friction type consists of (1.5) together with

(5.5) lor(u, p)| < g7

and
lor(u,p)l <gr = wur =0,
’U,T—-_—OOI‘UT#O,'
ur 7é 0= UT(u,p)uT <0

(5:6) or(wp) = gr =

almost everywhere on ', and
(5.7) uy =0 onT

The weak formulation using the variational inequality is as follows.

PrROBLEM (SF). Find u € K3,(Q) and p € L*(Q) satisfying
(5.8) a(u,v —u) = (p,div (v —u)) +jr(v) = jr(u) > (f,v —u), (Vv € K5()),
where |
K§(Q) ={ve K'(Q); ww=00nT}, K5, (Q) = K5(Q)nK;(Q),

and

in(v) = / grlor| ds.
T

As was mentioned in [6], (SF) admits a solution {u, p} if f € L*(Q2)™, g7 € L>(T)
and gy > 0 a.e. The velocity part u is unique and p is unique except for an additive
constant. In this case, the restriction for an additive constant is absent.
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Theorem 5.2. In additon to the assumptions mentioned above, we assume that
gr € HY(T). Let {u,p} be a solution of (SF). Then u € H*(Q)™ and p € H'(Q)
with ' '

ullz + llpll: < CUIfI+ llgrllr)-

Moreover we have or(u,p) € HY/?(T)™ and

—o7(u,p) € g0|ur| ‘a.e. onl.

For the proof, we refer to [12].
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