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1 Introduction

This paper is concerned with a system of partial differential equations
proposed by Keller and Segel [19] which is a mathematical model for chemo-
taxis describing aggregation of organisms sensitive to gradient of a chemical
substance. The Keller-Segel model is described as the following system :

%'% — V(Vfu, — XuV'U) in Q, t>0,
ov )
(KS) e
ou Ov
57_1_%_0 on O, t>0,
u(,0) =uop, v(,0)=wvo on Q.

\

Here Q is a bounded domain in R? with smooth boundary 8%, and 7,,
and o are positive constants. wu(z,t) and v(z,t) represent the density of
the organisms and the concentration of the chemical substance at place
and time t respectively, and uy and vy are non-negative smooth functions
on 2. Finite-time blow-up of solutions is one of interesting aspects of the
Keller-Segel model(see Nanjundiah [25]), and a conjecture in two space di-
mensions by Childress [10] and Childress and Percus [11] states that there
exists a threshold number ¢ such that if |lug||z1q) < c then the solution
(u,v) exists globally in time, and if ||ug||z1q) > ¢ then u(z,t) can form a
delta function singularity in finite time. Such a blow-up phenomenon is ref-
ered to as chemotactic collapse. In the case of radial initial functions (ug, vo)
on Q@ = Dy, = {z € R?%|z| < L}, the threshold number is conjectured as
¢ = 8m/(ax), which is supported by [14, 15, 17, 23, 24].
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First, Jéger and Luckhaus [17] have dealt with the system :

. ,
—66—1: =V:(Vu—xuVv) in Q, >0,
0=Av+alu—) in @ >0,

(JL) 3 3 5 , , o

u v v
%——5’{-——0 on 00, t>0,
L u(+,0) = uo on {2,

which describes the limiting case of 7 | 0 in (KS), where w = (1/|9|) J, wdz,
and x, a ~ 1 and v ~ 7. For this system, they showed the global existence
of solutions in time when the initial functions have small enough mass, and
that there exist radial solutions which blow up at the origin in finite time.
Later Herrero and Veldzquez [14] succeeded in constructing radial solutions
on Q = Dy, collapsing in finite time by the method of matched asymptotic
expansions. Nagai [23] studied another system

(O
?a% = V-(vu - X’U,V'U) in Qa t> O’
0=Av—yv+au in Q, t>0,
) | ou o
u ()
55 = a_n =0 on BQ, t> 0,
\ u(’O) = U . on .

That is, (KS) with 7 = 0. He confirmed that blow-up of radial solutions
requires the threshold number 87 /(ay) in L' norm for radial functions uy on
Q = Dy, as follows :

L. If |juol| 1) < 87/(ax), then the solution (u,v) exists globally in time
and is globally bounded;

2. If |jug|lrq) > 87/(ax) and [quo(z)|z|*dz is sufficiently small, then
the solution (u,v) blows up at the origin in finite time.

Concerning the original system (KS), Herrero and Veldzquez [15] also showed
the occurence of chemotactic collapse by using the same method as in [14].
Nagai, Senba and Yoshida [24] have proved the time global existence and L*>®
estimate as follows, which also hold in (P):

L. If |lu||L1 () < 47/(ax), then the solution (u,v) exists globally in time
and is globally bounded;

2. If Q = Dy, (uo,vp) be radial in = and ||uo||z1) < 87/(ax), then the
radial solution (u,v) exists globally in time and is globally bounded.

All those works on blow-up have treated the case of radial symmetry. Our .

aim is to investigate non-radially symmetric case mostly. We deal with the
system (P), assuming the following :
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(Al) a,~ and x are positive constants.
(A2) Q is a bounded domain of R? with smooth boundary 8.
(A3) wu is smooth, non-negative and non-trivial on Q.

Two kind of problems are studied here. The first one is related to above
results of Nagai, Senba and Yoshida [24]. That is, what happens if Q = Dy,
4m/(ax) < |luollrypy) < 87/(ax), and uo is non-radially symmetric 7 We
prove the following.

1. There is a criterion for time global existence, which is regarded as an
improvement of Nagai [23] mentioned above.

2. If the solution blows up in finite time, then there exists a blow-up point
on Of).

The second problem is on whether chemotactic collapse actually occurs.
Around the isolated blow-up point we show the following :

1. If the solution blows up in finite time, then u concentrates and forms
a delta function singularity at each isolated blow-up point.

2. If the point is in  and on 99, the concentrated mass of u is no less
than 87/(ax) and 4m/(ax), respectively.

The first result combined with Nagai [23] implies that in radially symmetric
case if ||uollr) > 87/(ax) and [p, uo(z)|z|’dx is sufficiently small, then
u forms a delta function singularity at the origin. On the other hand the
second result allows us to estimate the number of isolated blow-up points by

[[uollzr(@)-

2 Fundamental Properties of Solutions to (P)

In this section, we describe some fundamental properties of solutions to
(P). Solutions to (KS) or (JL) satisfy similar properties. Our main results
are stated in the following section in details.

From now on, we put that

a=y=x=L=1 and D=D;
for simplicity.

Proposition 2.1 Given a smooth non-negative initial value uy, we have
a unique classical solution (u,v) to (P) defined on a mazimal interval of
ezistence [0, Tinaz ). It is smooth in Q x (0, T,.qz) and satisfies the following.

(i) u(z,t) >0, v(z,t) >0 for any (z,t) € ﬁ\x (0, Trnaz)-

(i1) [Ju(,t) @) = lluollLiy for any t € [0, Thnaz).
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(i) 1o )z = luollzaay for any ¢ € [0, Tnas):
(iv) For each p € [1,2), there ezists a positive constant C, such that
IVo(, )llry < Colluollr) for any t € [0, Tras)-

(v) For each q € [1,00), there ezists a positive constant C, such that

lv(, )llzay < Colluollzr@) for any t € [0, Trnas)-

Nagai [23] has shown the existence and uniqueness of solution to (P)
and (i). See also Yagi [30]. Identities (ii) and (iii) are shown by a simple
calculation. Property (iv) is a consequence of the L! estimate of Brezis and
Struss [6], and Sobolev’s imbedding theorem gives (v).

We here mention what holds for (KS) in short. First, its solution sat-
isfies (i). For each p € [1,2), |lv(-,t)|lwre(q) is estimated by ||uol|z1(q) and
llvollwir(q). Finally, ||v(:,t)||Le(q) is estimated by ||uo||L1(q) and ||vol|Leq) for
each ¢ > 1.

Returning to (P), we have the following.

Lemma 2.1 Let (u,v) be a solution to (P). Put

W(t) = /Q {ulogu - —;— (|Vv|2 + v2)} dz.

Then, it holds that

dilt-W(t) + /QU|V - (logu — v)|*dz = 0 foranyt € (0,Tmaz). (1)

A corresponding identity is known for (KS) by Nagai, Senba and Yoshida
[24]. Lemma 2.1 follows similarly in use of

/Q (Vo2 + v?)dz = /Q wvdz, N )

which is a consequence of the second equation of (P).
Next, we. describe the norm behavior of solutions for T,,; < oo. The
following proposition is proven in Appendix.

Proposition 2.2 If Tnaz < 00, then the following relations hold.
(i) t_llq!;lm [|ulog ul|L1(a) = oo.
(11) t_}%lnl“ HVU“LZ(Q) = 0Q.

(iil) limy,g,, Joe®@®Vdr = co for any a > 1/2.
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From, by (i) and (iii) it follows that

t—}lfll:,{}az ”U(, t)“L‘x’(Q) = t_)hﬂllaz “'U(', t)”Loo(Q) = 0.

Following this fact, we say that the solution blows up in finite time then.

Solutions to (KS) also satisfy Proposition 2.2 just replacing a > 1/2 by
a > 1 in (iii). Concluding the present section, we prepare several notations
for later use.

Notation

(i) B(g,e) = {z € R?||z — g| < €} and D = B(0, 1), where ¢ € R? and
€ >0.

(i) A(g,n,€) = B(g,m)\B(g, £)-

(iii) Bs(Q,€) = {z € R3||z — q| < €}, where Q € R® and € > 0.
(iv) *K = the number of elements of a set K.

(v) wt = max{w, 0}, w~ = max{—w, 0} for a function w.

(vi) M(S) = { Radon measures on S}, where S denotes a compace Haus-
dorff space.

(vil) Weak star limit in M(S) is denoted by w*- lim.
(viii) 6(-) = Dirac’s delta function in R?. §,(-) = 6(- — q), where ¢ € R2.
(ix) |2] = the Lebegue measure of Q, where (2 is a domain of R2.

(x) Fsefdpu = £ [s fdp, fofde = |—(1—ﬂfﬂ fdz for a domain Q of R?, and
JLGDLfd,u = #E faDL fdp.

Definition

(i) We say that ¢ is a blow-up point of u if there exist {tx}32, C [0, Trnas)
and {z}2, C Q satisfying u(z,t;) = 00, tx = Tmee < 00 and

Ty — q € Q2 as k — oco. We denote the set of all blow-up points of u
by B.

(ii) For q € B, we say that q is an isolated blow-up point of u if there exists
a positive constant n such that

sup  [|u(-, ?)l| Lo (@) gme)) < 0 for any € € (0, 7).

mazx

We denote the set of all isolated blow-up points of u by B;.



3 Main Results

In this section, we state main results. First three theorems, devoted to the
case where 0 =D, are related to the conjecture by Childress and Percus [11]
mentioned in Introduction. Those results include an improvement of Nagai
[23], and a description ‘of the concentration behavior of blow-up solutions.

Theorem 1 Suppose
Q=D and HuoHLl(D) < 87(. . (3)
Let |
up(z) = up(—x) in D. (4)

Then (P) admits a unique classical solution (u,v) in D x (0,00) satisfying

sup{[u( )l () + o0, )llzmioy} < oo )

Theorem 2 Under the circumstances (3), if Tmaz < 00 then it holds
that

: av(z,t) —
t—lggax oD ¢ dIJ’ e (6)

for any a > a * /2, where

81— /8m(87 — [luolln (@)

Ay =

(7)

”uOHLl(Q)

Theorem 3 Let (3) hold and a. be the same one as in Theorem 2. If
Trae < 00, then for each a > a. there ezists a continuous map q(-) from
[0, Traz) to OD satisfying

2
lim inf u(z, t)dx > n for any € > 0.
t=Tmaz JD () Bla(t)se) a

In a similar way, we can prove that the solutions to (KS) satisfy the
following properties under the assumption (3).

(i) If (4) holds, then Ty, = oo and the solution satisfies (5).

(ii") If Tz < o0, then for a > 1 relation (6) holds and it follows that
BNoD x0.

(1) is an improvement of the case 2 of Nagai, Senba and Yoshida [24] men-
tioned in Introduction.

Now we describe the results on the general domain 2. The first one is in
connection with Theorem 3. Note a, > 1/2 in (7).
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Theorem 4 Suppose that 4m < M = |lug||p1q) < 87 and Thmee < 0.
Given a sequence {t;}2; of [0, Tmaz) with imy_,o0 t; = Tonaz, we have a sub-
sequence {t;}2, of {t:}2, and a point ¢ € BNOQ of u satisfying

m inf () Blas) u(z,t))de >4 for anye >0 (8)
and
. exp(av(-, 1)) A :
-1 =4, Q 1/2
w*- im T explav(z. £))dz in M(S2) for any a € (1/2,a%),
(9)
where
o = 2n /(M —4w) if M > 4x
] o if M = 4.
Furthermore, q is also a blow-up point of v.
When M = 4, it holds that
w*- Jim u(-, ;) = 4nd, in M(9Q). (10)
In fact, we have
lim u(z, t))dr = 47
l—o0 QnB(q,E)
and
lim [ u(z,t))dz =0
I—00 JO\B(g,¢)

for any € > 0. Hence we have (10). .

Next theorem describes that chemotactic collapse occurs at each isolated
blow-up point.

Theorem 5 Given q € By, we have two positive conétants €, T 2> My
and a non-negative function f € L*(B(g,e)NQ)NC(B(g,e) N\{g}) such
that

w'- lim u(.,t) =mé, + f in M(B(g,£)( ),

t—Tmax

where

m. — A if g € 092,
*Tl 81 ifqeq.

From property (ii) of Proposition 2.1, this implies the fdllowing.

Corollary 1 If Troe < 00, By satisfies that

1 1
B Q)+ 511{31 (09} < 8_7r||“0”L1(9)'



Combining Nagai [23] with Theorem 5, we get also the following.

Corollary 2 Suppose that Q = D and that uo is radially symmetric in .
If Toz < 00, then there ezist a positive constant m > 8w and a non-negative
function f € LY(D)NC(D\{0}) such that

w*- lim wu(-,t) =md+ f in M(D).

—*Lmax

When M = 8, it holds that

w'- lim (-, t) = 8rdy in M(D). : (11)
In fact, we have
lim )u(m, t)dz = 8w

t—Tmaz J B(0,e

and

lim u(z,t)dr =0
t=Tmaz JD\B(0,¢) ‘

for any £ > 0. Hence we have (11).

In fact, Nagai [23] has shown that in the radially symmetric case if Tror <
oo then B = {0} and also that if |luo||z1(p) > 87 and [, uo(z)|x|*dz < 1 then
Trnaz < 00 . Corollary 2 describes that in that case all blow-up solutions form
a delta function singularity. Method of asymptotic expansion may construct
such a solution with m = 8x, as Herrero and Veldzquez [14], [15] have done
for (JL) and (KS), respectively.

Plan of this paper is as follows. In Section 4, we prove Theorem 1. In
Section 5, we prove Theorem 2. In Section 6, we prove Theorem 4. In Section
7, we prove Theorem 5. In Section 8, we prove Theorem 3. In Appendix,
we prove Proposition 2.2, and give a sharp constant in Moser-Onofri type
inequality.

4 Time Global Existence via Symmetry

4.1 Proof of Theorem 1

In this section, we show Theorem 1. Most arguments are similar to [24]
except for using another kind of Onofri’s inequality. The following lemma
holds for the general domain similarly to Lemma 3.4 of [24] and proof is
omitted. Henceforth, we put M = ||ug|| 11 ().

Lemma 4.1 Suppose that (u,v) is a solution of (P). Let a be an arbitrary
positive constant. Then, the inequality

a/ uvdz < / ulogudx + M log (/Q e‘"’(z’t)d:v) — Mlog M
Q Q

holds for any t € [0, Tnaz)-
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The following lemma is an immediate consequence of (2), Lemmas 2.1
and 4.1.

Lemma 4.2 Suppose that (u,v) is a solution of (P). Let a € R. Then,
for any t € [0, Thnaz), the following inequality holds.

(a — %) /Q (IV’UI2 + 1)2) dz < W(O) + M log (/Q e‘"’dw) — Mlog M.

Onofri type inequality is generally referred to as follows:

For a class of functions on .S? there exist constants C > 0 and K such
that

log (][Szefdu) < 0/52 lerad f|%dp + ]lszfdu + K. (12)

Moser [21] has proved (12) with C = 1/(16m) for H* functions on S%. Onofri
[27] and Hong [16] have independently proved it with C = 1/(16m) and
K = 0, which are best possible. Moser [22] and Aubin [2] have proved (12)
with C' = 1/(32) and (1+¢)/(32m) for C? functions satisfying f(z) = f(—z)
on S? and [g. efzdu = 0, respectively. See 7] and the references therein for
their geometric backgrounds.

We make use the following version, of which proof is given in the next
subsection.

Proposition 4.1 If a function w on D satisfies that
ow

we C'(D), wE)=w(-z) ondD and Fo 0 ondD,
S (13)
then there exist absolute constants C > 0 and K such that
w 2
log (7[1) d:v) < 167r/ |Vl dx+C][ wdz + K. (14)

Proof of Theorem 1: Assumption (4) implies
v(z,t) = v(—z,t) for any (z,t) € D x [0, Trnaz),

by which together with Proposition 4.1 and Lemma 4.2 it follows that

1 Ma? ) CaM
—_— = < — A
(a 5 167(')/D(|VU| +v)dx__ W (0) M( D] + K — 1ogM>

Becauce of ||uol|1(py = M < 87, we can take a constant a satisfying

_1_Ma2>
2737 T6n
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This gives '
sup (]V'u|2 + 112) dz < oo, (15)

. 0Lt<Tmaz /D
and hence T}, = oo by the case (ii) of Proposition 2.2. Lemma 2 1 and (15)
imply

sup | ulogudzr < oo.
0<t<Tmaz 2

Then we have
sup. ||u(:, t)IILw(n) <o

t<Tma:: :

similary to [24], by which together with the standard arguments of the elhptlc
equation we have : :

sup |v(:, )|z < o0 O

mazx

4.2 Moser-Onofri Type Inequality'

We prove Proposition 4.1 to complete the proof of Theorem 1.
The following lemma is due to Moser {22]

Lemma 4.3 If a C' function f on S? satisfies that f(z) = f(—z) on

S2, then there exists an absolute constant K such that

log (][ fdp) s / lgrad f|2dp,+][ fdu+ K. (16)

Proof of Proposition 4.1: Let w be a function on D satisfying (13). Given
P € 82, let IIp be the plane perpendicular to the vector OP and containing
the origin O € R3. The stereographic projection of S? from the north pole
P to IIp U{oo} is denoted by sp.

Let fi = w o0 s(0,0,1). Then we observe that

1
2 . 2 — w
/sg lgrad fi du-—/DIVw| dz, /Sg exp (f1) du 2/De pede, (17)
/ frdp = l/ wp,dz,
s2 2Jp

where S? = {z = (21, T3, z3) € S?| 3 < 0} and p.(z) =8 /(1 + |z|?)?.
Setting S2 = S?\S2, we can define a C* function on S? by

| fi(z) ifzeS?
f(z) = { fi(-z) ifzeS?

from (13). Obviously f € C*(S?) satisfies f(z) = f(—z) on S, so that (16)
is applicable. It follows from (17) that

1 2
1og(47r/ e p*dx) < T6r / |Vw| dm+—/ wp.dz + K.
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Proof is complete. O

By the same argument, assumption (13) can be reduced to
we H (D) and w(z)=w(-z) ondD.

In this form Proposition 4.1 is an improvement of Theorem 2.1 of [24] for
two dimensional case.

5 Concentration toward Boundaries

5.1‘ Proof of Theorem 2

Proof of Theorem 2 requires the following proposition. Namely, without
assuming w(—z) = w(z), the best constant 167 arises if some terms of the
boundary integral are involved in (14).

Proposition 5.1 The follbwing inequality holds

log (][D "’dm) . / |Vw|?dz+ = ][ wdp+log (]l ¢ "’/2du>+K (18)

for any w € HY(D), where K is an absolute constant.

Proof of Theorem 2: From Proposition 5.1 and Lemma 4.2 it follows that

1 MCL2 2 2
(o= e ) Jy (7o + ) e
< M][ g'udlu + M log (][ e‘“’/Zdu) +W(0) — M(C —log M).
- aD 2 aD _

Since a — 1/2 — Ma?/(167) > 0 for a, < a < 1, by the inequality above
and Proposition 2.2 and (6) for a /2<a<1 / 2. Hence, (6) holds for any
a>a,/2. 0

5.2 Rearrangement Relative to Harmonic Functions

, We give the proof of Proposition 5.1. First, the following lemma is due to
Moser [21].

Lemma 5.1 The following inequality holds

w 2
log (][Q d:z;) < / Vwl?dz + K (19)
for any w € H}(Q), where K is an absolute constant.
In Lemma 5.1, we can take K = 1, which is best possible. This is proven

in Appendix.
The following lemma is due to Alvarez [1].
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Lemma 5.2 We have

log (][aDe’”du) < % /D |Vw|*dz + ][aDwdu

for any harmonic function w in D.
We also make use of the following fact proven by Nehari [26].

Lemma 5.3 Let p be a harmonic function on D. Let U be a subdomain
of D with smooth boundary such that Y C D. Then, the following inequality

holds. )
Py < o/2 ) .
47r/ue dz < (/aue du (20)

If p = constant, above (20) is a well-known inequality of isoperimetic.
Based on (20), we can introduce a rearrangement process. A simiar way
was followed by Bandle [3] using Bol’s inequality instead of (20).

Let p be a harmonic function on D satisfying p € C(D) and let p* =
log (fpe’dz). Given a measurable function w on D, let Uy = {z € D | w(z) >
£} and U be the open ball with center at the origin satisfying

a(€) :/u e"dxz/ e’ dr,
3

*

3

where £ € R. Then we can define the symmetric decreasing rearrangement
of w relative to p by w*(z) = sup{¢ € R | z € U }. Then the equalities

[ swiaerde = [ gw'@)edr= [~ g®)d(-ale))  (21)

hold for any strictly monotone increasing function g on R.
We have the following.

Lemma 5.4 The property
/ |Vw|2da:2/ Vw*[2dz
D D

holds for a C* function w on D satisfying

w>0mD, w=0ondD.

Proof of Lemma 5.4: By co-area formula in differential form (see [12]), we

observe that
eP

d
—a(f) = — d
d¢ © /{weDlw(z)=£} Vol



for a.e. £ € R. Observing that 8{x € D|w(z) > £} = {z € D|w(z) = &}, we
get by Lemma 5.3 and Sard’s lemma that

Vwl|d 22
/{zEDIW(2)=€}| I a ( )

2 ep -1
> / e”2d ) ( / —du)
( {z€D|w(z)=€} H {zeDlw(z)=¢} |Vw|

_ 47 .
/(&) J{zeDlw(z)>€}
_4ma(§)
7©) 2)

for a.e. £ € (0, max,.sw(x)). Above relation and co-area formula in the
integral form (see [12]) imply

/D Vwl?dz = /°° /{zemw(w)_g} Vw|dudé

> —on [ 2

Because w* is radially symmetric and decreasing in 7 = |z|, equalities hold
at each step of (23). This fact, together with co-area formula in the integral
form, implies

Vu'ltds = [ “ldudg = —am [~ % ge (25
[\vurPde= [ [ IVurldude = —ax [~ Zesde. (29)
The assertion follows from (24) and (25). O

P

Let P be the Poisson operator from C(0D) to C*(D)NC(D) so that,
p = Pg solves
Ap=0inD, p=gondD.

Proof of Proposition 5.1: For w € C*(D), let p = P(wl|ap) and wy =
w — p. By (21), we obtain

log (][ e‘”da:)
D .
< fwol ,p ): ( fwol* o )
< log (][De efdz log ][De e’ dz
_ g (f o).
p + log ][De T

In use of Lemmas 5.1 and 5.4, the right-hand side is dominated by
1
X = v * 2d K
o+ 1= [ [Vlunl*fdz +
1
< pt 4 — | |V]wel? K
< P+ 16W/D| lwo|[2dz +

= P+ —— |Vw0|2d9:+K,

167
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where K denotes an absolute constant. In use of Ap= 0 and wo| ap =0, we
have

/Vwo-Vpdxzo.
D

Hence

[, 1Vunfde = [ [Vulidz - /D Vplds

w 2
log <][De da:) 167r/ |Vw| dav o
1
o8 (£ ) = g5z |, 1VoPac} +
+{ og( L dz ~ Ton |Vp|*dz} + K. (26)
On the other hand Lemmas 5.2 and 5.3 imply
1
P T 2
log (][De da:) / |V pl“dz
<210g(f P/2d)——-/ 24
< log( o ) =7 IVp/2I z

< log (][ e/ 2du> ][ pdp. (27)
Ineqalities (26) and (27) give (18). O

so that

By this proof, we observe that the constant K in Proposition 5.1 is equal
to the constant K in Lemma 5.1. In Proposition 5.1, we can take K = 1,
which is best possible. This is shown in Appendix.

6 Concentration toward Boundaries (contin-
ued)

6.1 Proof of Theorem 4

To prove the theorem, we require Brezis-Merle type inequality, of which
original form is described as follows ([5]):
Let w be the solution of the boundary value problem

—Aw = f in Q, w = 0 on Of2.

Then it follows that
2

/ exp (“f”Ll ° Jw(z )|) dz < 4%—(dia.m(l)z,

where 0 < € < 4.
We shall derive a similar inequality relative to the second equation of (P):

{ —Aw+w=f in{,

ow
% = 0 on 69

(E)
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By Brezis and Struss [6], the weak solution w of (E) with a L' function f in
Q belongs to W*P(Q)NL"(Q) for 1<p<2and 1< 7 < oo.

Proposition 6.1 Let B(q,2n) C and0 < € < 4. Then, there ezists a
positive constant C dependmg onn, € and || f||Lyq) such that || f||L1(B(g,2n)) <

41 — € implies
' / e*@dz < C,
B(a.m)

where w denotes the weak solution of (E).

Proposition 6.2 Let ¢ € 0 and 0 < € < 2w. Then, there exist con-
stants ny with ny € (0,1/4] and C > 0 depending on €, n € (0,7m) and

| fll1q) such thatn € (0,m0) and ||f+||L1(Qn§(q,2,,)) < 27r — g imply

[ o<
Q) B(g.m)

where w denotes the weak solution of (E).

Above Propositions are proven in the next subsection.

Proof of Theorem 4: Let {t:1}32; C [0,Tmaz) be a sequence in con-
sideration: ¢, — Tj.... By (iil) of Proposit'ion 2 2, any a > 1/2 admits
a sequence {qk},c , of © and subsequences {tz }l . of {t;}52; such that
{t(k+1)}l , C {t¥)ye2. for any k=1,2,--- and that

: ‘ 1.1 (k) _
ll—lglo QﬂB(qk 9-k) oxp ((5 + E) v, )> 4o = oo

for ‘a,'ny k = 1,2,-‘-‘.' We put ¢ = t,. Let ko be an integer satisfying
3+ %)M < 4m. We observe that ;

. 1 1
zliglo (1 Blae2) exp ((5 + E) v(x,t;)) dz = oo for any k-> k.

Suppose that B(qx,27%) C Q for some k > ko. Since we have

1 1 1 1
I1(3+7) o = (5 + ) M <4
Proposition 6.1 implies that |
su./ ex (<l+l)v(x t’)) dz < 00
zz? B(gk,27F) PA27% i '

It is a contradiction. Hence, B(gk,27%) N 0N %0 for any k > ko. Let ¢ b_e.‘ari
accumulating point of {gx}32 ;. We see that ¢ € 9 and that

ll_lglo () 5o exp (av(z,t;)) dz = oo for any a > 1/2 and £ > 0. (28)
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We then observe that

lim inf () Bae) u(z, t;)dz > 4m for any € > 0. (29)

In fact, suppose that

lig glf () Blaeo u(z, t))dr < 47 (30)

for some €y > 0. By taking positive constants a and € such that a > 1/2 and
that a — 1/2 and € are sufficiently small, Proposition 6.2 and (30) yield that

lim inf e v(z, 1)) dz < oo.
minf o s xp (av(z, 1)) 0o

It is contrary to (28). Hence, we have (29) and that

lim sup u(z, t))de < M — 4w < 4w for any € > 0,
l—00 Q\B(‘Ls)

by which together with Propositions 6.1 and 6.2 it follows that

sup exp (av(z,t))) dz < oo for any a € (1/2,a%) and € > 0.
2\B(g.c) l

1>1

(31)
By (28), (31) and (iii) of Proposition 2.2, we have (9). From (31) and (iii) in
Proposition 2.2 it follows that ¢ is a blow-up point of v. O

6.2 Brezis-Merle Type Inequalities

To prove previous propositions, we need the following lemma.
Lemma 6.1 Suppose that w satisfies
—Aw+bz)w=f inQ,

where f € L*() and b € L*(2). Let B(q,n) C Q. Then, for e € (0,n) and
p € (1,2) there exists a positive constant C depending on €, n, p and ||b|| L
such that

]
2n
w(@) dy < C » / =) dz
/B(q,e)e v < o (Cllullwnam) jal<2q \|2]/

where

. |
0= -2;|lf+IIL1(B(q,n))-
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Proof of Lemma 6.1: Let ¢ be a C* function on R? such that 0 < p <1
o (@.1)

: y_ ) 0 ifze B(qgn),
wlz) = { 1 ifz € B(g,¢).

Since the function ¢(z)w(x) satisfies
—A(pw) = —¢f+g in R,

where g = (bp — Ap)w — 2V - Vw, we have

w(z) = /B(M) N(z,y)eo(y)f(y) dy — /B ) N(z,y)g(y) dy (32)

g,

for any z € B(q,€). Here N(z,y) = 5-1log !—x:’—_”y—l Noting that for r > 1

/ IN(z,9)I"dy < C  for any z € B(g,n),
B(g:n)

where C is a positive constant depending on 7 and r, we see that for each
p € (1,2) there exists a positive constant C' depending on €, n and p such
that

o V050 < Clilinsy  forsmy = B 9
By N(z,y) > 0 on B(p,n) x B(p,n) and 0 < ¢(z) < 1, we get

/B(q,n) N(z,y)ely) fly)dy < /B(q,,,) N(z,y)f*(y)dy. (34)

From (32)-(34) it follows that for each p € (1,2) there exists a positive
constant C' depending on ¢, 7 and p such that

w(x) / +
e"rde < exp | Cllwllw + / N(z, dy | dz.
a4 % P( lelwisan + [, N@I*©) y)

(35)
Jensen’s inequality yields that

/B(q,E) P (/B(qm) N y)f* (y)dy> &

= /B / exp \ ||/ " llLys N(z, < I dud

| £+ 1|22 (Bam))
[}
2
/ (_ﬂ) dz,
lzj<2n \ |Z]

by which together with (35) we complete the proof. O

Proof of Proposition 6.1: Let w, be the weak solution of (E) with f*.
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By using w < wj, in 2, we observe that the estimate is independent of f~.
L' estimate (c.f. [6]) is indicated as

ol < Gl (36)

for (E), with 1 < p < 2. Therefore, by Lemma 6.1 we have Prop0s1t10n 6.1.
a - ,

We next give the proof of Proposition 6.2.

Proof of Proposition 6.2: By the similar arguments to those in the proof
of Proposition 6.1, the estimate is independent, of J~. By using partition of
unity we may assume that  is simply connected, by which we observe that
there exists a conformal transformation ¢ satisfying ¢(2) = D. There ex1$ts
a continuous function d, on D with inf,cp d.(z) > 0-such that

with 5
6117;* =0 . onD, . (38)

where f, = d.(f o ¢71). For each subdomain w of 2, we observe that
| fell(¢(w)) = | fllL1()- Then we may prove the proposition for the-solution
to (37) and (38) with a L' function f, on D. Using the Kelvin transform,
we extend w, to the whole space as follows.
wi(x) if |z] < 1,
v(z) =
wo(z/|z?)  if |z| > L
Then the function v satisfies
—Av+bv=h in R
where
b(z) = d(z) if |z| <1,
2| du(/|2l*)  if |z] > 1,
A Cif|z| < 1,
O E G I
| fu(e/|2])  if || > 1.

Let o € (0,1/4]. By Lemma 6.1, for n € (0,m0) and p € (1,2) there exists a
positive constant C' depending on 7, 1y and p such that

: ]
4n

V(@) dx < C . / =1 d 39

/B(q.n)e o _exp( ”'U”WW(B(‘I’Z"))) |z|<4n - (39)

]

where

1 1
0 = —lIh" s < 15l ons(20)-
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By L! estimate. of Brezis and Struss [6], we have

lvllwreg,2m < Cllwdlwrep) < CllfillLro)-

Hence, (39) implies that |
/ @ dz < exp (Clfull o) / dz
DNB(q,m) - Jz|<1 lmlo

where

0__1

™

”f:“Ll(DﬂB(q,Zn))-
Thus the proof is complete. O '

7 Aggregation at Isolated Blow-up Points
7.1 Proof of Theorem 5

To prove Theorem 5, we begin with the following propositions that will
be shown in Section 7.2.

Proposition 7.1 Let (u,v) be the solution for (P). For q € By, there
exist n > 0, € € (0,n) and § € (0,1) such that

u,v € CHOIH/2 (Q N A(g,m,€) x [0, Tmaz)>

and

0<7§E¥mw { ”UHCz+9,1+a/2 (Q ﬂA(q,n,s)x[O,T])

+ |lv]|g2+e.+o/2 <QﬂA(q,7775) X [O’T])} < too

Proposition 7.2 Suppose that Tpee < co. Let (u,v) be the solution for
(P). Then, for q € By it holds that

lim u(z,t)dr > m or any € > 0,
t-—)Tmaw QnB(q,e) ( ) - * f y

where m, is the constant in Theorem ‘5.

Proof of Theorem 5: Let

m(q,€) = t—!l‘II‘EM () Bae) u(z, t)dzx.



By Proposition 7.1, we have that m(qg,-) is continuous and monotone in-
creasing on (0,7). Let m(q,0) = limx~om(g,e). Combining those prop-
erties together with Proposition 7.2 concludes that m(q,-) € C([0,7]) and
m(g,0) > m.. By Proposition 7.1, there exists a function

f e c (N B@DMa) NLHQN Blam)

such that

, lim u(z,t) = f(z) for any z € {Q()B(g,n)}\{a}-

ma:

Then we have that
w*- t_}l%n u(-,t) =m(q,0)0, + f inM (QﬂB(q,n)) .

Thus the proof is complete. O

7.2 Localization of Lyapunov Function

We begin with the following lemma. We will proof the lemma in Appendix.

Lemma 7.1 Let n* > 0 and g € 0Q0. Suppose that

ostﬁililgnu HU("t)”Lw(QﬂB(qm*)) < 00

and that

0<t<Tmaz

sup (”'U(',t)”Loo(QnB(q’n*)) + “vv('7t)IlLé(QnB(q,n*))) < 0.

Then, there exist n, € (0,1*) and 6 € (0,1) such that

”“”Ce,o/z (Q N B(q,n*)x[O,Tmaz)): < oo

Proof of Prposition 7.1: By the definition of isolated blow-up points,
there exists a positive constant 7y such that

sup (uu<.,t)an(W(q,,,o,,,))+nv(.,t)||Lm(QnA(q,,,o,,,)))<oo (40)

0<t<Tmax

for any n € (0,7), from which together W1th the standard arguments for
elliptic equations it follows that

sup ||Vu(, t)”L°°(QﬂA(q,m,nz)) <oo - . (41)

0<t<Tmaa:
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for any 7, and 1, with n <1y < 7m; < 9. By the above estimate, Lemma 7.1
and [20, Theorem 10.1 in Section III], for any 7; and 7, withn < 7y <71 < g
there exists a positive constant § € (0,1) such that

‘ IMIC‘T"” 2 (W]A(Tmz)x[o,rma,)) <% (42)

In fact, suppose that QN A(g,m,72) = 0. By (41) and [20, Theorem 10.1
in Section III], we have (42) in the case of QN A(q, 71,m2) = 0. o
Suppose that 02N A(g,n1,7m2) # 0. For a sufficiently small * > 0, there
exist N
{o} =123,k C O Alg,,72)
such that

b K K
QN A(g, m,m2) € | Blaw,m) € U Blaw,n") C Alg,n,m),

k=1 k=1 i

where 7, is the constant in Lemma 7.1. By Lemma 7.1, we obtain that

hosors (@B 0 zma) < o oachE= L2300 K (45)

Since we obtain that

Q) A(g, n1,m)\ U Blge, n) C Q,

k=1
by (41) and [20, Theorem 10.1 in Section III] we have that

< 0.
“uuco,o/z (Q n A(g,m,m2)\ UkK=1 B(qg,nx) % [O,Tmaz))

By which and (43) we get (42) in the case of QN A(g, 71,m2) # 0. Then, we
get (42).

(From (42) together with [13, Theorem 6.16], for any 7, and 7, with
n < 1m2 < M < 1 there exists a positive constant § € (0,1) such that

HUI|02+9,9/2 (mx[o,Tmaz)) < o

Hence, by (20, Theorem 10.1 in Section IV], for any 7, and n, with n < 7, <
M < mo there exists a positive constant 6 € (0, 1) such that

1ell v 1107 (A G (0.Tma) < oo

Thus the proof is complete. O

For the proof Proposition 7.2, we note the following.



Lemma 7.2 There exists a positive constant C such that
Wy(t) SW,(0)+C  for anyt € (0,Tnas), .. (44)

where

Wo(t) = /Q (u logu — —;-uv) pdz.

Proof: Let 1 be the constant in Proposition 7.1 and let e be a positive
constant with ¢ < 7. Let ¢ be a C*™ functlon on R2 such that 0 < p <1

and
! 1szB( , /2)
‘p(z)”{o 1waB(Z,E).

Multiplying (10gu — V) by the first equation of (P) and using Green’s for-
‘mula, we have

/Qut(logu —v)pdr = /QV - (Vu — qu)(logu - v)cpdw
— - [ ulV(ogu—v)PPpda
- /Q(logu —v)(Vu —uVv) - Vedz.  (45)
We have that

/Qut(logu — v)pdz
d d ,
p /Q (ulogu — uv)pdr — 7 Ja updz + /Q uvypdz. (46)
Using the second equation of (P), we have that

/qutcpdw = /Q(—Av+'u)vtgod$
1d

J— — 2 2 )
= 57 Q(|\7v| +v )cpda:-l—/Q(Vv Vo)udr.  (47)

By Proposition 7.1 and the definitions of ¢ and isolated blow-up points, there
exists a positive constant C' such that

: : d
]/Q(ch Vo)udz| = | QﬂA(qe,e/2)(V(p Vo)vdz|

< C foranyt€ (0,Tmaz) (48)

< I/Qu div(loguV)dz| + I/ ulogua—dul

= Vu- Vo + ulogulAyp)dz
Inn A(q’e’sm( ¢ gulyp)dz|

Op
logu—tdu| < C for any t € (0, Taz). (49
+| b Aeers 18 L an pl < r any t € ( ). (49)
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By (45)-(49) and Proposition 7.1, we get (44). O

Proof of Propostion 7.2: By (44), there exists a positive constant C
such that

/;z(u log u)pdz < %/ﬂuvtpdﬂ: +W,(0) +C for any ¢ € [0, Tinez). (50)

By Young’s inequality, we get

1 av
a/qucpdx < _/Q(ulogu)cpdz-l— E/ne pdz

for any t € [0, Tres) and a > 0, from which together with (50) it follows that

1 ‘ 1
P < - av . 1
(a 2)/qu<pdw_ eLe pdz + W,(0) +C (51)
for any ¢ € [0, Trnez) and a > 0. We observe that

lim | wvedr = oo, (52)

t—)Tmaz Q

by which together with (51) it follows that

lim [ e"pdz = o, for any a > 1/2. (53)

t—Traz JQ

In fact, if we assume that

limsup [ uwvpdz < oo,
t=Tmax

then by (50) we have that

limsup [ (ulogu)pdz < oco. (54)

t—Tmazx

Then (54) implies

sup ||u(:,t)p|| L) < 0o
Ost<Tma:t

similarly to [24]. It is the contradiction. Then, we have (52).
In the case of ¢ € 2, by (53) and Proposition 6.1, we observe that

lim sup‘/QnB(q B} u(z,t)dz > 8r  for any € > 0. (55)

t—>Tmax

By Proposition 7.1, for any € € (0,7] there exists a positive constant C

depending on ¢ such that
[ (o),
Q()9B(q.e) on on H

< C foranyt€[0,Tmaea)- (56)

il
dt Qn B(q.e)

u(z,t)dz
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By (55) and (56), we have that

lim / u(z,t)dr > 8r  for any € > 0.
t-Tmaz QnB(qu)

In the case of p € 99, by (53), (56) and Proposition 6.2 we observe that

lim u(z,t)dz > 4w for any € > 0.
t~Tmaz JQ (| B(ge)

Thus the proof is complete. O

8 Concentration toward Boundaries (final)

8.1 Proof of Theorem 3

Theorem 3 is .proven through a form of concentration lemma, which is
generally referred to as follows.

A family F of H' functions satisfies either one of the following.

1. All elements w € F satisfy an Onofri type’s inequah'ty with a sharp
constant.

2. There exists a sequence {wi}3>, C F such that

{exp(wi)/|| exp(wg)||z}
concentrates at a point in L' norm.

This type of statement is found in Chang and Yang [9] for F C H'(S?).
Via similar arguments, we can show the following. Recall that p.(z) =
8/(1+ |z|?)2.

Proposition 8.1 Given a one parameter family F = {w(-,t)|0 <t < T}
with t — w(-,t) € HY(D) continuous, we have the following alternatives.

(1) Inequality (60) holds for wy = w(-,tx) with some ty /' T.

(i) There ezists a continuous map t + q(t) € 8D satisfying

. IpN B P (w(z, 1)) pi(z)dz
lim inf

B T ep W, ) m@ds 2

1
5 for anye > 0. (57)

Proof of Theorem 3: First, observe that M < 8 implies a. € (1/2,1) in
(7). We assume that a € (a,, 1) is given.

Putting w(-,t) = av(:,t), we suppose the first alternative (i) of Proposi-
tion 8.1 so that (60) holds for some wy = w(:,tx) with t;, S T = Trpas.



Then Lemma 4.2 implies

(-5~ 552) f, (9ot ot )

<W(0)— MlogM + C.

for any € > 0. (k=1,2,---) We take ¢ satisfying

Ma?(1

167 ’

to deduce
lim sup (}Vv(a:, te)|? + v(z, tk)2) dz < oo.
k—oo. YD )

It is contrary to the case (ii) of Proposition 2.2.

The second alternative holds and there exists a continuous map t €
[0, Trnaz) > g € 8D satisfying (57) for w = av and T = Ty

Here, from the case (iii) of Proposition 2.2 it follows that

t_!l%gm A exp(av(z, t))d:z;‘= 00

by a. > 1/2. Therefore,

t}%ﬁ‘n (Bt exp(av(z,t))dr = oo forany e > 0.  (58)

If we assume

lim inf - u(z,t)dr < Z_W’ (59)
t—Tmaz DﬂB(q(t)ye) a

then Proposition 6.2 implies

lim inf e @) dr < 0o
t—Tmax QnB(q(t),E)

for some € > 0. This is contrary to (58). Thus the proof is complete. O

8.2 Concentration Lemma

For the proof of Proposition 8.1, we make use of the following facts due
to Aubin [2], Proposition 3.1 of Chang and Yang [9] and Proposition 2.2 of
Chang and Yang [8], respectively.

Lemma 8.1 Suppose f € CY(S?) with [ e’zdy = 0. Then for each
€ > 0, there exists a constant K, such that

1+¢
f < 2
log (][.926 du) — 327 Js2 lgra,df| d,u,+][52fd,u,+K5.
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Lemma 8.2 Given f € H(S?) and a conformal transformation ¢ on

S2, let =
fo=fod+ log(det(d@).

Then, I(f) = I(fs), where '

1 |
I(f) = 46 /Sz Igrédflfdﬂ + ][Szfdu-

Recall that sp denotes the stereographic projection from the north pole
P € §? to the plane I1p containing the equator Ep C S? relative to P. Given
Q€ S?and ¢ > 1, Sc_zl o {id o sg becomes a conformal transformation on
S?, where &id(z) = £z for z € R?U{oo}. This mapping is denoted by ¢ .
Precisely, ¢ ¢ is determined by the coset class of S% x [1,00) /52 x {1} &
B3(O’ 1) Let & = {QSQ,E |(Q7 5) € 8% x [1’00) /S2 x {1}}1

][Szefdu: 1}

Xo-——{feX‘/Szefxd,u:(_)'}.

The following fact is also well-known (see [8], [9], e.g.). We denote Ey =
E0,0,1)-

X:{feH%y)

and

Lemma 8.3 Any function w € X admits a transformation ¢ € ®, sat-
isfying wy € Xo. Forthermore,

(i) ¢ = ¢ with Q € Ey if w is symmetric with respect to z,z2 plane.

(ii) {¢} changes continuously in @, if {w} does so in X.

Admitting those lemmas, we first show the discrete version of the proposition.

Proposition 8.2 Let F = {w} be a family of C* functions on D satis-
fying
ow
—=00n0D and sup|w|i(p) < oo.
weF

on
Then either one of the following (i) or (ii) holds.

(i) Any e > 0 admits a positive constant C. such that

l1+e 2
w < .
log (][De dx) < Ton /D |Vw|*dz + C.  foranyw e F. (60)

(i) Taking a sequence {wi}%>,; C F such that
w*- lim (e“*p,) // eV p,dz = d\ in M(D),
k—o00 D

there exists some g € D such that A\({q}) > 1/2.
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Proof: Let w be in F. Let f; = w0 50,1y on S2 and define a C"* function
f(z) on 5% by

fi(@1, T2, —x3) if T = (1, T0,73) € S2.

Let '
g=f—log (]lszefdu) € X. (61)

There exists a pair (Q, &) € Ep x [1, 00) such that (g)sq € Xo by Lemma
8.3. Therefore, any € > 0 admits a constant K, such that

log' (][ 2 &P ((g)%'s) d,u)
1+e )
= 327 /52 lgrad (9)eq.|"dp + ]lsz (9)pqedn + Ke (62)

by Lemma 8.1. The left hand side of (62) is equal to

oo (f o) =0 f ) - i+ f i

by (61). In view of Lemma 8.2, we see that the right-hand side of (61) is
equal to ‘ :

l+e( 1 '
{5 L lnd e it f (0o

1—¢
"|‘—‘-2-‘—]ls2 (g)¢Q,£du + Ke

_l+eg 1 2
=3 {m/sz'gmdg' d“fszgd“}

1-—¢
+_2_][Sz(g)¢Q'fd'u + Ke-

Therefore,

1+e

os (f ) < s f

og(f efdn) < = [ lerad fPdp+f _fdu
l1-e¢

+75f L (Doge — 9)du + K-.

By means of the formulae (17) this means

1
g (f,evdz) < == [ |Vulds + Cullwlm + K.
D 167 Jp
1—

2 6][ (s —g)du. (63)

+
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Thus we have proven that any w € F admits (Q, &) € Ep x [1, 00) satisfy-
ing (63). If {(Q,&)} is bounded in Ey x [1,00), then there exists a constant
C such that

[ (@6~ 9)dn

L (s = Pau
< C(Iflsy +1)=C (lwpellz oy + 1).

In fact, we observe that
Jodn < fogdu+ | log det(ds)llzxs
— . fIdet(d#)|du + | log det(da) lx(s).

The family F has the property (i).
If {(g,£)} is not bounded, there exists a sequence {(Qx, Ek)}k ° , with & —
+o00. We have

][Sz exp ((9k)sq, ¢, 1) = 7[52 exp (gx) dp = 1. (64)
Passing through the subsequcence if necessary, we have the convergence
Qr =+ QEE, w*- kligo exp ((gk)%k.ek) du = do,

and
w*- lim e dy = dv,
where do, dv € M(S?) with o(S5?) = v(S?) = 4.
Let Q' € S? be the south pole when @ € S? is regarded as a north pole
Under the assumption & — oo we have

g6 (T) — Q locally umformly in z € S\{Q'}.

Taking a compact set K C S?\{Q'} and a constant € > 0, we get the inclusion
b, £, (K) C Bs(Q,€) for k: sufficiently large. Hence

dp = / 9 < efdy.
/Kexp (9)oaye, ) dr bopes) T IsrBa@e)

This implies
O'(K) S V(S2 n BS(Q) E)))
or

a(S*\{Q'D) < v({@}).

Next, we note (w)sq, ., € Xo. This implies [g2 zdo = 0. Regard Q as
the north pole (0,0,1). Then we conclude that

a(SA\{Q'}) > /52 T3do = — /S3 z3do

+

> o({Q}) =47 - o(S*\{@'}).
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This implies
2r < o(S2\{Q'}) < v({@})-

So far we have proven that g, = fi — log (f—szef "du) satisfies
w* lim e*dp=dv in  M(S?
k—o0

with »({Q}) > 2 for some Q € Ey. Putting ¢ = s0,0,1)(Q) and X = vosg) ,),
we observe that ¢, A and wy, satisfy the second alternative of the proposition.
0O

Proof of Propositon 8.1: We follow the argument for the proof of the

previous proposition. For each ¢ € [0,T), g(-,t) € X is defined subject

to w(-,t). This time g(-,-) is a continuous map from [0,T) to H'(S?), so

that by Lemma 8.3 there exist a continuous map (Q(:),é(-)) from [0,T) to

(E x [1,00)) /(E x {1}) = D such that (f)sg ¢ (1) € Xo for t € [0,T).
In the case that liminf, ,7£(¢t) < 400, there exists a sequence of

{tk}zo:l Cc [0’ T)

with limg_,e tx = T such that supys, (tx) < oo. Therefore {w(,tx)}r,
satisfies the property (i) as in the proof of Proposition 8.2.

If lim;_,7 £(t) = oo, there exists some ty € [0,7") such that £(t) > 2 for
any t € [to,T). This implies that Q(-) is a continuous from [to,T) to Eq.
Then, similarly we get a continuous map ¢(-) from [tg,T) to 0D such that

lim inf Jp N\ B(a(t).c) €XP (w(z,t)) pu(z)dz

T Ip exp (w(z, t)) p.(x)dz =

for any € > 0

L
2

and the proof is complete. O

A Appendix

A.1 Proof of Proposition 2.2

The following lemma is a modification of inequality ([4])
lwllzs@y < €llwllfn g llwlog lw|l| L) + Cellwllzy )

for any w € H'(Q). The proof is done by using a similar way to that in [4]
and the following inequality

lwllZa@) < Cllwliingyllwllzz g (65)

by the Gagliarde-Nerenberg’s inequality for two dimensional domain €.



Lemma A.1 For any N > 1 it holds that

1 ,‘ _
||w||4L4(Q) < k)g—NIIVwII%z(mIIw’* log lw‘2||L1(n) + ON?|lwII%2(Q)

for any w € HY(Q), where C is a positive constant which is independent of

N> 1.

Proof: Consider a number N > 1 and the functin Fjy defined on R by

0 for |s| < N,
Fn(s)=1{ 2(|]s|] = N) for N < |s| < 2N,
|s| for |s| > 2N.

Then it holds that
Fn(s) < s for any s € R.

For each w € H'(f2), we oberve that Fy(w) € H*(Q),

lwl = Fyv(w)llza0) < (2N)2/{ wl*dz < (2N)*|lwliz2(q)

zeQ||w|<2N}

and that

|1 Fn(w)l|Z2) < |w|?dz

/{wen||w|zN}

1
< —/ wl|? log |w|*dz
— log N? {zennwgzzv}l [Flog ju]

1
< sr—wlllwl*loglw|| ).

2log N
Moreover, the H!—norm of Fy(w) can be estimated by
IVEN(w)lz2e) < 2[|Vwll L)
Since we oberve that
lwllz2@) < 19Y4||wl| 20,
we oberve that
w2 ) < IVwll2aq) + 1Y wllZ4q)-

By (65) and (70) we have that

1 1
lwlizug) < ClIVwllza@lwlizig) + 51wl + 5C71RIwIz ),

where C is the constant in (65). Then we get that

“w“i‘l(n) < 2C||Vw||i2(m||w||%2m) + szmwniz(n),

(66)

(67)

(68)

(69)

(70)
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by which together with (66)-(69) we have that
lwllZe) < 811 Fw(w)lzay + 8lllw] — Fi ()|l
< 8C||VFn (w22 | Fn(w) 1320
+802|Q|||FN(U’)||}1,2(9) + 8(2N)2||w”%2(n)

16C
< logN”Vu’”%ﬁ(Q)|||’U’|2 log |w|?|| 2 () + {32N2 + 8C'2|Q|} lwll2(q)-

We denote N™>x{16C:1} and (324 8|Q2|C?)'/2 by N and C, respectively. Then,
the proof is complete. O

We prove Proposition 2.2.

Proof of Proposition 2.2: Multiplying logu by the first equation of (P)
and using the second equation of (P), we have that

d —1)0,, |2 — .2
%/Qulogudm+/nu |Vul dm+/nuvdx—/nu dz. (71)

Applying Lemma A.1 as w = u'/?, we obtain that for any N > 1

1
2dx < v 2d/ d
/Qu dz < 4logN/Qu |Vul*dz Qulogu T

9]
2elog N

/ uY|Vul*dz + CM2N?
Q

and hence

d 19 1
Ay 1- - | ulogud
dt/nu ogudz + ( 2elogN 4logN o 08 a:)

: / uY|Vul2dz < CN2M?
Q

for any N > 1. Taking

1 Q
N =exp (—/ ulogudzr + u) > 1,
2Ja e
we obtain

d 2|19
— < CM? / — .
dt/nulogudw_ CM exp( Qulogucl:z:—l— - )

Then, a standard argument shows that

liminf [ ulogudz < oo.
t—=Tmaz JQ

implies

sup ulogudzr < oco. (72)
0<t<Tmaz 70
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Then Lemma 2.1 implies

sup |[u(:,t)|| o) < 00
0<t<Timaz

similarly to [24]. It is a contradiction. Then we have (i) in this proposition.
By (i) in this proposition and Lemma 2.1, we have that

lim A (|Vv|2 + vz) dzr = oo,

t—=>Tmazx

by which together with Lemma 4.2 it follows that

. 1
lim e”dx = o0 for any a > —.
t—>Tmaz JQ 2

'Then we have (ii) and (iii) in this proposition. Thus the proof is complete.
a

A.2 Best Constants in (17) and (18)

~ We show to be able to take the constants K in (18) and (19) as 1, which
are best possible.

Lemma A.2 Inequality (19) holds for any w € H}(2), where K > 1.
When Q is a ball, if K < 1, there ezists a function in H}(Q) which does not
satisfy the inequality (19).

For the proof of Lemma A.2, the structure of the following problem is
nessecarry.

(EF)

o
Ay — w oD
Aw ew da:e in D,
w=0 on 0D,
where o is a constant. The following fact is due to [28, Theorem 3.1].
Lemma A.3 For each o € (0,8), there exists a unique solution w(z) =
2log (ﬁf—#) to (EF), where u= (8n/c) — 1.

For each ¢ > 0 and w € Hj(f2), we put

I w) = %/ﬂ |Vw|*dz — olog </Q e“’dx) .
For a measurable function h on a domain w C R2, let us put

wu(t) = {z € w| |h(z)| > t}| for each t > 0
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and v
h*(s) = sup{t > O|u(t) > s} for each s € [0, |w]|].

Then h* is a decreasing function from [0, |w|] to [0, 00] called the decreasing
rearrangement, and the symmetrized rearrangement h! of h is defined by

h(z) = h*(n|z)?) for any z € W,
where w! = D; with || = |D,|.

Proof of Lemma A.2: We may assume || = 7 without loss of generality,
that is, Qf = D.
For each w € H}(f2), the symmetrized rearrangement w! of w satisfies

that ‘
wa. wh 2 2
= > .
/Qe dz /De dz, ‘/QIV'wI dz_/DIVw |“dx (73)

For each o € (0,87), by Lemma 5.1 we observe that there exists a minimizer
of Ji¥ in H}((2), by which together with (73) it follows that

g (w) > J7 (') > JP (v,) for any w € Hy (), (74)

where v, is the minimizer of J? in Hj(D). By using the standard arguments,
we have that the minimizer v, is a solution to (EF), by which together with
Lemma A.3 it follows that

vo(z) = 2log (IH:IZ%) , (75)

where y = (87/0) — 1. By a simple calculation, we have

_ : JD — JD o
iy e (W) - (V)
- 8T 1+logm+plo Ltu (76)
for each o € (0,87), where u = (87/0) — 1.
Noting
. . 8T 14+ p
lim JP(v,) = —— |1+1 1
).
= —8m(1 + logn),
we observe that for each € > 0 and w € H{ (D) there exists a positive constant
0 such that .
0 log (/ e“’dm) < =
D 2
and '

'Jf(va) + 8m(1+ logw)‘ < % for any o € (87 — 4, 8).
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Then we have that

Tow) > JPw) -2

> JP(v,) - g > —8m(1 + logﬁ) —€
for any o € (87 — 4, 8), by Whiéh it follows that
Jo (w) > —8n(1 + log ) for any w € Hy(D). (77)
By (74) and (77), we have
JE (w) > JE (w) > —8m(1 + log )

for any w € H}(Q). This means the first part of the lemma.
By a simple calculation, we have that
8T

JE (vy) = —m(l + log ) for any o € (0, 8).

This means the second part of the lemma. O

Proposition A.1 Inequality (18) holds for any w € H*(D), where K >
1. If K < 1, there ezists a function in H'(D) which does not satisfy the
inequality (18).

Proof of Proposition A.1: By the proof of Proposition 5.1, we observe that
the constant K in Proposition 5.1 is equal to the constant K in Lemma 5.1,
by which together with Lemma A.2 it follows the first half of the proposition.
By using the similar calculation to one in the proof of Lemma A.2, if K < 1
we observe that the function v, in (75) does not satisfies (18) for some o €
(0,87). This means the second half of the proposition. O

A.3 Proof of Lemma 7.1

In this subsection, we proof Lemma 7.1.

Proof of Lemma 7.1 In order to prove this lemma, we begin by in-
troducing a diffeomorophism which straightens the boundary portion near a
point g € 9Q. Throught translation and rotation of the coordinate system,
we may assume that ¢ is the origin and the inner normal to 652 at g is pointing
in the direction of the positive z, axis. Then, there exists a smooth function
é(z,) defined for |z;| sufficiently small such that (i) ¢(0) = 0 and ¢'(0) = 0;
and (ii) 00N O = {(z1, z2)|z2 = ¢(z1)} and QN O = {(z1,z2)|z2 > d(z1)},
where O is a neighborhood of q. For y € R? near 0, we define a mapping
z = ®(y) = (21(y), P2(y)) by

1 (y) =11 — 129 (1), Qy(y) = yo + é(11)-
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Since ¢'(0) = 0, the defferential map d® of ® satisfies d®(0) = I, where
I is the identity map. Then, ® has the inverse mapping y = ®~!(z) on
{z||z| < r} for some r € (0,1). We denote ®~! = ¥ = (¥, ¥;). We can
take a sufficiently small 7, € (0, (1/2) min(r,7*)) such that

B(0,m.) C ®(B(0,5n./4)),  ®(B(0,3n./2)*) C @[ B(0, min(r, ")),
where B(0,7.)* = B(0,n.) N{y € R?|y, > 0}. With this transformation the
solution w(y,t) = u(®(y),t) satisfies

ow 5w 2 Hw
ot Gijp——+ bji— +cw=0 inBO,3*2+>< O,Tmama
Ot i Oudy 5O (0,37/2)* X (0, Trao)

where
aij(y) = Vo ¥i(z) - V. ¥;(z),
bi(y) = =L Y;(z) + Vyu(z, t) - Vo ¥5(2),
c(y,t) = v(z,t) — u(z,t), z = ®(y).
Define the function @ on B(0,3n/2) X [0, Tnaz) by
w(y1, —Y2,t) if yp <O.
For i,57 = 1,2, we put
q.. — a’(y) lf Y2 2 07
Qg = (—1)%2H02g(y), —yo,t) if yp <O,
z b;(y,t) ify, 20
bi(y,t) = AN ] ’
J(y’ ) { (—1)6J2b.7(y1, _'!J2,t) if Yo < O)
] c(yla —Yo, t) 1f Y2 < 07
where d;; is the Kronecker’s delta. We then observe that
ow

5+ L =0 in B(0,3n,/2) x (0, Traz),

where

5 o (. ow 2 (2 0a; ;)\ 0w .

ij=1,2 =1 \i=1
The coefficients satisfy
ai; € WH2(B(0,3m./2)),  bj,& € L2(B(0,30:/2) % [0, Tona))
for i,5 = 1,2. By which together with {20, Theorem 10.1 in Section III}, it
holds that
“wncf’ﬂ/z(B_(o,'s‘ﬁij[o,Tmm)) < oo.
By which and B(0,7.) C ®(B(0, 57./4)), we oberve that

||U“oo‘9/2(nr]B(o,n*)x[O,Tmax)) < .

Thus, the proof is complete. O
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