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Bang-Bang Principle in

Parameter Identification Problems

P RFET¥E  FHIfE— (Shin-ichi Nakagiri)

1 Introduction
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2 Identification problems

We study the identification problems for the system governed by nonlinear damped second

order evolution equations in the Hilbert space H of the form

d? d _
Eg+A2(t,Q)EZtI’+A1(t,q)y=f(t,q,y) in (0,7) -

dy(0 .
y(0) =yo € V1, '%(t‘lr-’mEH,

where A1(t,q) and A2~(t, q) are time dependent differential operators defined by bilinear forms
on Hilbert spaces V1 and V, (V4 C Vo C H), respectively, f(t,q,y) is a nonlinear forcing function
and these quantities depend on the unknown parameter g, which should be identified by some
identification process.

At present various theoretical and numerical methods for identifying or estimating the un-
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known parameters have been extensively studied mainly for linear systems. One of the most
powerful tool for identifying unknown parameters is the method of output least-squares, and
this optimal control theoretical technique due to Lions [12] has shown its effectiveness in various
applications to practical identification problems as in [1], [2] and [3]. We also take the method
of output least-squares for the nonlinear system (2.1) and consider the outpﬁt error criterion

given by the quadratic cost

1

J(9) = 3lICy(@) ~ zall3s, 1€ QuaC Q, (2.2)

where y(q) is a solution of (2.1), C is an observation operator, M is a space of observations, Q
is a set of parameters, Q4 is an admissible set of parameters and 24 is a desired value in M.

We study two fundamental identification problems for the system (2.1) with the criterion
(2.2). That is, the one is the existence problem of finding an element § € Q such that J(g) =
infyeq,, J(9), Qaa C Q, and the other is the problem of giving characterizations of such 7's.
The characterizations are given by the necessary conditions for optimality of parameters .

The purpose of this paper is to establish the results on existence and necessary conditions
for the system (2.1) with (2.2) on the structure of Gelfand five folds. In order to analyze our
identification problems for the system (2.1), it is fundamental to show that the nonlinear mapping
g — y(q) from parameters to solutions is strongly continuous and weak Gateaux differentiable
with respect to the topology of the space of solutions.

These are rather hard problems to solve because of the existence of nonlinear term f(¢,q,y).
For the strong continuity we shall give a proof based on the energy equality for (2.1), which
is established in Ha and Nakagiri [8], and the strong convergence technique due to Dautray
and Lions [4]. In proving the strong continuity we never use any compactness nor monotone
conditions on spaces and operators.

For the weak Gateaux differentiability, we have to extend the class of solutions, and for this
we use the method of transposition due to Lions and Magenes [13] to give the exact meaning of
Gateaux derivatives of y(q) with respect to q.

As consequences of the continuity and the differentiability we can establish the existence result
and the necessary conditions for the identification problems. Based on the results, we give an
application to practical damped hyperbolic partial differential equations involving unknown

constant parameters in the differential operators.
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3 Bang-Bang property

Let © be an opén bounded set of R® with a smooth boundary I' = 8Q. Let Q7 = (0,T) x Q
and ¥ = (0,7) x I'. Consider the following nonlinear ‘partial differential equation given by

o

where ag > 0,8 > 0,7 # 0,a, 8,7 € R and f € L*(Qr) = L?(0,T; L*(2)). We consider the

homogeneous Drichlet problem for (3.1). So we take V; = HE(Q2), V2 = H}(Q) and H = L*(Q).

Take the set of parameters as @ = R3 and let ap and Bo be fixed positive constants.

— (lof + 00)4\% + (18] + Bo) A%y + (v + o) siny = f in Qp, (3.1)

-Hence, for yo € V1, y1 € H there exists a unique weak solution y = y(«, 8,7) satisfying

82@1 L Oy 2 . .
W—(|a|+a0)45+(|ﬂ|+ﬁo)ﬂ y+ (v +1)siny=f in Qr
y:g—rylzﬂ on ¥ ‘ (3:2)

y(0,z) = yo(z) in Q and Z—Z(O,x) =yi(z) in Q.

We give the cost function defined by
T, B = [ (o8t 2) = 2a(t, ) dedt, V(e 7)€ Q. (33)
T

For one example let us take Qqq = [0, 1] X [0, 81] X [0,71]. Then there is an optimal parameter
(@, B,7) subject to (3.2) and (3.3). The adjoint state { = £(@, B,7) corresponding to this
example is given by the following equation:

9% o = 9, = .
W+(la|+ao) =+ (|8] + Bo) A€ + (V4 o) cosy € = y(@, B,%) — 24 in Qr

ot
_§=8—n=0 on X

&(T,z)=0 in Q and%%(T,x);Ovin Q.

Therefore the necessary condition on the optimal parameter (&, 3,%) is given by

_ Jy
(O! — CV) ar Va

+r—7) /Q siny € dedt < 0, V(e 5,7) € Quas
T

V¢ dedt + (8 — B) /Q Ay At dedt

which is equivalent to

(CY - a)ag 07 (IB - ﬁ) S 0» (7 - 7)0 S 0» V(a7 :87 7) € Qada (34)
where ‘
o= v .Vedudt, b= / AyA¢ dzdt, c= / siny £ dxdt.
Qp Ot Qr Qr

Assume that a # 0, b # 0, ¢ # 0 for simplicity. Then by (3.4) we have @ = %1—{1 + sign(a)},

8 = %{1 + sign(b)} and 7 = %{1 + sign(c)}. This is a bang-bang property for the optimal

parameters (@, 3, 7).
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