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1. INTRODUCTION

Let Q be a domain in an Euclidean space R™ for m > 2 and T be a positive number.
Suppose that 2 < p < 0co. We consider the evolutional p-Laplacian system

atui - D, (|Du’§;2gaﬁD[3ujhi,j) = div (|F|p—2Fz) ) 1=1,-- N, (11)

where the function F is given and defined on Q = (0, T) x  with values into R™, (gaﬁ (z))

and (hij(z)) are symmetric matrices with measurable coefficients satisfying the uniform
ellipticity and boundedness condition with positive constants A, A

ME? < gaﬂ(z)fifghij(z) < AlE]? for any &€ = (£1) € R™ and almost every z € @ (1.2)

and the notation |£| = g*P¢ ff,h” and |£]? = €€ = £1£° is used. Here and in what
follows, the summation notation over repeated indices is adopted.

Such evolution systems as (1.1) describe the gradient flow of the p—energy functlonal
with variable coefficients and lower order terms. -

We are interested in how the regularity of the function F is reflected to the solutions
under some assumption on the coefficients. Let us consider a Holder regularity of the
gradient of a solution for a given Holder continuous function F'. Such Holder regularity is
known to hold for elliptic and parabolic systems of divergence form (see [9, pp. 87-89],
[15] and the references in them). The C**—regularity for evolutional p—Laplacian systems
with only principal term was established in [5, 6, 7, 2] and the results become fundamental
to the regularity theory for evolutional p—Laplacian systems. Concerning p—Laplacian
systems with differentiable coefficients and lower order terms, we have the corresponding
results in [4, 3, 16, 17, 10]. For stationary p—Laplacian systems with non-differentiable
lower order terms, a Holder regularity of the gradient is studied in [8] for the degenerate
case p > 2. In [8, 11, 12], L9—estimates for the gradient for p—Laplacian systems are also
obtained and these are of interest itself (also see [13]). In the results above, a interior
regularity of a “local” solution is investigated. On the other hand, a interior regularity for
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evolutional p—Laplacian system with non-differentiable coefficients and lower order terms
seems to have not been successfully investigated (refer to [4, 1]). In this paper, we study
a interior Holder regularity for the initial boundary value problem for (1.1).

Let up be a smooth function defined on @ with values into R™. For F' € L? (Q, R™), con-
sider a weak solution of the initial boundary value problem for (1.1): u € L*=((0,T); L*(1,
R™)) NL»((0,T); WiP(Q, R™)) satisfying

/Q {~u- 06+ |DulP~2g°° Dy Dug'hij + | FIP2F - D¢} dz = Ofor all ¢ € C (Q, R™),
u = ug on 8,Q = [0,T] x AU {t =0} x Q, (1.3)
where the initial and boundary conditions are understood to hold in the following sense

u(t) = ug(t) in the trace sense of Wl”"(Q, R™) for almost every t,0 <t < T,
P{I& [u(t) — uo(0)|2,0 = 0. (1.4)

Our main result is the following.

Theorem 1 Suppose that the coefficients and F are Hélder continuous functions in Q
with an exponent B, 0 < B < 1, on the usual parabolic metric. Let u be a weak solution
of the initial boundary problem for (1.1) in @ with smooth initial and boundary value ug.
Then there exist an exponent o, 0 < a < 1, depending only on m,p and 3, and a positive
constant v depending only on m,p, A, A, B, |0yug, Dugleo,g and |Dug, Duly o such that the
gradient of the solution is locally Holder continuous in @Q with an exponent o on the usual
parabolic metric and the Hélder constant is bounded by the constant .

Because of a difficulty due to a property of the evolutional p—Laplace operator, we
assume that our solution under consideration is not a “local” solution in (), but a solution of
the initial boundary value problem. It seems more natural to study a interior regularity of a
“local” solution, defined on a local parabolic cylinder. However, the evolutional p—Laplace
operator has no homogeneity, that is, the solution multiplied by a constant is not a solution.
This property gives us a technical difficulty for a interior regularity of a “local” solution.
We do not also know whether the Holder exponent « can be chosen to equal to the Holder
exponent 3 of the function F.

2. GROWTH OF LOCAL P-ENERGY

.. In this section, we study the growth on the radius for the local p—energy. For any
z = (t,z) € R™', p >.0and 6 > 0, put Q5(2) = (t — p% 1) x By(z) and Q3(z) is
abbreviated to @,(z). To reduce (1.1) to a equation with homogeneous data on 8,Q, put
w = u—ug in Q. Then w is a weak solution in ¢ with zero initial and boundary value of

dyw — Do (|Dw + Duol52 g Dgw'hs ;)

= div (IFlP—2F7«) - at’U:o + Da (|D'w + DU0|Ig’;2_qaﬁDg(uO)jhi7j) in Q (21)
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Let W be the extension of w into (—o00,T] x © such that & = w.in @ and @ = 0 in
(—00,0] x Q. We can also define the extension §*°, h;; and F' of the coefficients and the
function F' to be Holder continuous functions with compact support in (—oo, T x 2. Then
we see that @ € L®((—oo,T], L*(Q, R™)) N LP((—oco, T]; Wy (R, R")) is a weak solution
of (2.1). By this reason, let u € L®((—o0, T, L*(Q, R™)) N LP((—oo, T]; Wy P(Q, R™)) is a
weak solution of (2.1) with u = 0 in (—00,0] X Q. Let 29 = (o, o) € Q be taken arbitrarily
and Ry = 1dist(zo, Q). By translation and a scaling transformation, we assume that our
solution u is defined on Q = (—00,0) x By(0). Note that the support of the solution u is
contained in the closure of (——tR@a’g, 0) x Bs(0).

The main lemma in this section is the following.

Lemma 2 For any o, 0 < a < 1, there exists a positive constant '7‘depending only on
M, P, A A, 100000, 60 1DU0 00,650 190560 [FIP2Fg.0,0 1Dul, 5, and o such that

o (L 1DulP)dz < e (2.2)
el2 i

holds for any 2 € Q; and all p, 0 < p < 1.

For the proof of Lemma 2, let § > 2, R, 0 < R <1 and % = (,%) € Q,. By translation,
we assume that Z is the origin. To prove Lemma 2, we use the perturbation argument
with the homogeneous p—Laplacian system, similarly as in [1] and [4, pp. 292-315]. Let
v € L®(—R°,0; L*(Bg, R")) N LP(—R?,0; W'P(Bg, R™)) be a solution to the homogeneous
p—Laplacian system with constant coefficients (for the existence of a weak solution, refer
to [14, Theorem 6.7, pp 466-475]).

o' = D, (|DUEZS)h(O)Qaﬂ(O)Dﬂvjhij(0)> in Q%
v=u on §,Q% - (2.3)

We know that the L®—estimate holds for the gradient of solutions (see [4, Theorem 5.1,
pp. 238]).

Lemma 3 There ezists a positive constant v depending only on m and p such that

s 5 p(2-6)
sup |Dv|P <« %—[/o |Dv|Pdz | ++yR P2 . (2.4)
Q% R JQR

2

We now estimate the difference of v from v in the local LP—norm.

Lemma 4 There exists a positive constant v depending only on m,p,\, A, |Oyuo|
|Du0|oo,Q2) [gh]ﬁ7(§2 and [IFlP—ZF]ﬂ’Qz such that

OO,Qz’

L]

Bp » 1 p:
— 0| 5—
/Q%IDU—D'vlpdz < vR? 1/Q (1+ | Duf?)dz +7]Q%| 71 (/Q%(lJrlDuF’)dz) . (2.5)

6
R

]

|

—
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where [f]; 5, denote the Holder semi-norm of a function f in Q. with exponent 3.

Proof. Subtract (2.1) from (2.3) and use a test function v —u, which is shown to be admis-
sible by the usual approximation argument, in the weak form of the resulting equation. By
Young’s inequality and some algebraic inequalities, we make routine calculation to have,
for any € > 0,

Dv — DulPdz

y /Q% | | |

< [, 1Dv = Dul ((IDul + | Duol)?*| o] + lgh — (gh)(0)]| D+ D™
R .

—2 —2
+ |2 F = (|FP?F)q

) + |Oguo||v — w|dz

: p=2
< e/ |Dv — Dul|Pdz —I—/ (14 |DulP)r-1dz
Q% Q%

oot _p_
+7 /Q" |gh - (gh)(O)lp‘l ID’U, + DuO‘p + “F'P—QF _ (‘FIP_QF)Q?:JP_I dz
R

p—1

() (e e

R

[V

p—

<e / IDv — DufPdz + 4|Q%| P ( / (1+|Du|”)dz>
T e <%
p

pB L « P
B (2, [ 1+ a4 105 (P72 g, + lZy ) ).
where the positive constant v depends only on €', p, and |Dug|,, 5, and we used (1.2)
and, in the last inequality, Poincaré inequality available for functions in WO1 P(Bg) and the
Hélder continuity of the coefficients g, h and the function |F|P~2F in Q, with exponent 3
on the parabolic metric.

Combining (2.5) with (2.4), we arrived at the following estimation.

Lemma 5 Set 8 = 2 + a(p — 2) for any positive number o. Then there exists a positive
constant v having the same dependence as the one in Lemma 4 such that

p—2
2 m+6
p RoP p m+6 14 P
/Qg(l + |DulP)dz < v { (m /Q%(l + | Du| )dz) +2 } (R) /;2?2 | DulPdz
+,Ypm+0R——ap (27)

m+0-op+ 27 5.“3/ P
+YR P (IQ%I Q%(l + |DulP)dz

[V

S

m+0—ap(pfl) RoP p p—

[ay

holds for any 8 > 2 and all p, R, 0 < p < R < 1.
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Proof. Noting that 0 < R < 1, by (2.6), we have

/ |DulPdz < fy/ |Dv — DulP + |Du|Pdz
Q% Q%
v e BB
< 'y/Qe (1+ |DulP)dz +vR T, (2.8)
R

We substitute (2.8) into (2.4) and combine (2.5) with the resulting inequality. Then it
follows that, for any p, 0 < p < %,

f (1+ |DulP)dz < +vsup|Dvl? +7/ |Du — Dv|Pdz + |Qf,|
Q; Q% Q%

2

P
2 p(2-6)
< Q)] {(Rngl / |Du|pdz> +R2(p 1) + R p2 } (2.9)

+7Rz%/ (1+|Dul’”)dz+'7|62§’e|51_1 (/ (1+|DUI”) )
Q% @

The first term in the right hand side of (2.9) is bounded by

p—2

p(6~2) ,T

y(ﬂgf |Du|pdz) (£)m+o /Q  |DufPdz. (2.10)
R

For p > &, we trivially have

/Q (1 Dup)dz < gmH0( £ ym+o /Q (14 |Duf?)dz. (2.11)

R

Proof of Lemma 2. We use the nonlinear iteration introduced in [1, Lemma 3.1, pp'.
297-299].

Lemma 6 Let ¢ be a non-negative non-decreasing function defined on [0, 1]. Suppose that
$(p) < 20(4)B(R) +70(R ™" + p'R™™) (2.12)

holds for all p,R, 0 < p < R < 1, where o, I,k and o are given positive constants with
[ >k and 0 < o < 1. Then, for any positive number ¢ satisfying

0 <6 < k(5h), ‘ o (213)

and any R, 0 < R < 1, there exist a positive constant v, depending only on 0,1, k,0 and
8, and a positive integer ng, depending on the same constants as v, and also on R, such
that

Bp) < 19~ (hems 9(B) +1) (214

holds for all p, R, 0 < p< R <1, whereq—l—{—“(l ).
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Define the sequences {ax} and {6} by

m+2

Qg = =5, Oyl = O ok (p=21m+2 . (215)

ak(p—2+ 5 )+m+2’
Hk:2+ak(pf2), k=1,---.

Then we find from induction that {oz} and {6} are positive decreasing sequences with
o\, 0 and 0\, 2 as k / co. Now we claim that

Lemma 7 For each k = 0,1,---, there exists a positive constant v, depending only on
ok, a0, B, |Dul, 5, and the same quantities as in Lemma 4 such that

(1+ [Duff)dz < yrp™** (2.16)

-
|Qc¥| Q7 (20)
holds for any 2, € Q, and all p, 0 < p < 1.

Proof of Lemma 7. We prove the validity of Lemma 7 by induction on £ = 0,1, --.
From u € LP((—00,0); W1P(B5(0), R")), we see that
1 1 D”d<‘a°”<1 / D”d) 2.17
51 Jyny (L 100z < 0 (143 [ |Dupa (217)
holds for any 2y € Ql and all p, 0 < p < 1, where we used that m+ 6y = app by o = "‘T“
Suppose by induction that (2.16) holds for some k = 1, - - -. Let us show that (2.16) holds
for k + 1. For all p, 1 < p <1, we trivially have

m /Q"k“(zo)(l + | DulP)dz < p~%k+1P (1 4 y2mtbo /Qz \Dul”dz) i (2.18)
P

We now proceed our estimation for each zy € ;. Fix zp € Ql and put a = ag,0 = 0.
Then we obtain from (2.7) that, for all p, R, 0 < p< R<1,

R
+ypm O RoP (2.19)

p—2 m+0—a: _.._'6__
+v(m + ()P )R™ ”(l ao<p—1))_

14 1 DuP)dz < { )5 +2m+"°}(—> / 14+ | DulP)dz
/Qg(zo)( | Dul?) v {(m) gty (1T 1040

In Lemma 6, choose R = 1, ¢(p) = ank(ZO)(l + |DulP)dz and
p
l=m+0, K=ap, o=1-LF (2.20)
and then apply Lemma 6 for (2.19). Noting that
2 P Chaphr  _ w(l-o)
0<é= aioak?"m+0k < ak—a—(;(zfi"_—ol)p+m+6k = k(l-o)+D? (2-21)
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we obtain from Lemma 6 that, for all p, 0 < p < %,

4/ng(z0)(1 + lDU'p)dZ < zylpl—lﬂﬂ;n (2lqn0+l LOk( )(1 + |Du|”)dz + 1>’ (222)

1 \%0

2

where we note that the positive constants rig and 7; depend only on 7k, ag, & and § and
that

_ a,pB : o : ‘
9= 14 o tmron (2.23)
B o :
I — K+ 6k =m+0— oxp+aup ﬁaa+,:+9k

=m+ 0k — Qg 41D-
Thus we can choose a positive constant ;41 depending only on g, i, 0, 8 and |Du|p,c~22
such that

/0k (14 |Duff)dz < Viey1p O AP (2.24)

o (20
holds for all p, 0 < p < 1.
To show that (2.16) holds for Q%+ (z), divide Qf,k“(zo), in the time direction, into
= [p%%+1/p%] + 1 cyhnders Q% (t,,:vo) i=0,1,---,80 — 1. Adopt (2.24) in each region
Q (t,, Zgo), ¢ =0,1,---,s0—1. Here note that the support of the solution u is in the closure
of (- % Rp, 0) x Bg(O). Sum up the inequalities to have

spo—1

14+ |DuP)dz < / (1+|DulP)d
/Q‘Z’““(zw( T Duf)dz < Z "k(tz,mo) + |Duff)dz

< Vst SOP M+ — 1P < Vet lpm+9k+1 QX t1P | (2.25)

Hence, Lemma 7 follows from (2.17), (2.18) and (2.25).

Finally, we derive the assertion in Lemma 2 from Lamma 7. Take a positive number
p, 0 < p < 1, arbitrarily and fix it. For any positive number a, 0 < o < 1, let k be a
positive integer such that oy < o < aj—;. Then adopt (2.16) with k£ and p and use the
decomposition argument above to conclude (2.2) in Lemma 2.

3. GROWTH OF LOCAL MEAN OSCILLATION

In this section, we study the growth on the radius of the local mean oscillation. Let
20 = (to,xo) € @ be taken arbitrarily and Ry = 3disty (20, 0pQ), where disty(z1,22) =

min{|t; — tlli, |zy — z1|} for any z; = (L, ) € R™*1 i =1,2. By translation and a scaling
transformation, let v € L®((—27,0], L3(B2, R")) N LP((—27,0); Wy (B, R")) is a weak
solution of (1.1) in @5 = (—2P,0] x By(0). Using the notation in Sect.2, we recall that
u=ut+w=u+win Q) C Po= (_1%157 0) x B(0). Then we see from Lemma 2 that, for
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any @, 0 < a < 1, there exists a positive constant -y depending only on a, | Duly, p,, | Duglp, p,
and the same quantities as in Lemma 4 such that

/Q , )|Du|”dz < 7/ (|Dw|” + |Dug|?)dz

plZ0

< 1+ Duo p)p™ TP 3.1)
00,Q5 :

holds for any 2 € @Qf and all p, 0 < p < 1.
Our main lemma in this section is the following.

Lemma 8 There exist a positive number (i, 0 < B < 1, depending only on m,p and
B, and a positive constant v, depending only on m,p, 8, |Dul|p p,, |Duglp.p, and the same
quantities as in Lemma 4, such that

/Q o) |Du (Du),Pdz  (32)
p 2

< P / |Du — (Du)gPdz + 1
: 1 /Q1 (20) ‘

holds for any 20 € Q7 and all p, 0 < p < 1

We apply the isomorphism theorem due to Campanato (see [9, Theorem 1.2, p. 70;
Theorem 1.3, p. 72]) to see that Du is Holder continuous in @} with an exponent £;.
Hence, we conclude the assertion in Theorem 1.

‘Similarly as in Sect.2, we use the perturbation argument with the homogeneous p—Laplac
-lan systems. However, here we make a little device to change the power of radius of a
local parabolic cylinder, on which we solve the homogeneous p—Laplacian systems. By
this device, we can appropriately adopt the Holder estimate for the gradient for the homo-
geneous p—Laplacian systems to make estimation of the mean oscillation of the gradient
of a solution in the LP—norm. :

Let 20 € QF C Pr = (—£,0) x By(0) be arbitrarily taken and, for any R, 0 < R < 1,
and any 6, 0 < § < 1, set 7 = R!™°. For brevity, we assume that z; is the origin. Let
v e L®(—r,0: L'(B,, R"))NLP(—r,0 : WHP(B,, R")) be a weak solution of (2.3), in which
0, R and w are replaced by 2, and u, respectively. Similarly as in (2.6) in the proof of
Lemma 4, we subtract (1.1) from (2.3) replaced 6, R and w by 2,7 and u, respectively, and
use a test function v — u in the weak form of the resultlng equatlon to make estimation for
the dlﬂerence v — u in the LP—norm

_§E
/QIDv—DuF’sz"yR(l 6)P—1/(2(1+|Du|p)dz, (3.3)

where a positive constant v depends only on m, p, A, A, [ghlg gz and [|F|P72F]g, Qp .
Now we observe that the L°°—estimate holds in the followmg form.
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Lemma 9 For any o, 0 < o < 1, there exists a positive constant y(a) having the same

dependence as the one in (3.1) such that

|DUleog s < (@R,
2

Proof. We choose 8 = 2 and R = r in Lemma 3 to have

1 \2.
Do, < ——-—/ DvlPdz | +«v.
Dol <17, 1P0Pd) 7
Noting that 0 < r < 1, we find from (3.3) that
/ \DofPdz < / |Dv — DulPdz + / |DufPdz
Qr Qr Qr
< 7/Q (14 |DulP)dz.

Substitute (3.6) into (3.5) to have

_ . L |
Dvloogr < / Dupdz) + 4.
[l 3 7<|Qr| er |, 7

Adopt (3.1) with p = r = R=% in (3.7) to arrived at (3.4).

We need the estimation for a oscillation of the gradient of a solution v. '

(3.4)

(3.5)

(3.7)

Lemma 10 For any positive number 6, 0 < 6 < 1, there exist a positive number oy,
0 < oy < 1, depending only on m,p and 6, and a positive constant y(6), depending only on

6, | Dulp,p,, | Duolp,p, and the same quantities as in Lemma 4, such that

osc(Dv) < vy(8)R™.
Qr

(3.8)

Proof. We know that the Holder estimate holds in the following form (see [4, Theorem

that p
B 4 Emax{1, |Dv|oo2,QR1_5 }
Dv) < 4|Dv|w 2
88}_(5( 'U) — ’Yl (% ’QR12_'5 dlStQ(QB, 6pQR1”5)
2 2 2
If R® > i, then we have

8s}_<3:(Dv) < 8R5|Dv|m,Q%_6{
2

1.1, pp. 256]). There exist positive constants v and ap depending only on m and p such

(3.9)

(3.10)
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Since, if 0 < R? < %, then

dist2(Qr, Q@ g1-s) = imin{R'° - R, \/R"%— R}
2 g A

3 pl-6
s,

AV

we obtain from (3.4) and (3.9)

aQ(2—2) S
osc(Dv) < 7| Dv]oog pup max{l, | Dvle g\, HE™
" 2 T
6ao—ap(1—6)(1+50@)

< Y(o)R (3.11)
We choose a positive number o to satisfy
, bag
S i) (1 + =t=2) 12
and then we put
a1 = bag — ap(1 — 6) (1 + %‘2)) >0 (3.13)

to have the conclusion of Lemma, 10.
Now let us finish the proof of Lemma 8.

Proof of Lemma 8. For all R, 0 < R <1, and all p, % <p< %, we trivially have

m-+4
/ |Dv — (Dv),[Pdz < 4™+ <ﬁ> [ 1Dv—(Dv)gp. (3.14)
Qp R QE 2
2

From Lemma 10, we find that

/Q |Dv — (Dv),[Pdz < FR™+2+po (3.15)
P v

holds for all R, 0 < R < 1, and all p, 0 < p < &, where positive constants ¥ and a;,
0 < a; < 1, depend only on the same quantities as in Lemma 10 for each positive number
8, 0 < 6 < 1. Gathering (3.14) and (3.15) gives that

. m+4
/Q \Dv — (Dw),Pdz < 4™+ (%) /Q D= (Du)gPdz + 3R (310

2

holds for all p, R0 < p < & < 1, where positive constants 4 and a;, 0 < a; < 1, depend
only on the same quantities as in (3.15). From (3.1), (3.3) and (3.16), it follows that, for
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all p, R, 0<p< &<
/Q |Du — (Du),|Pdz

< 'y/ |Dv — (Dv),|Pdz +fy/ |Dv — DulPdz
Qr Qr

o mH | _5) (L2 N
< 7-(3) / |Du— (Dw)gfPdz + 7R 4y 0 () / (1+ |Dul)dz
R Qr Qr .
p m-+4 ‘ . ) .
<7 (-) / |Du — (Du)g|Pdz + YR™ 2 1P - (3.17)
R QR ' B .
oy ( RU-O(mt2+2) ¥ R1-8)(m+2-part 22 ) o
Fix a positive number ¢ to satisfy
ﬁ%
0<b< —B= . 3.18
m+ 2+ ﬁ% (3.18)
Next, choose a positive number « satisfying (3.12) and
(1-6)L2 —6(m+2)
0<a< £ 3.19
p(1—96) (319)
Then we can choose a positive number as to be
_ Bp
m+ 2+ pag = (1 - 6) m+2—pa+;_—1 >m+ 2. (3.20)

Finally, set #; = min{o;, as}, where oy is in (3.13), and apply the iteration argument in
[9, Lemma 2.1, p. 86] to arrive at (3.2).
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