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Abstract

.- We find a minimizer of a reduced form of the Ginzburg-Landau free energy for
d-wave superconductors having distinct degree-one vortices. For a single vortex in the
vortex core, we analytically recover the vortex structure with fourfold symmetry.

1 Introduction

In the 1910’s, low-temperature superconductivity was observed on metals and alloys (cf.
[9]). Recently, high-temperature superconductivity has been found on some copper-oxide
superconductors (cf. [12]). The vortex state of high-temperature superconductors is differ-
ent from the vortex state of low-temperature superconductors. When the applied magnetic
field is close to the lower critical field H,,, the single vortex is expected to be symmetric in
low-temperature superconductors but it may be asymmetric (fourfold symmetric) in high-
temperature superconductors (cf. [8], [31]). Moreover, as the applied magnetic field is close
to the upper critical field H,,, Abrikosov type vortex lattices are expected to be triangu-
lar in low-temperature superconductors but they may be rectangular in high-temperature
superconductors (cf. [1], [8], [27], [30], [31] etc).

To distinguish low-temperature and high-temperature superconductivity, an s-wave and
a d-wave order parameter were introduced (cf. [13], [21] ). Soininen et al. (cf. [3], [28])
introduced the Ginzburg-Landau free energy with an s-wave and a d-wave order parameter.
Ren et al. (cf. [24], [25]) present a microscopic derivation of the Ginzburg-Landau equations
from the Gor’kov equations by using the finite temperature Green’s-function approximation
method. From [31], we learned the two fields Ginzburg-Landau free energy is given by:

G(W,, Uy, A) = /2 &% curl A — H|* + o, (T)|V,/
R . 9.
L1 = [Wal2)? + 4T+ BT 20,2 + 2(V2TY + V2T (1.1)
+2| TT W2 + | TT al? + {I1, ¥, TT; W3 — I1, O IT; ¥ + H.C.},
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where ¥, is the s-wave order parameter, ¥, is the d-wave order parameter and A is the
vector-valued magnetic potential, ][I =1V — A, H is a constant apphed magnetic field, « is
the Ginzburg-Landau parameter and

as(T) = Cs/(1 — T/T.). (1.2)

Here C, is a positive constant, T is the current temperature and T, is the d-wave transition
temperature. :

As the current temperature 7T is close to 7, Franz et al. [8] observed that.in a predom-
inantly d-wave superconductor, the s-wave component is generically very small. They also
provided approximation formulas for the order parameters ¥4 and ¥, as follows:

i\I’s‘ < l\I’dl, IV‘IJ5| <K IV\I’dl as T = T,. (13)

Affleck et al. [1] obtained the leading order in (1 — T'/T¢) as
Vs :f(Hi—Hz) Yy, ‘ (1'4>

where ¢ is a parameter satisfying that £ — 0 as T' — T¢. In [7], Du derived (1.4) by the
formal asymptotic analysis.

We learned from [5] and [6] that it is reasonable to ignore the magnetic field in strongly
type II superconductors when the applied magnetic field is close to H,; and 7' — T,. Hence
it is valuable to study the two fields Ginzburg-Landau model (1.1) without the magnetic
field (i.e. A, H = 0). Moreover, Rosenstein et al. [6] took (1.3) and (1.4) into (1.1) and
modified the free energy (1.1) as follows: ' '

. _
G(¥,) = /]Rz |VT,4% + 51— 1U4)? + B0V, dz dy, (1.5)

where O = 92 — 85 and ( is a parameter satisfying that 8 — 0 as T — T.. Here we have
ignored the magnetic field (i.e. A, H = 0) for strongly type 1I superconductors.

It is hard to find the minimizer of (1.5) by the standard direct method. Suppose that
U, € H*(R?;C) is a minimizer of (1.5) over H*(R*;C). Then it is easy to check that

G(Uy+v) = G(Tg) +/ IVol? — (1—1\pd1 2)|]2 4+ 2(Ty - v)?

(1.6)
[ 2o (W) + 5lol* + BIO0f,
for any test function v € C{°(R?). Hereafter, z; - 22 = 3(%12, + 21%) for all 21,2, € C. Let
v, (2) = 6,09 (2) sin[67%3(z + y)] for z = z + iy € C 2 R?, where vy is a test function with a
nonempty compact support and {é,} is a sequence of positi’ve numbers such that ¢, — 0 as
n — oo. Here we use the fact that the complex plane C is isomorphic to R?. Now, we replace
v in (1.6) by v, and we obtain that G(Vg+v,) = G(¥g4) but || ¥y + vp|| gz — 00 as n — co.
Hence ¥4 + v,,’s form a minimizing sequence but ¥y + v,’s have no converging subsequence
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even weakly converging subsequences in H2 (R?;C). Thus the free energy (1.5) has a defect
on minimization.

From [30], we learned a Ginzburg-Landau energy functional (without the magnetic field)
as follows:

1 . i
B(¥,) = /RQ [V + 51— [0l + 0 (162 Waf? + |02 W) dudy, (1.7)

where 7 is a constant depending on the current temperature 7. The term |02V 4|2 + I@Z\Il al?
breaks the circular symmetry and accounts for the square symmetry. Furthermore, Par k and
Huse [22] introduced a more generalized Ginzburg-Landau free energy (without the magnetic
field) for d—wave superconductors as follows:

P(¥0) = [ IVE + 50— a4+ [ AL + B (IDV] — 410,06, Val?) dody, (1.8)

where A = 92 + 82 and 3,71 are parameters tending to zero as T — To.

Hereafter, we assume that |¥4| — 1 and all the derivatives of ¥, decay fast as |(z, y)| —
0. Such an assumption is consistent with the results in [8] and [31]. Using integration by
part, we may transform (1.8) into

G(Uy) = /;v\pdﬁ S(1= |2 + B1OWaf* + 7| ATy drdy, (1.9)

where (3, v are parameters tending to zero as T — T,. In this paper, we assume that 3,y > 0
and 3,7 — 0as T — T.. In particular, such an assumption includes the case that 0 < v < 3
i.e. (1.9) is a small perturbation of (1.5).

In Section 2, we approximate (1.9) by

. |
Ge(\Ifd)z/ VLl + 5 (1= (W) + BIOW +7 |AVe[ dr dy, (1.10)

where 0 < € < 1 is a small parameter, Q is a bounded smooth domain in ®* having an
interior point at the origin and 2Q = {(%,%) : (z,y) € Q}. In the rest of this paper, we
prove that the minimizer of (1. 10) has distinct degree-one vortices in Section 3. In Section 4,
we replace (2 in (1.10) by Bg,, where Bg, is a disk with radius R, and center at the origin.
Here Ry > 0is a large constant satisfying 1 < Ry < 1/e. Then (1.10) becomes

é(q:d)=/BR V0,2 + (1—;%;) + BIDT? + 7 | A% dz dy, (1.11)
(t]

where 8 > 0 is a small parameter as T — T, v = Cf3, and C is a positive constant
independent of 8. We study then the critical point of (1.11) and find out its single vortex
structure with fourfold symmetry. The single vortex structure of d-wave superconductors
having fourfold symmetry is well known in physics (cf. [5], [6], [8], [27] and [31]). Here we
give a mathematical proof of such a vortex structure.
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2 Preliminaries

To investigate vortices in d-wave superconductors, we assume that the order parameter
U, satisfies |¥y] — 1 and all the derivatives of Wy decay fast as |(z,y)| — oo. Such an
assumption is consistent with the results in [8] and [31]. Hence we may approximate (1.9)
by )

Ge(Uy) = ﬁg |V + 5(1 — | Wg)®)? + BIOT* + v |AV,)* dz dy, (2.1)
where 0 < € <« 1 is a small parameter, (2 is a bounded smooth domain in R? having an
interior point at the origin and $Q = {(%,%) : (z,y) € Q}. Rescaling the spatial variables
z,y by €, (2.1) becomes

n 1 .
G.(¥,) :/Q|v\11d|2+§§(1— |Wa$)? + 6| OW4° + 7. Ay da dy, (2.2)

where
be=pB€e and vy =7v¢é. (2.3)

Of course, (2.3) implies that 0 < d¢,7e = O(€?) as € — 0+. In Section 2 and 3, we study
(2.2) with an assumption that 0 < &, v. = O(€?) as € — 0+,

This kind of approximation can also be found in s-wave superconductors. The conven-
tional s-wave Ginzburg-Landau free energy (cf. [9]) without the magnetic field is

1 2 1 2\2
L, 5Ivul?+30 - P,

where u € C is the s-wave order parameter. Under the hypothesis that |u] — 1 and all the
derivatives of u decay fast at |(z,y)| — oo, we may approximate the s-wave Ginzburg-Landau

free energy by . )
2 212
fro 38+ 5= P,

where 0 < ¢ < 1 is a small parameter and Q is a bounded smooth domain in ®? having an
interior point at the origin. Then we rescale the spatial variables by € and obtain the energy
functional as follows:

Bw) = [ 5IVal+ 250 - P, (2.4

where u : 0 — C is the s-wave order parameter. There are many investigations on the free
energy (2.4). For the readers who are interested in these works, please refer to [2], [15], [17],
[23] and [29] etc.
In [2] and [29], we learn the minimizer of E, over H, () having n degree-one vortices in
Q, where
H(Q)={ue H(Q;C) :u=g on 0},

and g : 90 — S?! is smooth with degree n > 1. Furthermore, the minimizer u. of (2.4)
satisfies
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(1) Be(ue) =nmlog 2+ Wy(as, -, as) +0c(1) as € — 0+,
(2) u, converges to u, (up to a subsequence) in CZ (Q\{a1, --,an}) as € — 0+,
(3) (a1, --,a,) € Q" is a global minimizer of the renormalized energy W, defined in [2],

where o(1) is a small quantity which tends to zero as € — 0+,

n A . .
u(z) =] ~ % D vreq, (2.5)

and h is a real-valued harmonic function. Since R? is isomorphic to C, we may consider
Q C R? 2 C. Note that the domain (2 is assumed star-shaped in [2]. However, Struwe [29]
generalized results of [2] for all bounded smooth domains.

For the minimizer of (2.2), we prove:

Theorem I. Suppose 0 < &, ve = O(€e?) as € = 0+. Then there exists a minimizer ue of
(2.2) over H;(Q) such that

(i) ue € H*) has n degree-one vortices in
(i) G.(u.) =2nmlog L+ O(1) ase— 0+,

(iii) ue converges to u, (up to a subsequence) strongly in L? ()
and weakly in H (Q\{a1,---,an}),

(iv) (a1, -+, an) € Q" is a global minimizer of the renormalized energy W, in [2].

Remark. We may consider the energy functional (2.2) with 0 < 4, 7. = O(¢?) as a small
perturbation of (2.4). However, the perturbation terms are of higher order derivatives. Hence
the Euler-Lagrange equation of (2.2) is a singular perturbation problem and the perturbation
terms are of the 4-th order derivatives. Until now, there is no general theorem on such a
singular perturbation problem.

3 Proof of Theorem 1

To prove the existence of a minimizer, we define a comparison map as follows:
U(z) = [T Us(52) €49, (3.)
j=1

for z € 2 C C, where b;’s are n distinct points in {2 and H, is a real-valued smooth function
in {2 such that :
U=g on 0Q, |Hec=0(1).
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Hereafter, Up is the symmetric vortex solution (cf. [4], [10], [11]) defined by
Us(z) = f(R) €' for z€C, (3.2)
where R = |z| and (R, #) is the polar coordinate in C. Moreover, f(R) satisfies

{ "+ 5 f - =f+1-f)f=0 for R>0,
f(0) =0, f(oco) =1.

From [4] and [11], the symmetric vortex solution Uy satisfies

Lemma I.
(i) f(R)=apR+a;R*+O(R%) as R— 0+, where apg > 0,a; € R are constants,
(i) f(R)=1— 55 +O(R™) as R — +o0,

(iii) Uy = f(R)€'? is analytic in C.
Hence it is easy to check that
- 1
G (U)=2mnlog - +0(1) ase—0+. . (3.4)
€

Now, fix 0 < € < 1. We claim that il}llf( . Ge(u) attains a minimizer u € H?(Q). Let
u€l, ‘
{ux} be a minimizing sequence such that

Ge(ug) = inf  G(u). (3.5)

w€H}(Q)

Then by (2.2), (3.4) and (3.5), we have
lim inf / |Vug|® + |Dugf® + |Aw* dz dy < +c0.
k—o0 Q

Hence there exists a subsequence {u,} such that
||l < Key Vi>1, (3.6)
where I, > 0 is a constant independent of j. Thus (3.6) implies
ug, = ue  weakly in H*(Q) as j— oo. (3.7)
Therefore by Fatou’s lemma, u, is a minimizer of G’f over H ;(Q)

From (2.2), (2.4), (3.4) and u, is a minimizer of lf?lf(g) Ge(u), we obtain
ucHy )

ﬂmggwnmg%+oay (3.8)
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Moreover, by (3.8) and [29], we have
1

E(ue) = mn log -+ O(1). (3.9)

Hence (3.4) and (3.9) imply that |
Ou|?dz dy = O(1), 3.10

b | 1ul?dzdy = 0(1), (3.10)
and

e /Q Au? dz dy = O(1). (3.11)

Thus we complete the proof of (ii).
By (3.9), Proposition 1.1 and 1.2 in [16], we complete the proof of (i). Furthermore,

we obtain that u, converges to u, (up to a subsequence) strongly in L?(Q2) and weakly in
NN S '

HL (\{a1,--,an}), where a1, - -,an € Q, u,(2) = [] l;———J—Ie’h(z),Vz €Q C Cand his
. — a;

j=1 J

a real-valued function. Now we show that A is a harmonic function as follows: Consider the

Euler-Lagrange equation of G¢ with respect to the minimizer u.. Then u, satisfies

1 .
A'Ufe + —2_(1 - Iuélz)us - 56 D2ue — Ye Azue =0 in Q . (312)
€

Perform the wedge product with u, and (3.12). This is a standard trick to erase the cubic
nonlinear term in (3.12) (cf. [26] and [29]). Then we have

U A Aug — 6 ue A D?ug — yeue AA*u, =0 in Q. (3.13)

Let p € C°(Q) be a test function. Multiply (3.13) by p and integrate it on {2. Then using
integration by parts, we obtain

-~ /Q (e A Oztie) Pz + (e A OyUe)Dy

= 5. /Q (e A D) Op + 2(ptte A Dug)pe — 2(8ytue A Due)py (3.14)

+ Ve /Q (e A Aue)Ap + 2(0zue A Atie)pe + 2(0yue A Ate)py

Here we have used the following formulas:

uANAu = 0 (uAdzu)+ 0y (uAdyu),
uA D% = O(uAOu) — 2(uy A Duy — uy A Ouy) ,
uAA U = AluAAu) — 2(ug A Aug + uy A Auy).

Hence by 0 < 7,6, = O(¢?), (3.9)-(3.11), (3.14) and Holder inequality, the limit map u,
satisfies
u, N\ Au, =0 indistribution sense. (3.15)
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Thus u, is a canonical harmonic map i.e. h is a harmonic function. Therefore we complete
the proof of (iii).

Now we prove (1v) as follows: Let (@1, -,8,) € Q" be a global minimizer of the renor-
malized energy W,. The definition of W, can be found in [2]. Then we define another
comparison map as follows: : '

[ ulz—d;+a;) if 2€Be(d;),j=1,--,n, -
(2) = { Ue(2) if 2 € Qe = Q\ UL, Ba(dy), (3.16)

where 0 < a < 1 is a constant and U, is a minimizer of E, over H g(QEa). Here the boundary
condition g is defined by

~_19 ' on 02, _
? _{ u(-—@; +a;) on 0Be(d;),j=1,--,n. (3.17)

Hence by (iii), [2] and [29], U, satisfies

ife . H z—a; eiﬁ(z) in OZ(Q-EQ) as € — 0+, (3.18)

where h is a harmonic function. The convergence of (3.18) may be up to a subsequence.
However, this does not effect the following argument. Thus by (3.18) and [2], it is easy to
check that

1
Z/ () + 2mnalog ¢+ 2Wy(@s, ) +0d(1), (3.19)

where ge(u) = |Vu|? + 557 (1 = [u]%)? + 6c|Du|? + 7| Au|? is the energy density of Ge and o(1)
is a small quantity which tends to zero as ¢ — 04. On the other hand by (iii) and [2], we
have

1 1 : '
/ 2|Vue|2 5 (1= Jucf®)? 2 mnalog = + Wy(ar, -, ax) +0c(1), (3.20)
where Qe = Q\ Uj_; Bea(a;). Hence (3.20) implies that
Bea (aJ)

(ue) > Z / (ue) + 2mna log — = +2W( ooy an) +0(1), (3.21)

Thus by (3.19) and (3.21), we obtain
W,(ar, - an) < Wy(an, - dn) +0dl) 3.22)

Since (a1, - - -, @) is a global minimizer of Wy, then we complete the proof of (iv) by (3.22).
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4 Single Vortex Structure in the Vortex Core

In this section, we assume that the single vortex structure is in the vortex core Bp,,
where Ry > 0 is a large constant satisfying 1 < Ry < lc Hereafter, we denote Bp, as a disk
in R? with radius Ry and center at the origin. To study the vortex structure in the vortex
core, we restrict (1.9) in the vortex core Bg, as follows:

3 1 ;
G(Ty) = /B [V + 51— [Wal’)? + A1 + 7 |AU P dudy, (4.1)

where v = C'3,C > 0 is a constant independent of 3, and § > 0 is a small parameter
tending to zero as T' — T,. We investigate (4.1) with # > 0 a small parameter to see the
phase transition of d-wave superconductors.

The Euler-Lagrange equation of (4.1) is

AUg+ (1= |U) ¥y~ B(D* + CAHT, =0 in Bp,. (4.2)

Note that F = 0% 4+ C A? is an elliptic operator as C > 0. Moreover, by the Lax-Milgram
theorem, E : HZ(Bg,;C) — H™2(Bg,;C) is invertible and we denote E~! as its inverse.
Hence the standard elliptic regularity theorem (cf. [20]) can be applied in (4.2).

We state the main result on (4.2) as follows: :

Theorem II. There ezists a solution Uy of (4.2) 3atisfying
Ty(z,B) = f(R) €' + B(a(R) e** + b(R) *’ + ¢(R)) ¢’ + O(B%) as B—0, (4.3)

where a,b and ¢ are smooth real-valued functions.

The equation (4.3) implies that the d-wave order parameter ¥, is fourfold symmetric in the
vortex core. In [27], we learn a well approximated solution of (4.2) with fourfold symmetry.
Here we find an exact solution of (4.2) with the fourfold symmetry.

Proof of Theorem II.
To solve (4.2), we set

oz, B) = Up(z) + Pwi(2) + fPws(z) + fPw(z, B), (4.4)
where Up is the symmetric vortex solution defined in (3.2) and (3.3). Here w,; satisfies
Lw;—EUy=0 in Bg,, w; =0 on 0Bg,, (4.5)

where Lv = Av + (1 — [Up|*)v — 2(Us - v)Uj is the linearized operator of the equation (4.2)
with respect to a trivial solution (¥4, 8) = (U, 0). In addition, w- satisfies that

Lwy =2(Up-wi)wy + |wi’Upg+ Ew; in Bg,,
wy =0 on 0Bg,.

(4.6)
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It is easy to check that
EUy = h_3(R) e™%% 4 hy(R) €'’ + hs(R) €, (4.7)

where h_3, h; and hs are real-valued smooth functions. By [14], [18], [19] and [23], L is a
bijection from Hg(Bpg, ;C) onto H™!(Bpg,;C). Hence by (4.5)-(4.7), we have

w; = a(R) e ¥ + b(R) e*? + ¢(R) €'?, (4.8)

2
wy =Y ay_ak(R) €' 0700 + a1 4 (R) £ HR0 ' (4.9)
k=0

where a, b, c and aj+4;’s are smooth real-valued functions.
Taking (4.4) into (4.2), we obtain that

Lw= 2[(Up- (wg+ Bw))w + (Up - w1)(wse + fw)] + Blwz + fw|?*Uy
+B(Up - (w2 + Bw)) (w2 + Bw) + 2(w; - (w2 + Bw))Uy (4.10)
+lwy + B(ws + Bw)|* (w1 + B(ws + Bw)) + Ewy + BEw  in Bg,.

Hence (4.10) is equivalent to

E_l Lw= E_l{Q[(UO . (’UJ2 + ,B’LU))’LUl + (Uo . ’1.01)(’11)2 + ﬁ'w)] -+ ,Bl’wz + ﬂ’LUIZUO
+8(Up - (wg + Bw))(wz + Pw) + 2(w; - (we + Bw))Us (4.11)
+lwy + B(wa + Bw)|* (w1 + B(we + Bw))} + w2+ Bw  in Brg,.

Note that (4.11) has a trivial solution (w, 8) = (ws, 0), where w3 satisfies that

Lws = 2[(Up - wa)wy + (Up - w1)wa] + 2(wy - wo)Up + |wi[*wy + Ewy in Bg,,

w3 =0 on OBg,. (4.12)

Since Up, w1, wp are smooth functions and L is bijective from H}(Bg, ; C) onto H~}(Bpg, ;C),
then the standard elliptic regularity theorem implies that wj is also a smooth function. Fur-
thermore, since F is bijective from HZ(Bpg, ; C) onto H %(Bg, ; C) and H!(Bg, ; C) is embed-
ded in H™%(Bg, ;C), then E is a bijection from HZ(Bg, ;C) N H*(Bg, ; C) onto H~'(Bpg, ; C).
We denote E~! as the inverse of E. Hence E~!L is a bijection from H}(Bg,;C) onto
H{(Bgr,;C) N H3(Bg,;C). Thus by the implicit function theorem, (4.11) has a unique so-
lution w € Hy(Bg, ;C) as || is sufficiently small. Moreover, the standard elliptic regularity
theorem may imply the smoothness of w. Therefore (4.2) has a solution ¥, satisfying (4.4)
as | A is sufficiently small. By (4.4), (4.8) and (4.9), we obtain (4.3) and complete the proof
of Theorem II. '

Final Remark: By (1.4) with A =0 and (4.3), we have
Uy(2) = £€0[Uo + B(a(R) e + b(R) e*? + c(R)) e’ + O(6%)] as B— 0. (4.13)
Since Up(z) = f(R)€t?, then |
1 1 2 1

DUM(=) = 5 + 3 ) e+ 2 [(f' = ) — =(f' -

5 f)]exl. (4.14)
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Hence by (i), (ii) of Lemma I and (4.14), DU, satisfies

OUy(2) = 40, Re™*? + O(R?) as R — 0+, (4.15)
and ) 3
OU(2) = — 5T e~ + TR e’ +OR™) as R— +oo0. (4.16)

By (4.15) and (4.16), the degree of OUp is minus one in B;, and three in By, as 0 < r; < 1
and R; > 1. Moreover, by [4] and [11], it is easy to check that

qu DUp(z) #£0  if OUp(z) = 0. (4.17)
Hence (iii) of Lemma I and (4.17) imply that OUp has only simple zeros in C. Thus DUy
has a single zero with degree minus one at the origin and another four zeros with degree one
away from the origin. Therefore as || is sufficiently small, ¥; has a single zero with degree
minus one near the origin and another four zeros with degree one away from the origin. This
indicates the four-lobe structure of ¥, in the vortex core. The numerical simulation can be
found in [7], [8] and [31].
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