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1 Main Theorem

We are concerned with the multiplicity of solutions for the following singularly per-
turbed semilinear elliptic equations:

—e?Au + a(z)u ululP~?  in  Q,
(P).

0 in €,
0 on J1,

where £ > 0, p € (2,2*) (2* denotes the critical exponent of the Sobolev embedding
HY(Q) C LP(Q) given by 2* = 2N/(N —=2) if N > 3, = 400 if N = 1,2) and
a € C(Q) is a function with condition (C) specified below.

As for €, we assume that

u

vl

e ) is a bounded domain in RY (N > 1), or
e 0 =RY (N >1).

Without loss of generality, we also assume that 0 € int .
When = R", the boundary condition should be understood as

u(z) — 0 as |z| — 0.

In order to characterize the topological feature of a(x), we introduce the following
condition (C)s, s for some positive numbers &g, 6.



(C)so,s: There exist positive constants r, p which satisfy the following:
(C1): a(z) >1+4 6 in B(0,p),
(C2): a(z)>21-61inQ,

(C3): - sup,ear), a(z) < 1, if Q is a bounded domain,
© SUP,e(ary), 6(¢) <1 and limjyjeoo a(z) = 1, if @ = RY,
where K is some closed subset of ) which satisfies the following
condition (K):

(K): B(0,p) C K, OK is homotopically equivalent to ¥~ and

(0K), = {z € R" | dist(x,dK) < r} C Q.

Roughly speaking, conditions above imply that a(z) has a “peak” in K (condition
(C1)), the value of a(x) on OK is uniformly less than the level of the “peak” (condition
(C3)), and OK is the set which is surrounding the “peak” and is homotopically
equivalent to V=1 (condition (K)). '

Putting v(z) = u(ex), we see that (the weak form of) (P). is equivalent to

(P), —Av+a(ez)v=vpfinQ, v>0, veE H(Q/e),

&

and the solution of (P’). corresponds to the critical point of the functional I.(v) =
// [(Vol]? + a(ez)|v]?) in My(Q/e) = {v € Hi(Q/e); ||[v]ltrase) = 1}. Hence it is
Qfe

enough to find critical points of I, to prove the existence and multiplicity of solutions
of (P).. '

It is well-known that for small . there is a relation between the multiplicity of
critical point of I. in M, and the topological feature of a(x). For example, we refer
[1. 2, 3, 4]. Our main theorem reads as follows.

Main Theorem.

For all 6y > 0. there exists 6 > 0 such that if a € C(Q) and (C)y, s is satisfied,
then there erists & such that for any e € (0,&), (P). admits at least 2 solutions.
Moreover, if Q0 is a bounded domain, there exists another solution for e above.

From now on, we shall only deal with the case of bounded domain in the main
theorem. The argument for the case of unbounded (2 is almost similar as below.

One can easily prove that if a(x) = 1 (in general a(x) = Const.) then (P), admits
at least one solution uy (ground state solution) for all value £ € (0,00) with the aid
of Mountain Pass Theorem. In general, one cannot expect the existence of multiple
solutions. Indeed, when a(x) = 1 and Q = ball, the uniqueness result for sufficiently
small ¢ is known (Dancer [1]). The main theorem above says that as soon as one
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perturb a(z) to have a “peak”, one gets the another (high energy) solutions wu, u;
even if the perturbation is very small. This “generation of higher energy solution” is
a consequence of the change of topology of some level set of the functional associated
to (P). caused by the nontrivial shape of a(z). It is the purpose of this paper to

discuss this change of topology.

2 Known Results and Motivations

The interest in studying (P). arises from several physical and mathematical contexts.

2.1 Physical Contexts

In the physical context, (P). can be regarded as a (reduced) nonlinear Schrodinger
equation and small parameter ¢ corresponds to the Dirac constant 7.

It is well known that when A can be well approximated by 0 (this approximation
is called “semiclassical approximation”), quantum mechanical equation may have a
solution corresponding to a “semiclassical” state, concentrating around a classical
mechanical equilibrium. It is also well known that classical equilibrium is often
the point ‘which minimize the potential energy. So it is reasonable to expect that
for small ¢, (P). has a “semiclassical” solution concentrating around a point which
attains the minimum of the energy potential a(x). Hence the structure of a,,;, =
{y € Q| a(y) = ming a(x)}, the minimum set of a(x), may play a significant role
for the existence, multiplicity of solutions of (P)..

From this point of view, del-Pino and Felmer [2] obtain the following result.

Proposition 2.1 (Effect of weight function, del Pino-Felmer [2])

Suppose that A is a bounded set compactly contained in Q0 and mings a(x) >
infy a(z). Then for sufficiently small e, (P). admils a solution u., which concen-
trates to a point in A which attains the minimum of a(x) as = — 0.

Proposition 2.1 implies that there exist at least as many solutions of (P). as the
number of connected components of a,,;, if € is small enough.

In our situation, (C)s, 5, Gmin may have only one connected component, so in this
case Proposition 2.1 provides only one solution. Our main theorem says that not
only the number of connected component of a,,;, but also some topological feature
of @m;n (i-e. the fact that K is homotopically equivalent to SN‘l) plays some role
on the multiplicity of the solutions of (P)..

2.2 Mathematical Contexts

In the mathematical context, (P). can be regarded as an example verifying the fol-
lowing feature. In many semilinear elliptic problem including small parameters (e.g.



semilinear elliptic equations with critical or nearly critical exponent [6, 7], stationary
Cahn-Hilliard equation [8], Ginzburg-Landau equation [9]), it is commonly observed
that if the parameter is small enough, then the existence and multiplicity of solu-
tions are controlled by the finite dimensional object. As for singularly perturbed
equations in bounded domains, the following result holds.

Proposition 2.2 (Effect of topology of the domain, Benci-Cerami [5])

Assume that a(z) = Const. Assume also that Q@ C RY is bounded and Q is
topologically nontrivial in the sense of category, i.e., cat Q > 1. Then for small ¢,
(P). admits at least cat  + 1 solutions.

In this case, the finite dimensional object referred above is 2. The following
questions naturally arise:

1. Can one replace the “nontriviality of the topology of the domain” by the
“nontriviality of the shape of the weight function a(z)”?

2. What is the finite dimensional object which control the ex1stence and multi-
plicity of solutions when a(z) # Const.? o

Our main theorem gives an affirmative (partial) answer for the first question
and suggests that the finite dimensional object asked in question 2 is not Q as n
Proposition 2.2 but SN

3 Variational and Topological Tools

Our main tool relies on the variational approach, which is based on the following
fundamental principle.

Proposition 3.1 (Fundamental principle in Morse theory)

Suppose that M is a Banach-Finsler manifold and I € C*(M) satisfies the fol-
lowing assumption: v

1. I satisfies (PS).-condition for all ¢ € [a,b].

2. [I < da] and [I < b] have a “difference in topology”.

Then there exists a critical value € € [a, b]

(Here we mean {u € M | [(u) < a} by [l <al.)

In order to compare the topology of level sets of I, various kinds of topological
invariants are known. We shall here use the notion of the “category” of sets, defined
by: '

Definition 3.2 (Notion of “category”)
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Assume X be a topological space and Q,w are two closed subsets of X with w C Q.
Then n = catg[w] if and only if n is a smallest number among m such that (w; )72,
is a closed contractible covering of w in 9,

i.e.,

w= UL w;, Jh; € C([0,1] x wj; X), 3z, € X s.t.
hj(0,2) = 2 Vz € w;, hj(l,2) = z; V2 € w;.

We simply denote catg[Q] by cat €.
In terms of this notion, Lysternik-Schnirelman theorem (category version) reads

as follows:

Proposition 3.3 (Lysternik-Schnirelman theorem, category version [10])

Suppose that M is a Banach-Finsler manifold, I € CY (M), and a = infy I >
—00. Suppose also that for some b’ > b > a, I satisfies (PS). for all ¢ € [a,¥] and
KNn[l=b]=¢ where K ={ue M| (dI), = 0}.

Then [I < b contains at least cat[I < b] critical points.

4 Sketch of Proof of Main Theorem

4.1 Variational Setting and Notations
We introduce the following notations: for w C RY,

o My(w) ={ue Hyw)| |[ut|prw) =1},

o [ ou(u)= / (E2|Vu|2 + auZ) dz,

o S,(c.a,w) = infyens,w) Le.ow(u).

_As for S,(e, a,w), it is well known that the following result holds:

Proposition 4.1 (Existence [11] and uniqueness [12] for ground state in R")
For any e,a € RY, there exists a unique minimizer (up to translation) for
Sp(e, 0, RN which is positive and radially symmetric with respect to the origin.

In order to discuss the relation between the level set of I (in function space) and
OK /e (in RY), we define the “truncated barycenter” Sg(u).
Let n € C5°(R) be a cut off function such that 5(t) = 1 iff |¢| < R, n(t) = R/t
if ¢ > R. Set Br(u) = / an(|z])|ulPd for Yu € M,(RY).
JRA
Then it is obvious that for Yu € M,(R"), |8r(u)] < R holds. Moreover, if
the (intuitive) barycenter of u € M, is near “infinity”, then Br(u) is located near

OBr = {z € R" | |2| = R}. Namely,
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Proposition 4.2 (The range of truncated barycenter)
Suppose @ € M,(RY) and (y,) C RN satisfies |yn| — 00 as n — oo,
Then |Br(a(- — yn))| = R as n — oo.

Setting v(z) = e™/Pu(ex), problem (P). can be rewritten as
(P), —Av+talex)v =%, v2>0, ve HyQ/e).
It is well known that to solve (P'). is equivalent to:
(V) Find critical points of I1 4, g/ on M,(2/¢).
thanks to the Lagrange multiplier rule (in (V) we denote a(ex) as a.(z).)

So hereafter we carry out the program (V).
Since it is well known that I ,, /. satisfies (PS), for all ¢, in order to prove main

theorem it is enough to verify that for some b > a = S,(1,a.,Q),

o cat [[,, g/ < b] > cat SN-1 =2 and
e there exists another critical value ¢ greater than b

by virtue of Proposition 3.3.
In order to introduce the “limiting functional” Il,b(JSLRN associated to I 4, /e,

we define b(z) € C(R") as follows:

(B)syp: 1<b(z)<1+6in RY, b(z) =1+ & in B(0,p/2),
b(z) =1 1in B(0,p)°.

Note that a.(2) = a(ex) > b(a) — & for Ve € (0,1) and Vz € Q/e.
The nontriviality of the topology of the level set [I; ., q/. < D] is a consequence

of the nontriviality of the level set of I, = I, j(,y g~, the limiting functional.

We next investigate the level set of /..

4.2 Limiting Problem

Hereafter we fix positive constants &, p. Let b(x) be a function defined by (B)s,,, in
the last section.

In view of Proposition 4.1 and the fact that S,(1.1. RY) = S,(1, b(z), RY) we

can verify the following:

Proposition 4.3 (Inf is not achieved in the limiting problem.)

S 17 b X ,RN = illf CU 2 + b I)|u 2 (],ilf iS not achieved.
[)
weM,(RY) JRY ‘



58

This result imply that all minimizing sequence possesses no convergent subse-
quence.

Combining this fact with the compactness of embedding H* C L}

loc

we get

Proposition 4.4 (Behavior of minimizing sequences of the limiting problem
[13])

For any minimizing sequence (v,) C Il/lp(IRN) of I, Iyn) C RY st v,(-) =
5(- — ) + o(1) in H (RY) where o(x) = Uy gy () is a (unique) minimizer of
Sp(l, 1,RY) (see Proposition 4.1).

That is, for any v € M,(R") such that I (v) = Lb() RV (V) is very close

to Sp(1,b(z), RY), v is almost concentrated at “infinity”. So by Proposition 4.2,
|Br(v)| ~ R. Namely,

Proposition 4.5 (Concentration lemma at infinity for the limiting functional)
For all r € (0, R), there exists o such that for all v € M,(R"),

2

Lo(v) < Sp(1,b(2), RY) + a = Br(v) & B(0,r).

This proposition says that [I,, < S, + a] (C M,(R"Y)), infinite dimensional object,

can be compared with the B(0,r)¢(C R"), finite dimensional object, via Bg(v).

4.3 Original Problem

Now we turn to the original problem. We regard the original functional

I.(v) = /Q/ (]Vv|2 + (Z(ESC)]’U|2) dz as a perturbed functional of I.. We first

note that under (A)g, 5., the relation between the level set of functional and B(0,r)°
described in Proposition 4.5 still holds for the perturbed functional I..

Proposition 4.6 (Concentration lemma at infinity for original functional)

For all » € (0,R), there exist §,n such that for any a satisfying (A)s,s, the
following holds:

there exists € such that for all € € (0,&] and for all v € M,(2/e),

L(v) < 5,(1,b(2),9/e) + n = Br(v) & B(0,7).

So we can construct the mapping fg : [I. < S, + 1] — B(0,7)¢. Next we construct
the mapping @, : 0K /e — [I. < S, + 7).

For any y. € 0K /e set vy, (7) = w(e(z~yc) /)0y 4 gy (2 —y.) where p € C5(R™)
is a cut off function such that ¢ is radially symmetric with respect to the origin,
elz) =1iff |2] <1/2,0 < p(x) < Tiff 1/2 < |zl < 1, p(x) = 0 iff J2] > 1. Let us
define ®.(y.) = v.,.. Yy. € 0K /e. Then the following holds.



Proposition 4.7 (Construction of an embedding mapping from R” to the func-
tion space)

I. 0 @ (y:) — ¢ < Sp(1,5up(ag), a(z),RN) < S,(1,b(z),RY) as e — 0 uniformly
iny € OK where y. = y/e.

It is well known that I, satisfies (PS). For  in Proposition 4.6, we can choose
e, bso that I o ®.(y.) < b < bV = S,(1,b(z),RY) + 3n/4 Vy. € dK /e by virtue of
Proposition 4.7. It is also obvious that without loss of generality we can choose b
so as not to be a critical value of I, since otherwise we already get infinitely many
critical values. These facts combined with Proposition 3.3 imply that

the number of critical points in [I. < b] > cat[l. < b].

So in order to prove main theorem, we have to estimate cat{l, < b] from below.
We can carry out this with the aid of comparison theorem of category (Proposition
4.8) and the fact

Br: [l <b — B(0,r) and &, : 0K /e — [I, < b]

in view of Proposition 4.6 and 4.7.

4.4 Topological argument

The following comparison theorem can be proved by a standard argument:

Proposition 4.8 (Comparison theorem for category)

Suppose A, B: topological spaces, a C A, b C B: closed subsets. Suppose also
A® :a — b, 38 : B — A, continuous mappings such that o ® s homotopically
equivalent to injection a — A. Then catg[b] > catalal.

In our case, with some technical argument, we can verify Sro®. is homotopically
equivalent to injection from 9K /e to B(0,7)¢ for small .

Applying Proposition 4.8 with A = B(0,7)°, a = dK/e, B =b = [I. < b], we
find that cat [I. < b] > cabpo,)<[0K/e] = cat SN~! = 2. Thus we have established
the existence of at least two critical points of I, with the level below &'

To get another critical value of I, greater than &', we follow the following standard
argument.

It is easy to find v € M,(2/e) such that

to+ (1 —1)®.(y.) £0 Vte[0,1], Yy, € 0K/e.
Let us define n(t,y.) € C([0,1] x 0K /e; M,(R2/e)) by

n(t,ye) = (tv+ (1 - t)q)s(ys))/”tv +(1 - t)(bs(ys)np'
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Then it is easy to see that b’ < ¢ = maxyep1],y. ear/e I 01(t, Y. ). We shall show that
there exists at least one critical value in [V, ¢].

Suppose on the contrary there is no critical value in [b,c]. Then by the well
known deformation lemma, there exists f € C(M,; M,) such that

f ='identity on [I, < b] and f([l. < ]) C [I. < V']

Then 0K /e is contractible in B(0,7)° by the contraction ¢(¢,y.) € C([0,1] X
0K /e; B(0,7)°) defined by ¢(t,y.) = Bro fon{t,y.). Since dK/e and B(0,r) is
both homotopically equivalent to SV~1, we have the contradiction.

In summary, we find that there exists at least

e two critical points in [/, < ] and
e one critical value greater than &'

Thus the main theorem is proved.

Remark. 1. The same type of multiplicity result also holds for (P). for the
case where @ = R" and «(z) has a peak, or  is an exterior domain with bounded
complement and a(z) has a “creek” around the “hole” of ). These results together
with detailed argument of the proof of facts described above will be the subject of
the forthcoming paper [14, 15].

2. Another type of multiplicity result for —Au + u = a(z)u + f(z) in RV is
discussed in Adachi-K. Tanaka [16].
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