<table>
<thead>
<tr>
<th>Title</th>
<th>Moduli of Rational Functions and Rational Plane Curves (Fundamental Groups and Algebraic Functions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Namba, Makoto</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2001年, 1182: 103-110</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2001-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/64576</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Moduli of Rational Functions and Rational Plane Curves

Makoto Namba

1. Introduction

Holomorphic mappings \(f : X \to M \) and \(f' : X' \to M' \) of complex spaces are said to be **equivalent** if there are biholomorphic mapping \(\varphi : X \to X' \) and \(\varphi : M \to M' \) such that the following diagram commutes:

\[
\begin{array}{ccc}
X & \xrightarrow{\varphi} & X' \\
\downarrow f & & \downarrow f' \\
M & \xleftarrow{\varphi} & M'
\end{array}
\]

If it is possible to introduce a natural complex space structure on the set of equivalence classes (for a given type of mappings), then we may call it the **moduli space of holomorphic mappings** (for the given type).

It is a difficult problem in general to show the existence of moduli space. In this lecture, we mainly consider the case in which \(X \) and \(X' \) are compact Riemann surfaces and \(M \) and \(M' \) are the \(m \)-dimensional complex projective space \(\mathbb{P}^m = \mathbb{P}^m(\mathbb{C}) \).

2. Linearly non-degenerate holomorphic mappings

Some of our results may be rewritten in terms of stability (see Mumford [3]). But it is difficult to analyze the stability. Our discussion is topological and complex analytic. In particular we make use of the following 2 theorems in order to prove our theorems.
Theorem 1 (Holmán [2]) Let X be a (resp. normal) complex space and G be a complex Lie group acting properly on X. Then the quotient space X/G is a (resp. normal) complex space and the projection $\pi : X \rightarrow X/G$ is holomorphic. If moreover G acts on X without fixed point, then $\pi : X \rightarrow X/G$ is a principal G-bundle.

Theorem 2 (Popp [5]) Let X be a quasi-projective \mathbb{C}-scheme and G be an algebraic group acting properly on X. Assume that every stabilizer is a finite group. Then the quotient space X/G is an algebraic space.

In the above 2 theorems, "G acts properly on $X"$ means that the following mapping is proper, that is, the inverse image of every compact set is compact:

$$(\varphi, p) \in G \times X \mapsto (\varphi(p), p) \in X \times X.$$

Now, for a compact complex space X, we put

$$H(X, \mathbb{P}^n) = \{ f : X \rightarrow \mathbb{P}^n \mid f(X) \text{ is not contained in any hyperplane, that is, } f \text{ is linearly non-degenerate} \}$$

Then $H(X, \mathbb{P}^n)$ is a complex space (so called the Douady space, Douady [1]), whose underlying topology is the compact-open topology. $\text{Aut}(\mathbb{P}^n)$ acts on $H(X, \mathbb{P}^n)$ as the composition of mappings:

$$(\varphi, f) \mapsto \varphi \circ f$$

Theorem 3 $\text{Aut}(\mathbb{P}^n)$ acts on $H(X, \mathbb{P}^n)$ properly without fixed point. Hence $H(X, \mathbb{P}^n)/\text{Aut}(\mathbb{P}^n)$ is a complex space and $H(X, \mathbb{P}^n) \rightarrow H(X, \mathbb{P}^n)/\text{Aut}(\mathbb{P}^n)$ is a principal $\text{Aut}(\mathbb{P}^n)$-bundle.
Theorem 4 Let $\{X_t\}_{t \in \Gamma}$ be a family of compact complex spaces with the parameter space a connected complex space T. Then $\text{Aut}(\mathbb{P}^m)$ acts properly without fixed point on $H = \bigcup_t H(X_t, \mathbb{P}^m)$. Hence $H/\text{Aut}(\mathbb{P}^m)$ is a complex space and $H \longrightarrow H/\text{Aut}(\mathbb{P}^m)$ is a principal $\text{Aut}(\mathbb{P}^m)$-bundle.

Here H is the relative Douady space (see Pourcin [6]). The proof of Theorems 3 and 4 can be done by taking a sequence of points and using the property of $\text{Aut}(\mathbb{P}^m)$ that every element φ of $\text{Aut}(\mathbb{P}^m)$ is uniquely determined by $m+1$ points p_1, \cdots, p_{m+1} in general position and $m+1$ points q_1, \cdots, q_{m+1} in general position such that $\varphi(p_j) = q_j$ for $1 \leq j \leq m+1$.

Remark The quotient space $H(X, \mathbb{P}^m)/\text{Aut}(\mathbb{P}^m)$ can be regarded as the set of linear systems of dimension m without base point on X.

3. Moduli of holomorphic mappings from compact Riemann surfaces

We solved the moduli problem of holomorphic mappings of compact Riemann surfaces of genus greater than 0 into \mathbb{P}^n in Namba [4].

We constructed the moduli space as follows: Let T be the Teichmüller space of compact Riemann surfaces of genus $g \geq 2$ and $X = \{X_t\}_{t \in \Gamma}$ be the Teichmüller family. Let Γ be the Teichmüller modular group. Then Γ acts properly discontinuously on both $T X$. Let $H_d^m = \bigcup_t H_d(X_t, \mathbb{P}^m)$ be the relative Douady space of linearly non-degenerate holomorphic mappings of X_t for some t into \mathbb{P}^m of degree d. Here the degree of a non-degenerate holomorphic mapping of a compact Riemann surface X_t into \mathbb{P}^m is by definition $\deg[f : X_t \longrightarrow f(X_t)] = \deg[f(X_t)]$.

Theorem 5 (Namba [4]) $\text{Aut}(\mathbb{P}^m) \times \Gamma$ acts properly on H_d^m. Hence $M_d^m = H_d^m/(\text{Aut}(\mathbb{P}^m) \times \Gamma)$ is a complex space. If $m = 1$, then M_d^m is a normal complex space of dimension $2d + 2g - 5$.
The complex space \mathcal{M}_d^m is nothing but the moduli space of non-degenerate holomorphic mappings of degree d of compact Riemann surface of genus g into \mathbb{P}^m.

The case $g = 1$ can be treated in a similar way and the moduli space of maps can be constructed using the theory of elliptic functions. In particular \mathcal{M}_d^1 for $m = 1$ is a normal complex space of dimension $2d - 3$.

4. Moduli of rational functions

In this lecture, we give some recent results on the case $g = 0$, that is, some results on the moduli problems of linearly non-degenerate holomorphic mappings from the complex projective line \mathbb{P}^1 into \mathbb{P}^m.

A linearly non-degenerate holomorphic mapping of \mathbb{P}^1 to \mathbb{P}^1 is nothing but a non-constant rational function. A rational function f of degree d can be expressed as follows:

$$f(z) = \frac{a_0 z^d + \cdots + a_d}{b_0 z^d + \cdots + b_d} \quad (a_0 \neq 0 \text{ or } b_0 \neq 0),$$

where the denominator and the numerator do not have a common root. Hence the set of all rational functions of degree d can be identified with the Zariski open set

$$H_d(\mathbb{P}^1, \mathbb{P}^1) = \{(a_0 : \cdots : a_d : b_0 : \cdots : b_d) \} = \mathbb{P}^{2d+1} \setminus R$$

of \mathbb{P}^{2d+1}, where R is the zero locus of the resultant of the denominator and the numerator. The moduli problem in this case asks when there is a natural complex space structure (or an algebraic structure) on $H_d(\mathbb{P}^1, \mathbb{P}^1)/G$, where $G = \text{Aut}(\mathbb{P}^1) \times \text{Aut}(\mathbb{P}^1)$ acting on $H_d(\mathbb{P}^1, \mathbb{P}^1)$ by the composition of mappings as follows:

$$(\varphi, \psi, f) \in G \times H_d(\mathbb{P}^1, \mathbb{P}^1) \mapsto \varphi \circ f \circ \psi^{-1} \in H_d(\mathbb{P}^1, \mathbb{P}^1).$$
But this action is not proper:

Example 1 Put $f(z) = z^3 - 3tz \ (t \in \mathbb{C}).$ Then $f_t \ (t \neq 0)$ is equivalent to $f_1,$ for $f_t(z) = a(u^3 - 3u)$ where $u = z/\sqrt{t}$ and $a = (\sqrt{t})^3,$ while f_0 is not equivalent to $f_1.$

Example 2 Let $P(z) = a_0 z^d + \cdots + a_d$ be any polynomial of degree d such that $P(-n) \neq 0$ for $n = 1, 2, \cdots.$ Put

$$f_n(z) = \frac{P(z)}{(1/n)z + 1}$$

$$g_n(u) = \frac{u^d + (a_i/a_0 n^i)u^{d-i} + \cdots + (a_d/a_0 n^d)}{u + 1}$$

Then f_n converges to $P(z)$ and $g_n(u)$ converges to

$$g(u) = \frac{u^d}{u + 1}$$

as $n \to \infty.$ Note that f_n and g_n are equivalent, for

$$f_n = \phi_n \circ q_n \circ \psi_n^{-1}$$

where $\phi_n(w) = a_0 n^d w$ and $\psi_n(u) = n u.$ But g is not equivalent to P for a general $P.$

Now by the Riemann–Hurwitz formula for the rational function f as a branched covering from \mathbb{P}^1 onto \mathbb{P}^1 of degree $d,$

$$\sum_{P \in R_f} (e_P - 1) = 2d - 2,$$

where the summation runs over the set R_f of all ramification points
and e_p is the ramification index at the ramification point p. Put

$$H_{d,k} = H_d^k(P^1, P^1) = \{ f \in H_d(P^1, P^1) \mid \text{there is a ramification point } p \text{ such that } e_p \geq k \}.$$

Then $H_{d,k}$ is a closed algebraic set of $H_d = H_d(P^1, P^1)$.

Theorem 6. Let $d \geq 3$. Then $G = \text{Aut}(P^1) \times \text{Aut}(P^1)$ acts properly on $H_d - H_{d,d}$ such that every stabilizer is finite. Hence the quotient space $(H_d - H_{d,d})/G$ is an algebraic space of finite type.

The quotient space $(H_d - H_{d,d})/G$ can be regarded as the moduli space of the rational functions of degree d. For the proof of Theorem 6, we use the following lemma in combinatorics:

Lemma Let m be an integer greater than or equal to 3 and let A and B be finite sets. Suppose that F and G be surjective mappings of the set $\{1, \ldots, n\}$ onto the sets A and B respectively such that (i) for every point α in A, the number of the points $F^{-1}(\alpha)$ is less than $n/2$ and (ii) for every point β in B, the number of the points $G^{-1}(\beta)$ is less than $n/2$. Then there are distinct 3 numbers a, b, c in $\{1, \ldots, n\}$ such that (1) $F(a), F(b)$ and $F(c)$ are distinct and (2) $G(a), G(b)$ and $G(c)$ are distinct.

5. **Moduli of plane rational curves**

Put

$$B_d = B_d(P^1, P^2) = \{ f : P^1 \rightarrow P^2 \mid f \text{ is a birational holomorphic mappings of } P^1 \text{ onto the image curve } C = f(P^1) \text{ of degree } d \}$$

Then B_d is an Zariski open set of $H_d(P^1, P^2)$ and $G = \text{Aut}(P^2) \times \text{Aut}(P^1)$ acts on B_d as the composition of mappings.
By the genus formula for the rational curve $C = f(\mathbb{P}^4)$,

$$\sum_{p \in \text{Sing} C} \delta_p = (d-1)(d-2)/2,$$

where the summation runs over the singular locus $\text{Sing} (C)$ of the curve C and

$$\delta_p = \dim_{\mathbb{C}} (\hat{O}_p / \Theta_p) = \frac{\mu + r - 1}{2}$$

(\hat{O}_p is the integral closure of the ring Θ_p of germs of holomorphic functions on C, r is the number of branches of C at p, μ is the Milnor number.)

Put

$$B_{d, k} = \{ f \in B_d \mid \text{there is a point } p \in \text{Sing} f(\mathbb{P}^1) \text{ such that } \delta_p \geq k \}.$$

Then $B_{d, k}$ is a closed algebraic set of B_d.

Theorem 7 Let $d \geq 4$. Put $l = (d-1)(d-2)/4$. Then $G = \text{Aut} (\mathbb{P}^2) \times \text{Aut} (\mathbb{P}^1)$ acts properly on

$$B = B_d - B_{d, l}$$

such that every stabilizer is finite. Hence the quotient space B/G is an algebraic space of finite type.

Since B/G can be written as $B/G = (B/\text{Aut} (\mathbb{P}^1))/\text{Aut} (\mathbb{P}^2)$, this can be regarded as the moduli space of rational plane curves of degree d.

Remark Theorem 6 and Theorem 7 can be generalized. But we do not discuss it here.
References

Makoto Namba
Dep. of Mathematics, Osaka Univ.
Toyonaka City, 560-0043, JAPAN.
E-mail: namba@math.wani.osaka-u.ac.jp