Moduli of Rational Functions and Rational Plane Curves

Makoto Namba (難疫 畝)

1. Introduction

Holomorphic mappings $f: X \longrightarrow M$ and $f': X' \longrightarrow M'$ of complex spaces are said to be <u>equivalent</u> if there are biholomorphic mapping $\mathcal{Y}: X \longrightarrow X'$ and $\mathcal{G}: M \longrightarrow M'$ such that the following diagram commutes:

If it is possible to introduce a natural complex space structure on the set of equivalence classes (for a given type of mappings), then we may call it the <u>moduli space of holomorphic mappings</u> (for the given type). It is a difficult problem in general to show the existence of moduli space. In this lecture, we mainly consider the case in which X and X' are compact Riemann surfaces and M and M' are the m-dimensional

2. Linearly non-degenerate holomorphic mappings

complex projective space $\mathbb{P}^m = \mathbb{P}^m(\mathbb{C})$.

Some of our results may be rewritten in terms of stability (see Mumford [3]). But it is difficult to analyze the stability. Our discussion is topological and complex analytic. In particular we make use of the following 2 theorems in order to prove our theorems.

Theorem 1 (Holmann [2]) Let X be a (resp. normal) complex space and G be a complex Lie group acting properly on X. Then the the quotient space X/G is a (resp. normal) complex space and the projection $\pi: X \longrightarrow X/G$ is holomorphic. If moreover G acts on X without fixed point, then $\pi: X \longrightarrow X/G$ is a principal G-bundle.

<u>Theorem 2</u> (Popp [5]) Let X be a quasi-projective \mathbb{C} -scheme and G be an algebraic group acting properly on X. Assume that every stabilizer is a finite group. Then the quotient space X/G is an algebraic space.

In the above 2 theorems, "G acts properly on X" means that the following mapping is proper, that is, the inverse image of every compact set is compact:

$$(\psi, p) \in G \times X \longmapsto (\psi(p), p) \in X \times X.$$

Now, for a compact complex space X, we put

 $H(X, \mathbb{P}^m) = \{ f : X \longrightarrow \mathbb{P}^m \mid f(X) \text{ is not contained in any hyperplane, that is, } f \text{ is linearly non-degenerate} \}$

Then $H(X, \mathbb{P}^m)$ is a complex space (so called the Douady space, Douady [1]), whose underlying topology is the compact-open topology. Aut (\mathbb{P}^m) acts on $H(X, \mathbb{P}^m)$ as the composition of mappings:

$$(\varphi, f) \longmapsto \varphi \circ f$$

Theorem 3 Aut (\mathbb{P}^m) acts on $H(X, \mathbb{P}^m)$ properly without fixed point. Hence $H(X, \mathbb{P}^m)/Aut(\mathbb{P}^m)$ is a complex space and $H(X, \mathbb{P}^m) \longrightarrow H(X, \mathbb{P}^m)/Aut(\mathbb{P}^m)$ is a principal Aut (\mathbb{P}^m)—bundle.

Theorem 4 Let $\{X_t\}_{t\in T}$ be a family of compact complex spaces with the parameter space a connected complex space T. Then Aut (\mathbb{P}^m) acts properly without fixed point on $H = \bigcup_{t} H(X_t, \mathbb{P}^m)$. Hence $H/Aut(\mathbb{P}^m)$ is a complex space and $H \longrightarrow H/Aut(\mathbb{P}^m)$ is a principal Aut (\mathbb{P}^m) -bundle.

Here H is the relative Douady space (see Pourcin [6]). The proof of Theorems 3 and 4 can be done by taking a sequence of points and using the property of Aut (\mathbb{P}^m) that every element φ of Aut (\mathbb{P}^m) is uniquely determined by m+1 points p_1, \cdots, p_{m+1} in general position and m+1 points q_1, \cdots, q_{m+1} in general position such that $\varphi(p_j) = q_j$ for $1 \le j \le m+1$.

<u>Remark</u> The quotient space $H(X, \mathbb{P}^m)/Aut(\mathbb{P}^m)$ can be regarded as the set of linear systems of dimension m without base point on X.

3. Moduli of holomorphic mappings from compact Riemann surfaces

We solved the moduli problem of holomorphic mappings of compact Riemann surfaces of genus greater than 0 into \mathbb{P}^m in Namba [4]. We constructed the moduli space as follows: Let T be the Teichmüller space of compact Riemann surfaces of genus g ($g \ge 2$) and $X = \{X_{\mathbf{t}}\}_{\mathbf{t} \in \mathbf{T}}$ be the Teichmüller family. Let Γ be the Teichmüller modular group. Then Γ acts properly discontinuously on both T X. Let $H_d^m = \bigcup_{\mathbf{t}} H_d(X_{\mathbf{t}}, \mathbb{P}^m)$ be the relative Douady space of linearly non-degenerate holomorphic mappings of $X_{\mathbf{t}}$ for some t into \mathbb{P}^m of degree d. Here the degree of a non-degenerate holomorphic mapping of a compact Riemann surface $X_{\mathbf{t}}$ into \mathbb{P}^m is by definition $deg[f: X_{\mathbf{t}} \longrightarrow f(X_{\mathbf{t}})] deg[f(X_{\mathbf{t}})]$.

Theorem 5 (Namba [4]) Aut (\mathbb{P}^m) × Γ acts properly on H_d^m . Hence $M_d^m = H_d^m/(\operatorname{Aut}(\mathbb{P}^m) \times \Gamma)$ is a complex space. If m = 1, then M_d^1 is a normal complex space of dimension 2d + 2g - 5.

The complex space $M_{\tt d}^{\tt m}$ is nothing but the moduli space of non-degenerate holomorphic mappings of degree d of compact Riemann surface of genus g into ${\tt P}^{\tt m}$.

The case g=1 can be treated in a similar way and the moduli space space can be constructed using the theory of elliptic functions. In particular M_A^1 for m=1 is a normal complex space of dimension 2d-3.

4. Moduli of rational functions

In this lecture, we give some recent results on the case g = 0, that is some results on the moduli problems of linearly non-degenerate holomorphic mappings from the complex projective line \mathbb{P}^1 into \mathbb{P}^m .

A linearly non-degenerate holomorphic mapping of \mathbb{P}^1 to \mathbb{P}^1 is nothing but a non-constant rational function. A rational function f of degree d can be expressed as follows:

$$f(z) = \frac{a_0 z^d + \cdots + a_d}{b_0 z^d + \cdots + b_d}$$
 $(a_0 \neq 0 \text{ or } b_0 \neq 0),$

where the denominator and the numerator do not have a common root. Hence the set of all rational functions of degree d can be identified with the Zariski open set

$$H_d(\mathbb{P}^1, \mathbb{P}^1) = \{(a_0: \cdots : a_d: b_0: \cdots : b_d)\} = \mathbb{P}^{2d+1} - \mathbb{R}$$

of \mathbb{P}^{2d+1} , where R is the zero locus of the resultant of the donominator and the numerator. The moduli problem in this case asks when there is a natural complex space structure (or an algebraic structure) on $H_d(\mathbb{P}^1,\mathbb{P}^1)/G$, where $G = \operatorname{Aut}(\mathbb{P}^1) \times \operatorname{Aut}(\mathbb{P}^1)$ acting on $H_d(\mathbb{P}^1,\mathbb{P}^1)$ by the composition of mappings as follows:

$$(\mathcal{P}, \mathcal{V}, f) \in G \times H_d(\mathbb{P}^1, \mathbb{P}^1) \longmapsto \mathcal{P} \circ f \circ \mathcal{V} \in H_d(\mathbb{P}^1, \mathbb{P}^1).$$

But this action is not proper:

Example 1 Put $f(z) = z^3 - 3tz$ $(t \in \mathbb{C})$. Then $f_{t}(t \neq 0)$ is equivalent to f_{t} , for $f_{t}(z) = a(u^3 - 3u)$ where $u = z/\sqrt{t}$ and $a = (\sqrt{t})^3$, while f_{0} is not equivalent to f_{1} .

Example 2 Let $P(z) = a_0 z^d + \cdots + a_d$ be any polynomial of degree d such that $P(-n) \neq 0$ for $n = 1, 2, \cdots$. Put

$$f_{n}(z) = \frac{P(z)}{(1/\pi)z + 1}$$

$$g_{n}(u) = \frac{u^{d} + (a_{1}/a_{0}n)u^{d-1} + \dots + (a_{d}/a_{0}n^{d})}{u + 1}$$

Then f_n converges to P(z) and $g_n(u)$ converges to

$$g(u) = \frac{u^d}{u + 1}$$

as $n \longrightarrow \infty$. Note that f_n and g_n are equivalent, for

$$f_n = \varphi_n \circ g_n \circ \psi_n^{-1}$$

where $\varphi_n(w) = a_0 n^4 w$ and $\psi_n(u) = n u$. But g is not equivalent to P for a general P.

Now by the Riemann-Hurwitz formula for the rational function f as a branched covering from \mathbb{P}^1 onto \mathbb{P}^1 of degree d,

$$\sum_{P \in R_{f}} (e_{P} - 1) = 2d - 2,$$

where the summation runs over the set R_f of all ramification points

and e_{p} is the ramification index at the ramification point p. Put

$$H_{d,k} = H_{d,k}(\mathbb{P}^1,\mathbb{P}^1) = \{ f \in H_d(\mathbb{P}^1,\mathbb{P}^1) \mid \text{ there is a ramification point p such that } e_p \ge k \}.$$

Then $H_{d,k}$ is a closed algebraic set of $H_d = H_d(\mathbb{P}^1, \mathbb{P}^1)$.

Theorem 6 Let $d \ge 3$. Then $G = \operatorname{Aut}(\mathbb{P}^1) \times \operatorname{Aut}(\mathbb{P}^1)$ acts properly on $H_d - H_{d,d}$ such that every stabilizer is finite. Hence the quotient space $(H_d - H_{d,d})/G$ is an algebraic space of finite type.

The quotient space $(H_J - H_{J,J})/G$ can be regarded as the moduli space of the rational functions of degree d. For the proof of Theorem 6, we use the following lemma in combinatorics:

<u>Lemma</u> Let m be an integer greater than or equal 3 and let A and B be finite sets. Suppose that F and G be surjective mappings of the set $\{1, \cdots, n\}$ onto the sets A and B respectively such that (i) for every point α in A, the number of the points $F^{-1}(\alpha)$ is less than n/2 and (ii) for every point β in B, the number of the points $G^{-1}(\beta)$ is less than n/2. Then there are distinct 3 numbers a, b, c in $\{1, \cdots, n\}$ such that (1) F(a), F(b) and F(c) are distinct and (2) G(a), G(b) and G(c) are distinct.

5. Moduli of plane rational curves

Put

 $B_d = B_d(\mathbb{P}^1, \mathbb{P}^2) = \{f : \mathbb{P} \longrightarrow \mathbb{P}^2 \mid f \text{ is a birational holomorphic}$ mappings of \mathbb{P}^1 onto the image curve $C = f(\mathbb{P}^1)$ of degree $d\}$

Then B_d is an Zariski open set of $H_d(\mathbb{P}^1, \mathbb{P}^2)$ and $G = \operatorname{Aut}(\mathbb{P}^2) \times \operatorname{Aut}(\mathbb{P}^1)$ acts on B_d as the composition of mappings.

By the genus formula for the rational curve $C = f(\mathbb{P}^1)$,

$$\sum_{P \in SingC} \delta_P = (d-1)(d-2)/2,$$

where the summation runs over the singular locus Sing (C) of the curve C and

$$\delta_{P} = \dim_{\mathbb{C}}(\hat{\mathcal{O}}_{P}/\mathcal{O}_{P}) = \frac{M+r-1}{2}$$

(\hat{O}_P is the integral closure of the ring O_P of germs of holomorphic functions on C. Y is the number of branches of C at p. M is the Milnor number.)

Put

$$B_{d,k} = \{ f \in B_d \mid \text{ there is a point p in Sing } f(\mathbb{P}^1) \text{ such that } \delta_{\mathbb{P}} \geq k \}.$$

Then $B_{d,k}$ is a closed algebraic set of B_d .

Theorem 7 Let $d \ge 4$. Put l = (d-1)(d-2)/4. Then $G = Aut(P^2) \times Aut(P^1)$ acts properly on

$$B = B_d - B_{d,l}$$

such that every stabilizer is finite. Hence the quotient space B/G is an algebraic space of finite type.

Since B/G can be written as B/G = (B/Aut (\mathbb{P}^1))/ Aut (\mathbb{P}^2), this can be regarded as the moduli space of rational plane curves of degree d.

<u>Remark</u> Theorem 6 and Theorem 7 can be generalized. But we do not discuss it here.

References

- [1] A. Douady: Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytiques donne. Ann. Inst. Fourier, Grenoble 16 (1966), 1-98.
- [2] H. Holmann: Quotienten komplexer Räume. Math. Ann. 142 (1961), 407–440.
- [3] D. Mumford et al.: Geometric Invariant Theory. Springer-Verlag, 3rd Ed. 1994.
- [4] M. Namba: Families of Meromorphic Functions on Compact Riemann surfaces. Springer Lec. Notes <u>767</u> (1979).
- [5] H. Popp: On moduli of algebraic varieties. Compos. Math. 28 (1974), 51–81.
- [6] G. Pourcin: Théorème de Douady au-dessus de S. Ann. Scuola Norm.Sup. Pisa 23 (1969), 451-459.

Makoto Namba

Dep. of Mathematics, Osaka Univ.

Toyonaka City, 560-0043, JAPAN.

E-mail: namba@math.wani.osaka-u.ac.jp