Problem of Fenchel on the complex projective plane and representations of the 3rd braid group (Fundamental Groups and Algebraic Functions)

Matsuno, Takanori

数理解析研究所講究録 (2001), 1182: 80-82

2001-01

http://hdl.handle.net/2433/64579

Departmental Bulletin Paper

Kyoto University
Problem of Fenchel on the complex projective plane and representations of the 3rd braid group

Takanori MATSUNO
Department of Liberal Arts and Sciences
Osaka Prefectural College of Technology

1 Abstract

We denote by \mathbb{P}^2 the complex projective plane. Let $C = \{(X_0 : X_1 : X_2) \in \mathbb{P}^2 | X_2X_0^2 - X_1^3 = 0\}$ be a curve of \mathbb{P}^2. Let $L_\infty = \{(X_0 : X_1 : X_2) \in \mathbb{P}^2 | X_2 = 0\}$ be the line of \mathbb{P}^2, which we call line at infinity. C is a rational curve of degree 3 with a cusp at $(0 : 0 : 1)$. C and L_∞ are tangent at $(1 : 0 : 0)$. Let e_1, e_2 be positive integers greater than 1. Put $D = e_1C + e_2L_\infty$. We consider the following problem and give here a partial answer by constructing representations of the 3rd braid group.

Fenchel's Problem Give a condition on the pair (e_1, e_2) for the existence of a finite Galois covering $\pi : X \rightarrow \mathbb{P}^2$ which branches at D.

2 Elementary facts

We choose a point $p_0 \in \mathbb{P}^2 - \{C \cup L_\infty\}$ and fix it. The fundamental group $\pi_1(\mathbb{P}^2 - \{C \cup L_\infty\}, p_0)$ is isomorphic to $< \alpha, \beta, \delta | \alpha\beta\alpha = \beta\alpha\beta = \delta^{-1} >$ the 3rd braid group. This group is isomorphic to $< \gamma, \delta | \gamma^3 = \delta^2 >$. This isomorphism is given by $\gamma \mapsto (\alpha\beta)^{-1}, \delta \mapsto (\alpha\beta\alpha)^{-1}$. We identify α (resp. β, resp. δ) with a closed path in $\mathbb{P}^2 - \{C \cup L_\infty\}$ which rounds counterclockwise direction once around non-singular points P_α of C (resp. P_β of C, resp. P_δ of L_∞). Let J be the smallest normal subgroup of $\pi_1(\mathbb{P}^2 - \{C \cup L_\infty\}, p_0)$ which contains α^{e_1} and δ^{e_2}. There is a finite Galois covering which branches at D if and only if there is a normal subgroup K of $\pi_1(\mathbb{P}^2 - \{C \cup L_\infty\}, p_0)$ of finite index with $J \subset K$, which satisfies the following conditions: (1) If $\alpha^k \in K$ then $k \equiv 0 \pmod{e_1}$ and (2) If $\delta^l \in K$ then $l \equiv 0 \pmod{e_2}$.

Let G be a finite group generated by two elements A, B, which satisfy the relation $ABA = BAB, A^{e_1} = B^{e_1} = 1, (ABA)^{e_2} = 1$. Obviously A and B are conjugate to each other. If there is a finite group G as above, we have a surjective homomorphism $\Phi : \pi_1(\mathbb{P}^2 - \{C \cup L_\infty\}, p_0) \rightarrow G$. Then the kernel of Φ corresponds to a finite Galois covering $\pi : X \rightarrow \mathbb{P}^2$ which branches at D.

Put $Q = ABA$. It is easy to see:

Lemma 2.1 If G is abelian, then G is a cyclic group.

Since Q^2 is an element of the center of G,

Lemma 2.2 If the order of Q is odd, then G is abelian (G is a cyclic group).

Hence we have:

Theorem 2.1 If e_2 is odd, then any covering $\pi : X \rightarrow \mathbb{P}^2$ which branches at D is cyclic.

Trivially we have:
Proposition 2.1 For given odd number \(e_2\), if \(e_2 \equiv 0 \pmod{3}\) put \(e_1 = e_2/3\), otherwise put \(e_1 = e_2\). Then there exists \(\pi : X \to \mathbb{P}^2\) which branches at \(D\).

It is well-known (see for example [1]):

Lemma 2.3 For given positive integer \(n\) there is a finite group \(G\) generated by two elements \(Q\) of order 2 and \(R\) of order 3 with \(QR\) of order \(n\).

By putting \(Q = \hat{A}\hat{B}\hat{A}\) and \(R = \hat{A}\hat{B}\), we have:

Theorem 2.2 If \(e_2\) is 2, then for any positive integer \(e_1\) greater than 1 there is a covering \(\pi : X \to \mathbb{P}^2\) which branches at \(D\).

Let \(D\) be as before and let \(D' = e_1'C + e_2'L_\infty\). Let \(e_j''\) be the LCM \(<e_j, e_j'>\) \((j = 1, 2)\) and put \(D'' = e_1''C + e_2''L_\infty\).

By constructing the fiber product, we have:

Proposition 2.2 If there is a covering \(\pi : X \to \mathbb{P}^2\) which branches at \(D\) and there is a covering \(\pi' : X' \to \mathbb{P}^2\) which branches at \(D'\), then there is a covering \(\pi'' : X'' \to \mathbb{P}^2\) which branches at \(D''\).

3 Cyclic extension

We denote by \(S_n\) the symmetric group of \(n\) letters. Let \(\hat{G} \subset S_r\) be a finite group generated by two permutations \(Q, R\), which satisfy the relation \(Q^2 = R^3 = 1\). Then \(\hat{Q}\) is a product of cycles of length 2 with no common letters and \(\hat{R}\) is a product of cycles of length 3 with no common letters.

We may assume \(\hat{G}\) has the following properties. (1) transitivity: For each letters \(x, y\) there is a permutation of \(\hat{G}\) which maps \(x\) to \(y\). (2) simplicity: If a permutation of \(\hat{G}\) fixes a letter, then it is the unit element of \(\hat{G}\).

Now by showing examples, we give a method to construct a cyclic extension \(G \subset S_{er}\) of \(\hat{G} \subset S_r\) by an element of its center.

The case \(r = 3\). Put \(\hat{Q} = (a b)\) and \(\hat{R} = (a b c)\). In this case \(\hat{G} = S_3\) and non-abelian. We need to assume \(q\) is odd. Put

\[
Q = \begin{pmatrix} a_1 & a_2 & \ldots & a_q & b_1 & b_2 & \ldots & b_{q-1} & b_q \\ b_1 & b_2 & \ldots & b_q & a_2 & a_3 & \ldots & a_q & a_1 \end{pmatrix} \quad R = \begin{pmatrix} c_1 & c_2 & \ldots & c_q & c_{p+1} & c_{p+2} & \ldots & c_q \\ c_{p+2} & c_{p+3} & \ldots & c_q & c_1 & c_2 & \ldots & c_{p+1} \end{pmatrix}
\]

Then

\[
F = Q^2 = R^3 = (a_1 \ldots a_q)(b_1 \ldots b_q)(c_1 \ldots c_q)
\]

and

\[
A = R^{-1}Q = (a_1 c_{p+1} a_{p+2} c_1 \ldots)
\]

where \(q = 2p + 1\). The order of \(A\) is 2q.

Let \(G\) be a finite group generated by two permutations \(Q, R. F\) is a center of \(G\). In a natural way we have the following exact sequence:

\[
1 \to F \to G \to \hat{G} \to 1
\]

where \(< F >^G\) is a subgroup of \(G\) generated by \(F. < F >^G\) is a cyclic group of order \(q\). Then we can have a surjective homomorphism \(\Phi : \pi_1(\mathbb{P}^2 - \{C \cup L_\infty\}, p_0) \to G\). Hence we have:
Theorem 3.1 If q is odd, then there is a finite Galois covering $\pi : X \rightarrow \mathbb{P}^2$ which branches at $2qC + 2qL_\infty$.

The case $r = 4$. Put $Q = (a \ b)$ and $R = (b \ c \ d)$. In this case $G \subset S_4$ and non-abelian. For the extension we need to assume the LCM $< 6, q \geq 1$. In a similar way, we have:

Theorem 3.2 If q is as above, then there is a finite Galois covering $\pi : X \rightarrow \mathbb{P}^2$ which branches at $4qC + 2qL_\infty$.

The case $r = 12$. Put $Q = (a \ j)(b \ d)(c \ h)(e \ i)(f \ l)(g \ k)$ and $R = (a \ b \ c)(d \ e \ f)(g \ h \ i)(j \ k \ l)$. In this case $G \subset S_{12}$ and non-abelian. In a similar way, we have:

Theorem 3.3 There is a finite Galois covering $\pi : X \rightarrow \mathbb{P}^2$ which branches at $3q(q-1)C + 2qL_\infty$.

References
