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Abstract: An orthogonal drawing of a plane graph $G$ is a drawing of $G$ with the given planar
embedding in which each vertex is mapped to a point, each edge is drawn as a sequence of
alternate horizontal and vertical line segments, and any two edges do not cross except at
their common end. Observe that only a planar graph with the maximum degree four or less
has an orthogonal drawing. The best known algorithm to find an orthogonal drawing runs in
time $O(n^{7/4_{\sqrt{\log n})}}$ for any plane graph with $n$ vertices. In this paper we give a linear-time
algorithm to find an orthogonal drawing of a given biconnected cubic plane graph with the
minimum number of bends.
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An $orth_{\mathit{0}}g\acute{o}nal\dot{d}ra$wing of a plane graph $G$ is a
drawing of $G$ with the given planar embedding
in which each vertex is mapped to a point, each
edge is drawn as a sequence of alternate hori-
zontal and vertical line segments, and any two
edges do not cross except at their common end.
Orthogonal drawings have attracted much atten-
tion due to its numerous practical applications in
circuit schematics, etc. [BLV93, K96, T87]. In
particular, we wish to find an orthogonal draw-
ing with the minimum $\mathrm{n}\mathrm{u}\mathrm{m}\dot{\mathrm{b}}$ er of bends. For the
plane graph in Fig. $1(\mathrm{a})$ , the orthogonal drawing
in Fig. 1(b) has the minimum number of bends,
that is, eleven bends.

For a given planar graph $G$ , if it is allowed to
choose its planar embedding, then finding an $\check{\mathrm{o}}$r-
thogonal drawing of $G$ with the minimum num-
ber of bends is $\mathrm{N}\mathrm{P}- \mathrm{C}\mathrm{o}\mathrm{m}\mathrm{P}^{\mathrm{l}\mathrm{e}\mathrm{t}}\mathrm{e}[\mathrm{G}\mathrm{T}94]$. However,
$\mathrm{T}\mathrm{a}\mathrm{m}\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{l}\mathrm{a}[\mathrm{T}87]$ and Garg and Tamassia [GT96]
presented algorithms which find an orthogonal
drawing of a given plane graph $G$ with the
minimum number of bends in $O(n^{2}\log n)$ and
$O(n^{7/4_{\sqrt{\log n})}}$ time respectively unless it is al-

lowed to choose its planar embedding, where $n$

is the number of vertices in $G$ . They reduce the
minimum-bend orthogonal drawing problem to a
minimum cost flow problem. On the other hand,
several linear-time algorithms are known for find-
ing an orthogonal drawing of a plane graph with a
presumably small number of $\mathrm{b}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{s}[\mathrm{K}96]$ , and for
3-connected cubic plane graphs a linear-time al-
gorithm is known for finding an orthogonal draw-
ing with the minimum number of $\mathrm{b}\mathrm{e}\mathrm{n}\mathrm{d}_{\mathrm{S}}[\mathrm{R}\mathrm{N}\mathrm{N}\dot{9}9]$.
$\mathrm{O}\mathrm{b}\sim$serve that $0,\mathrm{n}\mathrm{l}\mathrm{y}$ a planar graph with the maxi-
mum degree four or less has an orthogonal draw-
ing.

In this paper, generalizing the result in
[RNN99], we give a linear-time algorithm to find
an orthogonal drawing of a biconnected cubic
plane graph with the minimum number of bends.

An orthogonal drawing in which there is no
bend and each face is drawn as a rectangle is
called a rectangular drawing. Given a plane graph
$G$ such that every vertex has degree either two or
three, in linear-time we can find a rectangular
drawing of $G$ whenever such a graph has a rect-
angular drawing [KH94, RNN96, RNNOO]. The
key idea of our algorithm is to reduce the orthog-
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2 Preliminaries

Figure 1: A plane graph and its orthogonal draw-
ing.

onal $\mathrm{d}\mathrm{r}\mathrm{a}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}.\mathrm{P}^{\mathrm{r}\mathrm{o}}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{m}$ to the rectangular drawing
problem.

An outline of our algorithm is illustrated in
Fig. 1. Given a plane graph $G$ as shown in
$\mathrm{F}.\mathrm{i}\mathrm{g}$ . $1(\mathrm{a})$ , we first find a tree structure among
some cycles in $G$ , then by analyzing the tree
structure we put four dummy vertices $a,$ $b,$ $c$ and $d$

of degree two on the outer boundary of $G$ , and let
$G’$ be the resulting graph. The four dummy ver-
tices are drawn by white $\mathrm{c}\mathrm{i}\mathrm{r}‘ \mathrm{C}\mathrm{l}\mathrm{e}\mathrm{S}$ in Fig. 1(c). We
then contract each of some cycles $C_{1},$ $C_{2},$ $\cdots$ and
their insides (shaded in Fig. 1 $(\mathrm{c})$ ) into a single
vertex as shown in Fig. 1 (d) so that the result-
ing graph $G^{n}$ has a rectangular drawing as shown
in Fig. 1(e). We also find orthogonal drawings
of those cycles $C_{1},$ $C_{2},$ $\cdots$ and their insides recur-
sively (See Figs. 1(d) and $(\mathrm{e})$ ). Patching the ob-
tained drawings, we get an orthogonal drawing of
$G’$ as shown in Fig. 1(f). Replacing the dummy
vertices $a,$ $b,$ $c$ and $d$ in the drawing of $G’$ with
bends, we finally obtain an ort.hogonal drawing
of $G$ as shown in Fig. 1 (b).

The rest of the paper is organized as follows.
Section 2 gives some definitions and presents a
known result. Section 3 shows a tree structure
among some cycles in $G$ . Section 4 presents an
algorithm to find an orthogonal drawing with the
minimum number of bends. Finally Section 5 is
a conclusion.

In this section we give some definitions and
present a known result.

Let $G$ be a connected graph with $n$ vertices.
An edge connecting vertices $x$ and $y$ is denoted
by $(x, y)$ . The degree of a vertex $v$ is the number
of neighbors of $v$ in $G$ . If every vertex of $G$ has
degree three, then $G$ is called a cubic graph. The
connectivity $\kappa(G)$ of a graph $G$ is the minimum
number of vertices whose removal results in a dis-
connected graph or a single-vertex graph $K_{1}$ . We
say that $G$ is $k$-connected if $\kappa(G)\geq k$ .

A graph is planar if it can be embedded in the
plane so that no two edges intersect geometri-
cally except at a vertex to which they are both
incident. A plane graph is a planar graph with
a fixed planar embedding. A plane graph divides
the plane into connected regions called faces. We
regard the contour of a face as a clockwise cycle
formed by the edges on the boundary of the face.
We denote the contour of the outer face of graph
$G$ by $C_{o}(G)$ .

For a simple cycle $C$ in a plane graph $G$ , we
denote by $G(C)$ the plane subgraph of $G$ inside
$C$ (including $C$). We say that cycles $C_{1}$ and $C_{2}$

in a plane graph $G$ are independent if $G(c_{1})$ and
$G(C_{2})$ have no common vertex. Cycles $C_{1}$ and $C_{2}$

are vertex-disjoint if $C_{1}$ and $C_{2}$ have no common
vertex. An edge which is incident to exactly one
vertex of a simple cycle $C$ and located outside of
$C$ is called $\mathrm{a}\cdot leg$ of the cycle $C$ , and the vertex
on $C$ to which the leg is incident is called a leg-
vertex of $C$ . A simple cycle with exactly $k$ legs is
called a $k$ -legged cycle. For $k$-legged cycle $C$ the
$k$ subp\"aths of $C$ dividing $C$ at the $k$ leg-vertices
are called the contour paths of $C$ .

An orthogonal drawing of a plane graph $G$ is
a drawing of $G$ with the given planar embedding
in which each vertex is mapped to a point, each
edge is drawn as a sequence of alternate horizon-
tal and vertical line segments, and any two edges
do not cross except at their common end. A point
where an edge changes its direction in a drawing
is called a bend. We denote by $b(G)$ the mini-
mum number of bends for orthogonal drawings
of $G$ . An orthogonal drawing of $G$ with exactly
$b(G)$ bends is bend-optimal.

A rectangular drawing of a plane graph $G$ is
a drawing of $G$ such that each edge is drawn as
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a horizontal or vertical line segment, and each
face is drawn as a rectangle. Thus a rectangular
drawing is an orthogonal drawing in which there
is no bend and each face is drawn as a rectangle.
The drawing of $G^{u}$ in Fig. 1(e) is a rectangular
drawing. The drawing of $G’$ in Fig. 1 (f) is not a
rectangular drawing, but is an orthogonal draw-
ing. In any rectangular drawing $D$ of $G$ , the four
corners of the rectangle corresponding to $C_{o}(G)$

are vertices of degree two on $C_{o}(G)$ . We call these
four vertices the corner vertices of $D$ . The follow-
ing result on rectangular drawings is known.

Lemma 2.1 Let $G$ be a connected plane graph
such that every vertex has degree $e\dot{i}ther$ two or
three, and let a, $b,$ $c,$ $d$ be four $des\dot{i}gnated$ vertices
of degree two on $C_{o}(G)$ . Then $G$ has a rectangular
drawing with the corner vertices a, $b,$ $c,$ $d$ if and
only if $G$ has none of the following three types of
simple cycles $fT\mathit{8}\mathit{4}\mathit{1}$:

$(rl)\mathit{1}$-legged cycles,
$(r\mathit{2})\mathit{2}$-legged cycles which contain at most one
designated vertex of degree two, and

$(r\mathit{3})\mathit{3}$-legged cycles which contain no desig-
nated vertex of degree two.

Furthermore one can check in linear time whether
$G$ satisfies the condition above, and if $G$ does then
one can $fi_{\vee}nd$ a rectangular drawing of $G\dot{i}n$

. linear
time $fRNN\mathit{9}\mathit{6}$, RNNOOf. .

(a) 1-legged cycle (b) 2-legged cycles (c) $3- 1\mathrm{e}_{\infty^{\sigma}}^{\sigma}\mathrm{e}\mathrm{d}$ cycles

Figure 2: Bad cycles $c_{1},$ $c_{2},$ $C\mathrm{s}$ and $C_{5}$ , and non-
bad cycles $C_{4},$ $C_{6}$ and $C_{7}$ .

A cycle of type (r1), (r2) or (r3) is called a bad
cycle. Figs. $2(\mathrm{a}),$ $(\mathrm{b})$ and (c) illustrate l-legged,
2-legged and 3-legged cycles, respectively. Cycles
$o_{1},$ $c_{2},$ $C_{3}$ and $C_{5}$ are bad cycles. On the other
hand, cycles $C_{4},$ $C_{6}$ and $C_{7}$ are not bad cycles;
$C_{4}$ is a 2-legged cycle but contains two designated
vertices of degree two, and $C_{6}$ and $C_{7}$ are 3-1egged
cycles but contain one or two designated vertices
of degree two.

Some linear-time algorithms to find a rectangu-
lar drawing of a plane graph satisfying the con-
dition in Lemma 2.1 have been obtained [KH94,
RNN96, RNNOO].

3 Genealogical Tree

In this section we first show a tree structure
among some cycles in a biconnected cubic plane
graph $G$ .

Let $G$ be a biconnected cubic plane graph. For
a pair of distinct cycles $C_{a}$ and $C_{d}$ in $G,$ $C_{d}$ is
called a descendant-cycle of $C_{a}$ if (i) $C_{d}$ is either
2- or 3-legged cycle, and (ii) $G(C_{d})$ is a proper
subgraph of $G(C_{a})$ . Note that since $G$ is bi-
connected there is neither 0- nor 1-legged cycle
except the only $0$-legged cycle $C_{o}(G)$ . Now we
choose an edge $e=(x, y)$ on $C_{o}(G)$ , and replace
$e$ with two edges $(x, z)$ and $(z, y)$ . Let $G^{l}$ be the
resulting plane graph. (Note that, for $G-e$ ,
that is a plane subgraph of $G$ obtained from $G$

by deleting $e,$ $C_{o}(G-e)$ is a 2-legged cycle of
$G^{l}$ , however, $C_{o}(G-e)$ is not a 2-legged cycle
of $G.$ ) Let $D_{e}(c_{O})=\{C|C$ is a descendant cy-
cle of $C_{o}(G^{l})$ not containing $z$ }. A cycle $C_{c}$ in
$D_{e}(c_{O})$ is called a child-cycle of $C_{o}(G’)$ (with re-
spect to edge $e$ ) if $C_{c}$ is not located inside of any
other cycle in $D_{e}(c_{O})$ . Since $G$ is a biconnected
cubic plane graph, $C_{o}(G^{l})$ has exactly one child-
cycle $C_{o}(G-e)$ (with respect to edge $e$ ). (See
Fig 3.) Then, recursively, for each child-cycle $C_{\mathrm{c}}$

we define its child-cycle as follows. We have the
following two cases.

Case 1: $C_{\mathrm{c}}$ is a 2-legged cycle.
Choose a leg-vertex of $C_{c}$ as $z$ . Let $D_{z}(o_{C})=$

{ $C|C$ is a descendant cycle of $C_{\mathrm{c}}$ not containing $z$

$\}$ . A cycle $C_{\mathrm{c}c}$ in $D_{z}(c_{C})$ is called a child-cycle of
$C_{c}$ (with respect to $z$ ) if $C_{cc}$ is not located inside
of any other cycle in $D_{z}(c_{C})$ . Since $G$ is a bi-
connected cubic plane graph, $C_{c}$ has at most one
3-legged child-cycle. ( $C_{c}$ has no 3-legged child-
cycle if $G(C)$ has an inner face $F$ containing the
two leg-vertices, and $C_{c}$ has exactly one 3-1egged
child-cycle otherwise.)
Case 2: Otherwise, $C_{c}$ is a 3-legged cycle.

Let $D(c_{C})$ be the set of all descendant cycles of
$C_{c}$ . A cycle $C_{cc}$ in $D(c_{C})$ is called a child-cycle of
$C_{c}$ if $C_{cc}$ is not located inside of any other cycle
in $D(c_{C})$ .
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In both cases above all child-cycles of $C_{c}$ are
independent each other.

By the definition above we can find child-cycles
of each child-cycle recursively, and eventually we
get a (hierarchical) tree structure of cycles in $G$

represented by a “genealogical tree” $T_{g}$ , as shown
in Fig 3. Because of the choices for $e$ and $z,$ $T_{g}$

may have some variations. We choose an arbi-
trary (but fixed) one as $T_{g}$ .

contour paths from $x$ to $y$ and from $y$ to $x$ , re-
spectively. A bend-optimal orthogonal drawing
$D$ of $G(C)$ is feasible for $(P_{1}, P_{1})$ if none of the
following four open halflines intersects D. (See
Fig. $4(\mathrm{a})$ . Intuitively $D$ needs two convex bends
on $P_{1}.$ )

the vertical open halfline with the upper end
at $x$ .
the horizontal open halfline with the left end
at $x$ .
the vertical open halfline with the lower end
at $y$ .
the horizontal open halfline with the left end
at $y$ .

Figure 3: cycles in $G’$ and a genealogical tree $T_{g}$ .

Using a method similar to one in [RNN96,
RNN99, RNNOO], in linear time one can find such
a tree structure $T_{g}$ among cycles by traversing the
contour of each face a constant number of times.

Now we observe the following. In any orthog-
onal drawing of $G$ , every cycle $C$ in $G$ has at
least four convex corners, i.e., polygonal vertices
of inner angle $90^{\mathrm{O}}$ . Since $G$ is cubic, such a cor-
ner must be a bend if it is not a leg-vertex of $C$ .
Thus we have the following facts for any orthog-
onal drawing of $G$ .
Fact 1 At least four bends must appear on
$C_{o}(G)$ .
Fact 2 At least two bend must appear on each
2-legged cycle in $G$ .
Fact 3 At least one bend must appear on each
3-legged cycle in $G$ .

4 Orthogonal Drawing

In this section we give a linear-time algorithm
to find a bend-optimal orthogonal drawing of a
biconnected cubic plane graph. Assume that we
have a genealogical tree $T_{g}$ of a biconnected cubic
plane graph $G$ . We need some definitions.

We define “feasible drawings” as follows. Note
that rotated cases are omitted.
$\mathrm{V}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{S}\mathrm{L}\mathrm{e}\mathrm{t}c\mathrm{b}x\mathrm{a}\mathrm{n}\mathrm{e}\mathrm{d}\mathrm{a}y,\mathrm{a}\mathrm{n}\S_{P_{1}}^{\mathrm{e}}\mathrm{d}\mathrm{c}\mathrm{y}\mathrm{c}1\mathrm{e}_{P}\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{t}_{\mathrm{W}\mathrm{o}_{\mathrm{k}}1}\mathrm{w}\mathrm{a}\mathrm{n}\mathrm{d}2\mathrm{b}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{C}1\mathrm{i}2- 1\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{g}-\mathrm{S}\mathrm{e}$

Figure 4: Illustration for feasible drawings.

Also, a bend-optimal orthogonal drawing $D$ of
$G(C)$ is feasible for $(P_{1}, P_{2})$ if none of the four
open halflines depicted in dashed lines in Fig. $4(\mathrm{b})$

intersects $D$ .
Let $C$ be a 3-legged cycle with the three leg-

vertices $x,$ $y$ and $z$ appearing clockwise in this or-
der, and $P_{1},$ $P_{2}$ and $P_{3}$ be the clockwise contour
path from $x$ to $y$ , from $y$ to $z$ , and from $z$ to $x$ ,
respectively. A bend-optimal orthogonal drawing
$D$ of $G(C)$ is feasible for $(P_{1})$ if none of the six
open halflines depicted in dashed lines in Fig. $4(\mathrm{c})$

intersects $D$ . Similarly, we define feasible orthog-
onal drawings for $(P_{1}, P_{13}, -P),$ $(P_{1}, P_{1}, -P_{2})$ and
$(P_{1}, P_{2}, -P3).$ ( $\mathrm{S}\mathrm{e}\mathrm{e}$ Fig. $4(\mathrm{d})-(\mathrm{f}).$ )

Now, for each cycle $C\neq C_{o}(G)$ corresponding
to a vertex in $T_{g}$ , we determine whether $G(C)$

has each type of feasible drawings $\mathrm{b}\mathrm{y},\mathrm{a}$ bottom-
up computation on $T_{g}$ . For $\mathrm{t}\mathrm{h}\dot{\mathrm{e}}$ bottom-up com-
putation we also compute a set $S_{C}$ of vertex-
disjoint cycles in $G(C)$ consisting of $\ell_{2}$ 2-1egged
cycles and $\ell_{3}3$-legged cycles for some $\ell_{2}$ and $\ell_{3}$ .
Thus $b(G(C))\geq 2\cdot\ell_{2}+\ell_{3}$ by Facts 3.2 and 3.3.
We then show that $G(C)$ always has at least one
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feasible drawing using 2 $\cdot\ell_{2}+\ell_{3}$ bends. Thus
$b(G(C))=2\cdot\ell_{2}+\ell_{3}$ holds.

In the bottom-up computation we classify each
contour path of each cycle as either 0-, 1-, or
2-corner path. Intuitively $k$-corner path has a
chance to have $k$ convex bends. And we define

Figure 5. $\cdot$

.
Illustration for $P_{1}P_{2}$-strain.

$P_{1}P_{2}$-strain by those corner paths as follows. Let
$x,$ $y,$ $z$ be the three leg-vertices of a 3-legged cy-
cle $C,$ $P_{1}$ and $P_{2}$ be the clockwise contour paths
from $x$ to $y$ and $y$ to $z$ , respectively. Assume that
$s$ and $t$ are vertices on $P_{1}$ and $P_{2}$ , respectively,
and let $P_{1}’$ be the subpath of $P_{1}$ from $x$ to $s$ , and
$P_{2}’$ be the subpath of $P_{2}$ from $t$ to $z$ . If (i) there
is a path $P$ from $s$ to $t$ such that the left side of
$P$ is an inner face of $G(C)$ , and (ii) $G(C)$ has no
child cycle having l-or 2-corner path on $P,$ $P_{1}’$ or
$P_{2}^{J}$ , then the path consisting of $P_{1}^{J},$ $P,$ $P_{2}’$ are called
$P_{1}P_{2}$ -strain. An example is illustrated in Fig. 5.
Intutively, we have only two chance to turn right
at $s$ and $t$ on $P_{1}P_{2}$-strain from $x$ to $z$ .

In the bottom-up computation we show that
the following conditions $(\mathrm{c}\mathrm{l})-(\mathrm{c}9)$ hold.

$\mathrm{V}$

(c1) Any cycle $C$ has at least one 1- or 2-corner
path.

(c2) No cycle in $S_{C}$ contains any edge on any 0-
corner path of $C$ .

(c3) For any 2-legged cycle $C$ if $C$ has a 1-
corner path $P_{1}$ , then $G(C)$ has a set $S_{C}^{J}$ of
vertex-disjoint cycles containing no edge on
$..P_{1}$ and consisting of $\ell_{2}’2$-legged cycles and
$\ell_{3}’3$-legged cycles such that 2 $\cdot\ell_{2}’+\ell_{3}’=$

$b(G(C))-1$ .
(c4) For any 2-legged cycle $C$ if $C$ has a O-corner

pat..h $P_{1}$ , then the other contour path $P_{2}$ is a
2-corner path, and $G(C)$ has an orthogonal
drawing feasible for $(P_{2}, P_{2})$ .

(c5) For any 3-legged cycle $C$ if $C$ has a 1-
corner path $P_{1}$ , then $G(C)$ has a set $S_{C}’$ of
vertex-disjoint cycles containing no edge on

$P_{1}$ , and consisting of $\ell_{2}’2$-legged cycles and
$\ell_{3}’3$-legged cycles such that 2 $\cdot\ell_{2}’+\ell_{3}’=$

$b(G(C))-1$ .
(c6) For any 3-legged cycle $C$ if $C$ has a 1- or 2-

corner path $P_{1}$ , then $G(C)$ has an orthogonal
drawing feasible for $(P_{1})$ .

(c7) For any 3-legged cycle $C$ if $C$ has a 2-
corner path $P_{1}$ and no $P_{1}P_{2}$ -strain , then
$G(C)$ has an orthogonal drawing feasible for
$(P_{1}, P_{1}, -P_{3})$ ,

(c8) For any 3-legged cycle $C$ if $C$ has a 2-
corner path $P_{1}$ and no $P_{3}P_{1}$ -strain, then
$G(C)$ has an orthogonal drawing feasible for
$(P_{1}, P_{1,2}-P)$ ,

(c9) For any 3-legged cycle $C$ if $C$ has l-corner
paths $P_{1}$ and $P_{2}$ , and no $P_{1}P_{2}$-strain, then
$G(C)$ has an orthogonal drawing feasible for
$(P_{1}, P_{2,3}-P)$ .

Now we explain the bottom-up computation in
the following four cases.
Case 1: $C$ is a 2-legged cycle having no child-
cycle.

Let $x,$ $y$ be the two leg-vertices of $C$ , let $P_{1}$ and
$P_{2}$ be the clockwise contour paths from $x$ to $y$

and from $y$ to $x$ , respectively. Now $G(C)=C$,
since for any 2-legged cycle $C$ if $G(C)$ has an edge
in proper inside of $C$ then $C$ always has a child-
cycle.
Computation for $s_{c:}$ Set $S_{C}=\{C\}$ . By Fact
3.2 any orthogonal drawing of $G(C)$ has at least
two bends.
Feasible drawings: By introducing two bends
on $P_{1}$ , we can easily construct an orthogonal
drawing of $G(C)$ feasible for $(P_{1}, P_{1})$ . Similarly
we can construct orthogonal drawings of $G(C)$

feasible for $(P_{2}, P_{2})$ and $(P_{1}, P_{2})$ , respectively.
Thus $G(C)$ has each type of feasible orthogonal
drawings.
Classification and proof for $(\mathrm{c}1)-(\mathrm{C}9)$ : In
this case every contour path of $C$ is classified as
a 2-corner paths. Conditions $(\mathrm{c}\mathrm{l})-(\mathrm{c}4)$ hold since
every contour path of $C$ is 2-corner, and $(\mathrm{c}5)-(\mathrm{c}9)$

hold since $C$ is not a 3-legged cycle.
Case 2: $C$ is $\mathrm{a}_{\mathrm{T}}3$-legged cycle{, $\mathrm{h}\mathrm{a}\mathrm{v}\mathrm{i}\mathrm{n}\mathrm{g}$ no child-
cycle.

Let $x,$ $y,$ $z$ be the three leg-vertices of $C$ , let
$P_{1},$ $P_{2},$ $P_{3}$ be the clockwise contour path from $x$

to $y$ , from $y$ to $z$ , and from $z$ to $x$ , respectively.
Now if we remove all edges on $C$ from $G(C)$ , then
either $G(C)=C$ or the remaining edges induce
a connected graph containing at least one vertex
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on each $P_{1},$ $P_{2},$ $P_{3}$ , since otherwise $C$ has a child-
cycle, a contradiction.
Computation for $s_{c:}$ Set $S_{C}=\{C\}$ . By Fact
3.3 any orthogonal drawing of $G(C)$ has at least
one bend.
Feasible drawings: Construct a new graph $G’$

from $G(C)$ by adding one dummy vertices $v$ on
$P_{1}$ . Now the resulting graph $G^{l}$ has no bad cycle
(since $G$ has no child-cycle) with respect to corner
vertices $x,$ $v,$ $y,$ $z$ , and then $G’$ has a rectangular
drawing with the corner vertices $x,$ $v,$ $y,$ $z$ . The
rectangular drawing is also an orthogonal draw-
ing of $G(C)$ feasible for $(P_{1})$ using exactly one
bend (corresponding to $v$ ). Similarly we can eas-
ily construct orthogonal drawings of $G(C)$ feasi-
ble for $(P_{2})$ and $(P_{3})$ .

Now $G(C)$ has no orthogonal drawing feasible
for $(P_{1}, P_{1}, -P_{2})$ , since it needs at least two bends
only on $P_{1}$ . Similarly $G(C)$ has no orthogonal
drawing feasible for $(P_{i}, P_{j}, -P_{k})$ for any $i,$ $j,$ $k\in$

$\{1,2,3\}$ .
Classification and proof for $(\mathrm{c}1)-(\mathrm{C}9)$ : In
this case every contour path of $C$ is classified as
a 1-corner path. Conditions $(\mathrm{c}\mathrm{l}),(\mathrm{c}2)$ hold since
every contour path of $C$ is 1-corner, $(\mathrm{c}3),(\mathrm{c}4)$ hold
since $C$ is not a 2-legged cycle, (c5) holds by
choosing $S_{C}^{l}=\phi,$ $(\mathrm{c}6)$ holds since $G(C)$ has or-
thogonal drawings feasible for $(P_{1}),$ $(P_{2}),$ $(P_{3})$ ,
respectively, as mentioned above, and $(\mathrm{c}7)-(\mathrm{c}9)$

hold since $G(C)$ has no 2-corner path.
Case 3: $C$ is a 2-1egg.e$\mathrm{d}$ cycle having one or more
child-cycles.

Let $x,$ $y$ be the two $\dot{1}\mathrm{e}\mathrm{g}$-vertices of $C$ , and let
$P_{1}$ and $P_{2}$ be the clockwise contour paths from
$x$ to $y$ and from $y$ to $x,$ resp.ectively. If $G(C)$

has an inner face containing $x$ and $y$ , then $C$ has
no 3-legged child-cycle, otherwise, $C$ has exactly
one 3-legged child-cycle, which contains exactly
one leg-vertices of $C$ . Thus $C$ has at most one
3-legged child-cycle.

Let $C_{1},$ $C_{2},$
$\cdots,$

$C_{f}$ be the child-cycle of $C$ . As-
sume that for $C_{i},$ $1\leq\dot{i}\leq l$ , we already have $S_{C_{i}}$ ,
we know whether $G(C_{i})$ has each type of feasi-
ble drawings, and conditions $(\mathrm{c}\mathrm{l})-(\mathrm{c}9)$ holds. We
have the following four subcases. Proofs for $(\mathrm{c}1)-$

(c9) are omitted.
Case $3(\mathrm{a}):C$ has no child-cycle having a 1- or
2- corner path on $C$ .
Computation for $S_{C}$ : Condition (c2) means
that no cycle in $s_{C_{1}},$ $s_{c_{2}},$ $\cdots,$ $Sc_{\ell}$ contains any

edge on $C$ . Also since $G$ is cubic, $C$ is vertex-
disjoint to any cycle in $s_{c_{1}},$ $s_{C_{2}},$ $\cdots,$ $SC_{t}$ . Set
$S_{C}=.\{C\}\cup S_{C_{1}}\cup S_{C_{2}}\cup\cdots\cup S_{C_{t}}$ . Thus we need
to introduce two new bends.
Feasible drawings: We first consider whether
$G(C)$ has an orthogonal drawing feasible for
$(P_{1}, P_{1})$ . Construct a new graph from $G(C)$ by
adding two dummy vertices $v,$ $w$ on $P_{1}$ but not
on any child cycle of $C$ . Then contract each
$G(c_{1}),$ $c(C2),$ $\cdots,$

$G(c_{\ell})$ to vertices $v_{1},$ $v_{2},$ $\cdots$ , $v_{\ell}$ ,
respectively. See Figs. $6(\mathrm{a})$ and (b). Now the
resulting graph is a cycle and has a rectangular
drawing $D$ with the corner vertices $x,$ $v,$ $w,$ $y$ . See
Fig. $6(\mathrm{c})$ . Next, if $C$ has a 3-legged child-cycle,
say $C’$ , then find an orthogonal drawing of $G(C’)$

feasible for $(P’)$ where $P^{l}$ is the contour path of
$C’$ not on $C$ , in a recursive manner. By condi-
tions (c1) and (c6) $G(C’)$ always has such a draw-
ing. Next, find an orthogonal drawing of each
2-legged child-cycle $G(C_{i})$ feasible for $(P_{i}’’, P^{ll})i$

where $P_{i}’’$ is the contour path of $C_{i}$ not on $C$ ,
in a recursive manner. By condition (c4) $G(C)$

always has such a drawing. Finally patch the
drawings of $G(C_{1}),$ $G(c_{2}),$ $\cdots,$ $G(C\ell)$ into $D$ . See
Fig. 6 (d). The patching for 2- and 3-legged child-
cycles always works correctly as shown in Fig. 7
and Fig. 8. Thus we can construct an orthogonal
drawing of $G(C)$ feasible for $(P_{1}, P_{1})$ . Similarly
we can construct orthogonal drawings feasible for
$(P_{2}, P_{2})$ and $(P_{1}, P_{2})$ , respectively.
Classification: In this case every contour path
of $C$ is classified as a 2-corner path.

Figure 6: Illustration for Case $3(\mathrm{a})$ .

Case $3(\mathrm{b}):C$ has exactly one child-cycles having
a 1- or 2- corner path on $C$ , and the child-cycle
is a 2-legged cycle.
Computation for $s_{c:}$ Let $C_{1}$ be the 2-1egged
child-cycle having a corner path on $C$ . We con-
sider two cases. If $C_{1}$ has a 2-corner path on
$C$ , then set $S_{C}=S_{C_{1}}\cup S_{C_{2}}\cup\cdots\cup S_{C_{\ell}}$ . In
this case we do not need to introduce any new
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Figure 7: Illustration for patchings.

Figure 8: Illustration for patchings. (Rotated
cases are omitted.)

bends. If $C_{1}$ has a 1-corner path on $C$ , then, by
(c3), $G(c_{1})$ has a set $S_{C_{1}}’$ of vertex-disjoint cy-
cles containing no edge on $C$ , and consisting of $\ell_{2}’$

$2$-legged cycles and $\ell_{3}’3$-legged cycles such that
2 $\cdot\ell_{2}’+\ell_{3}’=b(G(C_{1}))-1$ . Condition (c2) means
that no cycle in $S_{C_{2}},$ $Sc3’\cdots,$ $Sc_{\ell}$ contains any
edge on $C$ . Set $s_{c}--\{C\}\cup S_{C_{1}}’\cup S_{C_{2}}\cup\cdots\cup S_{C\ell}$ .
In this case we need to introduce one new bend.
Feasible $\mathrm{d}\mathrm{r}\mathrm{a}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}_{\mathrm{S}}$.: Omitted. Similar to the
previous case.
Classification: If $C_{1}$ has a 2-corner path on $P_{1}$ ,
then $P_{1}$ is a 2-corner path and $P_{2}$ is a O-corner
path. If $C_{1}$ has a 2-corner path on $P_{2}$ , then $P_{1}$ is
a $0$-corner path and $P_{2}$ is a 2-corner path. If $C_{1}$

has a 1-corner path on $P_{1}$ , then $P_{1}$ is a 2-corner
path and $P_{2}$ is a 1-corner path. (In this case we
can add one $\mathrm{n}\mathrm{e}\dot{\mathrm{w}}$ bend either on $P_{1}$ or $P_{2}.$ ) If $C_{2}$

has a 1-corner path on $P_{2}$ , then $P_{1}$ is a l-corner
path and $P_{2}$ is a 2-corner path.
Case $3(\mathrm{c}):C$ has exactly one child-cycles having
a l-or 2-corner path on $C$ , and the child-cycle is
a 3-legged cycle.

Let $C_{1}$ be the 3-legged child-cycle having a 1-
or 2-corner path on $C$ . Assume that $C_{1}$ shares $y$

with $C$ as a leg-vertex. Let $P_{11}$ be the contour
path of $C_{1}$ on $P_{1}$ and $P_{12}$ be the contour path of
$C_{1}$ on $P_{2}$ .
Computation for $s_{c:}$ We consider three cases.

If $C_{1}$ has a $P_{11}P_{12}$ -strain, then set $S_{C}=\{C_{S}\}\cup$

$S_{C_{1}}\cup Sc_{2^{\cup}}\cdots\cup s_{C\ell}$ , where $C_{S}$ is the 3-legged cycle

consisting of the $P_{11}P_{12}$-strain and the edges on
$P_{1}$ and $P_{2}$ not contained in $C_{1}$ . By the definition
of strain and (c2), $C_{S}$ is vertex-disjoint to any
cycle in $S_{C_{1}}$ . In this casewe need to introduce
one new bend for $C_{S}$ . (See Figs. $9(\mathrm{a})-(\mathrm{d}).$ )

Otherwise, if $C_{1}$ has no $P_{11}P_{12}$ -strain and ei-
ther $(\mathrm{i})P_{11}$ is a 2-corner path, $(\mathrm{i}\mathrm{i})P_{12}$ is a 2-corner
path or (iii) $P_{11}$ is a 1-corner path and $P_{12}$ is a
1-corner path, then set $S_{C}=S_{C_{1}}\cup S_{C_{2}}\cup\cdots\cup S_{C\ell}$ .
In this case we do not need to introduce any new
bends. (See Figs. $9(\mathrm{e})-(\mathrm{g}).$ )

Otherwise, $C_{1}$ has no $P_{11}P_{12}$-strain, and either
(i) $P_{11}$ is a 1-corner path and $P_{12}$ is a O-corner
path, or (ii) $P_{11}$ is a $0$-corner path and $P_{12}$ is
a 1-corner path. By (c5) $G(C_{1})$ has a set $S_{C_{1}}’$

of vertex-disjoint cycles containing no edge on
$C$ , and consisting of $\ell_{2}’2$-legged cycles and $\ell_{3}’3-$

legged cycles such that 2. $\ell_{2}’+\ell_{3}’=b(G(c_{1}))-1$ .
Set $S_{C}=\{C\}\cup S_{C_{1}}^{l}\cup S_{C_{2}}\cup\cdots\cup S_{C_{\ell}}$ . Thus in
this case we need to introduce one new bend. (See
Figs. $9(\mathrm{a})-(\mathrm{d}).)$

Feasible drawings: Omitted. Similar to the
previous case.

Figure 9: Illustration for Case $3(\mathrm{c})$ .

Classification: If either (i) $P_{11}$ is a 2-corner
path and $C_{1}$ has no $P_{11}P_{12}$-strain, (ii) $P_{11}$ is a
1- or 2-corner path and $C_{1}$ has a $P_{11}P_{12}$-strain,
or (iii) $P_{11}$ is a 1-corner path, $P_{12}$ is a O-corner
path and $C_{1}$ has no $P_{11}P_{12}$ -strain, then $P_{1}$ is a 2-
corner path. (See Figs. $9(\mathrm{e}),(\mathrm{a}),(\mathrm{a})$ , respectively.)
Otherwise if (i) $P_{11}$ is a 1-corner path, $P_{12}$ is a 1-
corner path and $C_{1}$ has no $P_{11}P_{12}$-strain, (ii) $P_{11}$

is a $0$-corner path, $P_{12}$ is a 1- or 2-corner path
and $C_{1}$ has a $P_{11}P_{12}$ -strain, or (iii) $P_{11}$ is a 0-
corner path, $P_{12}$ is a 1-corner path and $C_{1}$ has no
$P_{11}P_{12}$ -strain, then $P_{1}$ is a 1-corner path. (See
Figs. 9 $(\mathrm{g}),(\mathrm{c}),(\mathrm{c})$ , respectively.) Otherwise, $P_{11}$ is
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a $0$-corner path, $P_{12}$ is a 2-corner path and $C_{1}$

has no $P_{11}P_{12}$ -strain, then $P_{1}$ is a $0$-corner path.
(See Fig. $9(\mathrm{f}).$ ) Classify $P_{2}$ similarly.
Case $3(\mathrm{d}):C$ has two or more child-cycles hav-
ing a l-or 2- corner path on $C$ .
Omitted
Case 4: $C$ is a 3-legged cycle having one or more
child-cycles.

Let $x,$ $y,$ $z$ be the three leg-vertices of $C$ , and
let $P_{1},$ $P_{2},$ $P_{3}$ be the clockwise contour path from
$x$ to $y$ , from $y$ to $z$ , and from $z$ to $x$ , respectively.
Computation for $s_{c:}$ If $C$ has no child-cycle
having a l-or 2-corner path on $C$ then set $S_{C}=$

$\{C\}\cup S_{C_{1}}\cup S_{C_{2}}\cup\cdots\cup S_{C_{l}}$ . In this case we need
to introduce one new bend. Otherwise set $S_{C}=$

$S_{C_{1}}\cup S_{C_{2}}\cup\cdots\cup S_{C\ell}$ . In this case we do not need
to introduce any new bend.
Feasible drawings: If $G(C)$ has no child-cycle
having a l-or 2-corner path on $C$ then $G(C)$ has
orthogonal drawings feasible for $(P_{1}),$ $(P_{2}),$ $(P_{3})$ ,
respectively. (In this case we need to introduce
one new bend.)

Otherwise, $G(C)$ has an orthogonal drawing
feasible for $(P_{1})$ if and only if $G(C)$ has a child-
cycle having a 1- or 2-corner path on $P_{1}$ . Simi-
larly we can determine whether $G(C)$ has orthog-
onal drawings feasible for $(P_{2})$ and $(P_{3})$ .

If $C$ has no child-cycle having a 1- or 2-corner
path on $C$ then $G(C)$ has no orthogonal drawing
feasible for $(P_{1}, P_{1}, -P3)$ , since we have no chance
to have two bend on $P_{1}$ even if we introduce one
new bend on $P_{1}$ .

$G(C)$ has an orthogonal drawing feasible for
$(P_{1}, P_{1}, -P3)$ if and only if (i) $C$ has two child-
cycle having a 1- or 2-corner path on $P_{1}$ , or $C$

has a child-cycle having a 2-corner path on $P_{1}$ ,
and (ii) $C$ has no $P_{1}P_{2}$-strain. (Construction is
omitted. See Figs. 10 and 11.)

Figure 10: Illustration for Case 4.

Classification: If $C$ has no child-cycle having a
l-or 2-corner path on $C$ , then $P_{1},$ $P_{2}$ and $P_{3}$ are

Figure 11: Illustration for Case 4.

1-corner paths. Otherwise, if either (i) $C$ has two
or more child-cycles having a l-or 2-corner path
on $P_{1}$ , or $C$ has a child-cycle having a 2-corner
path on $P_{1}$ , then $P_{1}$ is classified as a 2-corner
path. Otherwise if $C$ has exactly one child-cycle
having 1-corner path on $P_{1}$ , then $P_{1}$ is classified
as a 1-corner path. Otherwise $P_{1}$ is classified as
a $0$-corner path. We classify $P_{2}$ similarly.

Now we give our algorithm to find a bend-
optimal orthogonal drawing. Using a method
similar to one in [RNN96, RNN99, RNNOO] the
algorithm above runs in linear time.

Algorithm Orthogonal-Draw$(G)$

begin
1 Choose an edge $e$ on $c_{o}(G)$ ; Find a genealog-

ical tree $T_{g}$ ;
2 Do the bottom-up computation;
3 Find minimal cycles having 1- or 2-corner

path on $c_{o}(G’)$ as many as possible;
4 Do the following until $G_{0}$ has exactly four

vertices of degree two.
For each minimal 2-legged cycle $C$ hav-
ing 2-corner path on $G_{0}$ replace $G(C)$

$\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{o}\mathrm{a}\mathrm{f}\mathrm{t}^{\mathrm{u}}\mathrm{e}\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{t}_{\mathrm{W}}\mathrm{o}\mathrm{a}\mathrm{d}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{g}1\mathrm{e}\mathrm{C}\mathrm{o}\mathrm{n}_{G0}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{o}\mathrm{n}$

.
two ver-

For each minimal 2-legged cycle $C$ hav-
ing 1-corner path on $G_{0}$ replace $G(C)$

with a vertex of degree two.
For each minimal 3-legged cycle $C$ hav-
ing 1-corner path on $G_{0}$ replace $G(C)$

with a quadrangle containing one ver-
tex of degree two on $G_{0}$ .
Put vertices of degree two on the edge
$e$ .

5 Find maximal bad cycles $C_{1},$ $C_{2},$
$\cdots,$

$c_{\ell;}$

6 Let $G”$ be the graph derived from $G^{J}$ by con-
tracting each $G(C_{i}),\dot{i}=1,2,$ $\cdots$ , $\ell$ into a ver-
tex $v_{i}$ ;

7 Find a rectangular drawing $D(G”)$ of $G”$ ;
8 For each $\dot{i}=1,2,$ $\cdots,$

$\ell$ , find a feasible or-
thogonal drawing $D(G(C_{i}))$ of $G(C_{i})$ ;

9 Patch the drawings $D(G(c_{i})),\dot{i}=1,2,$ $\cdots,$
$\ell$ ,

into $D(G^{;;})$ to get an orthogonal drawing of
$G$ ; (See Figs. 1(e) and $(\mathrm{f}).$ )
end.

167



Theorem 4.1 The algorithm above find a bend-
optimal orthogonal drawing of a biconnected cubic
plane graph in linear time.

5 Conclusion

In this paper we presented a linear-time algorithm
to find an orthogonal drawing of a biconnected
cubic plane graph with the minimum number of
bends. It is remained as a future work to find a
linear-time algorithm for a larger class of plane
graphs.
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