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Abstract: An orthogonal drawing of a plane graph G is a drawing of G with the given planar
embedding in which each vertex is mapped to a point, each edge is drawn as a sequence of
alternate horizontal and vertical line segments, and any two edges do not cross except at
their common end. Observe that only a planar graph with the maximum degree four or less
has an orthogonal drawing. The best known algorithm to find an orthogonal drawing runs in
time O(n"/4\/logn) for any plane graph with n vertices. In this paper we give a linear-time
algorithm to find an orthogonal drawing of a given biconnected cubic plane graph with the

minimum number of bends.
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1 Introduction

An orthogonal drawing of a plane graph G is a
drawing of G with the given planar embedding
in which each vertex is mapped to a point, each
edge is drawn as a sequence of alternate hori-
zontal and vertical line segments, and any two
edges’do not cross except at their common end.
Orthogonal drawings have attracted much atten-
tion due to its numerous practical applications in
circuit schematics, etc. [BLV93, K96, T87]. In
particular, we wish to find an orthogonal draw-
ing with the minimum number of bends. For the
plane graph in Fig. 1(a), the orthogonal drawing
in Fig. 1(b) has the minimum number of bends,
that is, eleven bends. o

For a given planar graph G, if it is allowed to
choose its planar embedding, then finding an or-
thogonal drawing of G with the minimum num-
ber of bends is NP-complete[GT94). However,
Tamassia[T87] and Garg and Tamassia [GT96]
presented algorithms® which find an orthogonal
drawing of ‘a given plane graph G with the
minimum number of bends in O(n?logn) and
O(n"/*/logn) time respectively unless it is al-

lowed to choose its planar embedding, where n
is the number of vertices in G. They reduce the
minimum-bend orthogonal drawing problem to a
minimum cost flow problem. On the other hand,
several linear-time algorithms are known for find-
ing an orthogonal drawing of a plane graph with a
presumably small number of bends[K96], and for
3-connected cubic plane graphs a linear-time al-
gorithm is known for finding an orthogonal draw-
ing with the minimum number of bends[RNN99)].
Observe that only a planar graph with the maxi-
mum degree four or less has an orthogonal draw-
ing.

In this paper, generalizing the result in
[RNN99], we give a linear-time algorithm to find
an orthogonal drawing of a biconnected cubic
plane graph with the minimum number of bends.

An orthogonal drawing in which there is no
bend and each face is drawn as a rectangle is
called a rectangular drawing. Given a plane graph
G such that every vertex has degree either two or
three, in linear-time we can find a rectangular
drawing of G whenever such'a graph has a rect-
angular drawing [KH94, RNN96, RNN00]. The
key idea of our algorithm is to reduce the orthog-



Figure 1: A plane graph and its orthogonal draw-
ing.

onal drawing problem to the rectangular drawing
problem. : ‘
An outline of our algorithm is illustrated in
Fig. 1. Given a plane graph G as shown in
Fig. 1(a), we first find a tree structure among
some cycles in G, then by analyzing the tree
structure we put four dummy vertices a, b, c and d
of degree two on the outer boundary of G, and let
G’ be the resulting graph. The four dummy ver-
tices are drawn by white circles in Fig. 1(c). We
then contract each of some cycles C1,Cs, - -- and
their insides (shaded in Fig. 1(c)) into a single
vertex as shown in Fig. 1(d) so that the result-
ing graph G” has a rectangular drawing as shown
in Fig. 1(e). We also find orthogonal drawings
of those cycles Cy, €y, - - - and their insides recur-
sively (See Figs. 1(d) and (e)). Patching the ob-
tained drawings, we get an orthogonal drawing of
G' as shown in Fig. 1(f). Replacing the dummy
vertices a,b,c and d in the drawing of G’ with
bends, we finally obtain an orthogonal drawing
of G as shown in Fig. 1(b).
.- The rest of the paper is organized as follows.
Section 2 gives some definitions and presents-a
known result. Section 3 shows a tree structure
among some cycles in G. Section 4 presents an
algorithm to find an orthogonal drawing with the
minimum number of bends. Finally Section 5 is
a conclusion.
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2 Preliminaries

In this section we give some definitions and
present a known result.

Let G be a connected graph with n vertices.
An edge connecting vertices z and y is denoted
by (z,y). The degree of a vertex v is the number
of neighbors of v in G. If every vertex of G has
degree three, then G is called a cubic graph. The
connectivity kK(G) of a graph G is the minimum
number of vertices whose removal results in a dis-
connected graph or a single-vertex graph K;. We
say that G is k-connected if K(G) > k.

A graph is planar if it can be embedded in the
plane so that no two edges intersect geometri-
cally except at a vertex to which they are both
incident. A plane graph is a planar graph with
a fixed planar embedding. A plane graph divides
the plane into connected regions called faces. We
regard the contour of a face as a clockwise cycle
formed by the edges on the boundary of the face.
We denote the contour of the outer face of graph
G by C,(G).

For a simple cycle C in a plane graph G, we
denote by G(C) the plane subgraph of G inside
C (including C). We say that cycles C; and C»
in a plane graph G are independent if G(C;) and
G(C3) have no common vertex. Cycles C; and Cs
are vertez-disjoint if C7 and Co have no common
vertex. An edge which is incident to exactly one
vertex of a simple cycle C and located outside of
C is called a-leg of the cycle C, and the vertex
on C to which the leg is incident is called a leg-
vertez of C. A simple cycle with exactly k legs is
called a k-legged cycle. For k-legged cycle C the
k subpaths of C dividing C' at the k leg-vertices
are called the contour paths of C.

An orthogonal drawing of a plane graph G is
a drawing of G with the given planar embedding
in which each vertex is mapped to a point, each
edge is drawn as a sequence of alternate horizon-
tal and vertical line segments, and any two edges
do not cross except at their common end. A point
where an edge changes its direction in a drawing
is called a. bend. We denote by b(G) the mini-
mum number of bends for orthogonal drawings
of G. An orthogonal drawing of G with exactly
b(G) bends. is bend-optimal.

A rectangular drawing of a plane graph G is
a drawing of G such that each edge is drawn as



a horizontal or vertical line segment, and each
face is drawn as a rectangle. Thus a rectangular
drawing is an orthogonal drawing in which there
is no bend and each face is drawn as a rectangle.
The drawing of G” in Fig. 1(e) is a rectangular
drawing. The drawing of G’ in Fig. 1(f) is not a
rectangular drawing, but is an orthogonal draw-
ing. In any rectangular drawing D of G, the four
corners of the rectangle corresponding to C,(G)
are vertices of degree two on C,(G). We call these
four vertices the corner vertices of D. The follow-
ing result on rectangular drawings is known.

Lemma 2.1 Let G be a connected plane graph
such that every vertex has degree either two or
three, and let a,b,c,d be four designated vertices

of degree two on C (G) Then G has a rectangular

drawing with the corner vertices a,b,c,d if and
only if G has none of the following three types of

simple cycles [T8]:

(r1) 1-legged cycles,

(r2) 2-legged cycles which contain at most one
designated vertex ‘of degree two, and

(r3) 3-legged cycles which contain no desig-
nated vertex of degree two.

Furthermore one can check in linear time whether
G satisfies the condition above, and if G does then
one can find a rectangular drawing of G in lmear
time [RNN96 RNN00].

Q designated vertex of degree two

(a) 1-legged cycle (b) 2-legged cycles {(c) 3-legged cycles

Figure 2: Bad cycles C1, Cs, C3 and C5, and non-
bad cycles Cy,Cs and C.

A cycle of type (rl), (r2) or (r3) is called a bad
cycle. Figs. 2(a), (b) and (c) illustrate 1-legged,
2-legged and 3-legged cycles, respectively. Cycles
C1,C5,C3 and Cjs are bad cycles. On the other
hand, cycles C4,Cs and C; are not bad cycles;
Cy is a 2-legged cycle but contains two designated
vertices of degree two, and Cg and C7 are 3-legged
cycles -but contain one or two designated vertices
of degree two.

162

Some linear-time algorithms to find a rectangu-
lar drawing of a plane graph satisfying the con-
dition in Lemma 2.1 have been obtained [KH94,
RNN96, RNNOO.

3 Genealogical Tree

In this section we first show a tree structure
among some cycles in a biconnected cubic plane
graph G.

Let G be a biconnected cubic plane graph. For
a pair of distinct cycles C, and Cy in G, Cy is
called a descendant-cycle of C, if (i) Cy is either
2- or 3-legged cycle, and (ii) G(Cy) is a proper
subgraph of G(C;). Note that since G is bi-
connected there is neither 0- nor 1-legged cycle
except the only 0O-legged cycle C,(G). Now we
choose an edge e = (z,y) on C,(G), and replace
e with two edges (z,z) and (z,y). Let G be the
resulting plane graph. (Note that, for G — e,
that is a plane subgraph of G obtained from G
by deleting e, Co(G — ) is a 2-legged cycle of
G', however, Co(G — €) is not a 2-legged cycle
of G.) Let D.(C,) = {C|C is a descendant cy-
cle of C,(G') not containing z}. A cycle C, in
D.(C,) is called a child-cycle of C,(G') (with re-
spect to edge e) if C, is not located inside of any
other cycle in D¢(C,). Since G is a biconnected
cubic plane graph, Co(G') has exactly one child-
cycle Cyo(G — e) (with respect to edge e). (See
Fig 3.) Then, recursively, for each child-cycle C,
we define its child-cycle as follows. We have the
following two cases.

Case 1: C, is a 2-legged cycle.

Choose a leg-vertex of C, as z. Let D,(C.) =
{C]C is a descendant cycle of C, not containing z
}- A cycle Ce. in D,(C,) is called a child-cycle of
C. (with respect to z) if C,. is not located inside
of any other cycle in D,(C,.). Since G is a bi-
connected cubic plane graph, C, has at most one
3-legged child-cycle. (C, has no 3-legged child-
cycle if G(C) has an inner face F' containing the
two leg-vertices, and C. has exactly one 3-legged
child-cycle otherwise.)

Case 2: Otherwise, C isa 3- legged cycle.

Let D(C,) be the set of all descendant cycles of
Ce. A cycle C.c in D(C,) is called a child-cycle of
C. if C,. is not located inside of any other cycle
in D(C,).



In both cases above all child-cycles of C, are
independent each other.

By the definition above we can find child-cycles
of each child-cycle recursively, and eventually we
get a (hierarchical) tree structure of cycles in G
represented by a “genealogical tree” Ty, as shown
in Fig 3. Because of the choices for e and z, T,
may have some variations. We choose an arbi-
trary (but fixed) one as Tj.

z

I

Figure 3: cycles in G and a genealogical tree Tj.

Using a method similar to one in [RNNY6,
RNN99, RNNO0], in linear time one can find such
a tree structure T; among cycles by traversing the
contour of each face a constant number of times.

Now we observe the following. In any orthog-
onal drawing of G, every cycle C in G has at
least four convex corners, i.e., polygonal vertices
of inner angle 90°. Since G is cubic, such a cor-
ner must be a bend if it is not a leg-vertex of C.
Thus we have the following facts for any orthog-
onal drawing of G.

Fact 1 At least four bends must appear on
C,(G).

Fact 2 At least two bend must appear on each
2-legged cycle in G.

Fact 3 At least one bend must appear on each
3-legged cycle in G.

4 Orthogonal Drawing

In this section we give a linear-time algorithm
to find a bend-optimal orthogonal drawing of a
biconnected cubic plane graph. Assume that we
have a genealogical tree Ty of a biconnected cubic
plane graph G. We need some definitions.

We define “feasible drawings” as follows. Note

that rotated cases are omitted.
Let C be a 2—Ieg§ed cycle with the two leg-
vertices z and y, and P; and P» be the clockwise
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contour paths from z to y and from y to z, re-
spectively. A bend-optimal orthogonal drawing

D of G(C) is feasible for (Py, P;) if none of the
following four open halflines intersects D. (See
Fig. 4(a). Intuitively D needs two convex bends
on P 1.)

the vertical open halfline with the upper end
{;algexl'lorizontal open halfline with the left end
?l)'clex{/ertical open halfline with the lower end
talgeyhorizontal open halfline with the left end
at y.

Figure 4: Illustration for feasible drawings.

Also, a bend-optimal orthogonal drawing D of
G(C) is feasible for (Py, P5) if none of the four
open halflines depicted in dashed lines in Fig. 4(b)
intersects D.

Let C be a 3-legged cycle with the three leg-
vertices z,y and z appearing clockwise in this or-
der, and P;, P, and P3 be the clockwise contour
path from z to y, from y to 2z, and from z to z,
respectively. A bend-optimal orthogonal drawing
D of G(C) is feasible for (P;) if none of the six
open halflines depicted in dashed lines in Fig. 4(c)
intersects D. Similarly, we define feasible orthog-
onal drawings for (P;, Py, ~P3), (Py, Py, —Ps) and
(P1, Py, —Ps).(See Fig. 4(d)-(f).) ~

Now, for each cycle C # C,(G) corresponding
to a vertex in T,, we determine whether G(C)
has each type of feasible drawings by a bottom-
up computation on Ty. For the bottom-up com-
putation we also compute a set S¢ of vertex-
disjoint cycles in G(C) consisting of £y 2-legged
cycles and /3 3-legged cycles for some /5 and /3.
Thus b(G(C)) > 2+ €y + £3 by Facts 3.2 and 3.3.
We then show that G(C) always has at least one



feasible drawing using 2 - £ + ¢35 bends. Thus
b(G(C)) = 2 €5 + £3 holds.

In the bottom-up computation we classify each
contour path of each cycle as either 0-, I-, or
2-corner path. Intuitively k-corner path has a

chance to have k& convex bends. And we define

Figure 5: Illustration for P, P,-strain.

P, Py-strain by those corner paths as follows. Let
z,Y,z be the three leg-vertices of a 3-legged cy-
cle C, P1~'av,‘nd P, be the clockwise contour paths
from z to yand y to 2, respectively. Assume that
s and t are vertices on P, and P», respectively,
and let P; be the subpath of P, from z to s, and
P, be the subpath of P, from ¢ to z. If (i) there
is a-path P from s to ¢ such that the left side of
P is an inner face of G(C), and (ii) G(C) has no
child cyele having 1- or 2-corner path on P, P1 or
P,, then the path consisting of Py, P, P, are called
Py Py-strain. An example is illustrated in Fig. 5.
Intutively, we have only two chance to turn right
at s and ¢ on P Py-strain from z to z.

In the-bottom-up computation we show . that
the following conditions (cl) ~(c9) hold.

(cl) Any cycle C has at least one 1- or 2- corner
" path.

(c2)"No cycle in S¢ contains any edge on any 0-

-.. corner pathof C.

(03) For  any 2-legged cycle C.if C has a 1-
corner path Py, then G(C) has a set S, of
vertex-disjoint ‘cycles contalmng no edge on

, vP1 and consisting of £2 2-legged cycles and
?s. 3-legged. cycles such that 2 - b + £3 =
oG (€)—1.

(c4) For any 2-legged cycle C if C has a 0-corner
path Py, then the otheér contour path P, is a
© 2-corner path, and G(C) has an orthogonal

- -drawing feasible for (Ps; Ps). -

(c5): For “any 3-legged cycle-C if C has a 1-

corner path P, then G(C) has a set Sy of
- vertex-disjoint cycles containing no edge on
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Py, and consisting of Z’z 2-legged cycles and
¢, 3-legged cycles such that 2 - Z’Z + 4 =
b(G(C)) — 1.

(c6) For any 3-legged cycle C if C has a 1- or 2-
corner path Pj, then G(C) has an orthogonal
drawing feasible for (P;).

(c7) For any 3-legged cycle C if C has a 2-
corner path P; and no P)P-strain , then
G(C) has an orthogonal drawing feasible for
(P, Pr,— P3)

(c8) For any 3-legged cycle C' if C has a 2-
corner path P; and no P3P -strain, then
G(C) has an orthogonal drawing feasible for
(P, Py, —-P),

(c9) For any 3-legged cycle C if C has 1-corner
paths P, and P, and no P; Ps-strain, then
G(C) has an orthogonal drawing feasible for
(P1, Py, —P3).

Now we explain the bottom-up computation in
the following four cases.

Case 1: C is a 2-legged cycle having no child-
cycle.

Let z,y be the two leg-vertices of C, let P; and
P, be the clockwise contour paths from z to y
and from y to z, respectively. Now G(C) = C,
since for any 2-legged cycle C if G(C) has an edge
in proper inside of C then C always has a child-
cycle.

Computation for Sc Set S¢ = {C} By Fact
3.2 any orthogonal drawmg of G(C) has at least
two bends. -

Feasible drawings: By introducing two bends
on P, we can easily construct an orthogonal
drawing of G(C) feasible for (Pi, P;). Similarly
we can construct orthogonal drawings of G(C)
feasible for (P, P;) and (P;, P,), respectively.
Thus G(C) has each type of feasible orthogonal
drawings. '
Classification and proof for (c1)—(c9): In
this case every contour path of C is classified as
a 2-corner paths. Conditions (c1)—(c4) hold since
every contour path of C' is 2-corner, and (c5)—(c9)
hold since C'is not a 3-legged cycle.

Case 2: C is a 3-legged cycle having no Chlld—
cycle.

Let z,y,z be the three leg-vertices of C, let
Py, P,, P3 be the clockwise contour path from z
to y, from y to z, and from z to z, respectively.
Now if we remove all edges on C from G(C), then
either G(C) = C or the remaining edges induce
a connected graph containing at least one vertex



on each Py, Py, P3, since otherwise C' has a child-
cycle, a contradiction.

Computation for S¢: Set S¢ = {C}. By Fact
3.3 any orthogonal drawing of G(C) has at least
one bend.

Feasible drawings: Construct a new graph G
from G(C) by adding one dummy vertices v on
P;. Now the resulting graph G’ has no bad cycle
(since G has no child-cycle) with respect to corner
vertices z,v,y, z, and then G has a rectangular
drawing with the corner vertices z,v,y,z. The
rectangular drawing is also an orthogonal draw-
ing of G(C) feasible for (P;) using exactly one
bend (corresponding to v). Similarly we can eas-
ily construct orthogonal drawings of G(C) feasi-
ble for (P;) and (Ps).

Now G(C) has no orthogonal drawing feasible
for (P, P,, —P,), since it needs at least two bends
only on P;. Similarly G(C) has no orthogonal
drawing feasible for (P;; Pj, —Py) for any 4, j,k €
{1,2,3}.

Classification and proof for (c1)—(c9): In
this case every contour path of C is classified as
a 1-corner path. Conditions (c1),(c2) hold since
every contour path of C is 1-corner, (c3),(c4) hold
since C is not a 2-legged cycle, (c5) holds by
choosing Si; = &, (c6) holds since G(C) has or-
thogonal drawings feasible for (Py), (P), (P3),
respectively, as mentioned above, and (c7)—(c9)
hold since G(C) has no 2-corner path.

Case 3: C is a 2-legged cycle having one or more
child-cycles. o

Let z,y be the two leg-vertices of C, and let
P; and P, be the clockwise contour paths from
z to y and from y to z, respectively. If G(C)
has an inner face containing z and y, then C has
no 3-legged child-cycle, otherwise, C' has exactly
one 3-legged child-cycle, which contains exactly
one leg-vertices of C. Thus C has at most one
3-legged child-cycle.

Let C1,Cy,-- -, Cy be the child-cycle of C. As-
sume that for C;, 1 <1 <!, we already have Sc;,,
we know whether G(C;) has each type of feasi-
ble drawings, and conditions (c1)-(c9) holds. We
have the following four subcases. Proofs for (c1)-
(c9) are omitted.

Case 3(a): C has no child-cycle having a 1- or
2- corner path on C.

Computation for Sc¢: Condition (c2) means
that no cycle in S¢,,Sc,,"-+,Sc, contains any
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edge on C. Also since G is cubic, C is vertex-
disjoint to any cycle in Sc,,Sc,, --,S¢,. Set
Sc={C}USc, USc,U---USc,. Thus we need
to introduce two new bends.

Feasible drawings: We first consider whether
G(C) has an orthogonal drawing feasible for
(P, P1). Construct a new graph from G(C) by
adding two dummy vertices v,w on P; but not
on any child cycle of C. Then contract each
G(C1),G(Cs),- -, G(Cy) to vertices v1,v2,- -, vy,
respectively. See Figs. 6(a) and (b). Now the
resulting graph is a cycle and has a rectangular
drawing D with the corner vertices z,v,w,y. See
Fig. 6(c). Next, if C has a 3-legged child-cycle,
say C', then find an orthogonal drawing of G (C')
feasible for (P’) where P’ is the contour path of
C' not on C, in a recursive manner. By condi-
tions (c1) and (c6) G(C’) always has such a draw-
ing. Next, find an orthogonal drawing of each
2-legged child-cycle G(C;) feasible for (P, P;)
where Pi” is the contour path of C; not on C,
in a recursive manner. By condition (c4) G(C)
always has such a drawing. Finally patch the
drawings of G(C1), G(Cs), -+, G(Cy) into D. See
Fig. 6(d). The patching for 2- and 3-legged child-
cycles always works correctly as shown in Fig. 7
and Fig. 8. Thus we can construct an orthogonal
drawing of G(C) feasible for (P, P;). Similarly
we can construct orthogonal drawings feasible for
(P, P») and (Py, P»), respectively.
Classification: In this case every contour path
of C is classified as a 2-corner path.

Figure 6: Illustration for Case 3(a).

Case 3(b): C has exactly one child-cycles having
a 1- or 2- corner path on C, and the child-cycle
is a 2-legged cycle.

Computation for Sc¢: Let C; be the 2-legged
child-cycle having a corner path on C. We con-
sider two cases. If C; has a 2-corner path on
C, then set S¢ = S¢, USc, U---U S¢g,. In
this case we do not need to introduce any new



Figure 7: Illustration for patchings.
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Figure 8: Illustration for patchings. (Rotated

cases are omitted.)

bends. If C; has a 1-corner path on C, then, by
(c3), G(C1) has a set »S’Cl of vertex-disjoint cy-
cles containing no edge on C, and consisting of £,
2-legged cycles and £, 3-legged cycles such that
20y + 03 = b(G(C1)) — 1. Condition (c2) means
that no cycle in Sg,, Sc,, -+, Sc, contains any
edge on C. Set S¢ = {C}USg, USc, U---USg,.
In this case we need to introduce one new bend.
Feasible drawings: Omitted. Similar to the
previous case. '
Classification: If C; has a 2-corner path on P,
then P; is a 2-corner path and P, is a 0-corner
path. If C; has a 2-corner path on Py, then Pj is
a O-corner path and P, is a 2-corner path. If C;
has a 1-corner path on Pj, then P; is a 2-corner
path and P; is a 1-corner path. (In this case we
can add one new bend either on P; or P,.) If Cy
has a 1-corner path on P, then P, is a 1-corner
path and P, is a 2-corner path.

Case 3(c): C has exactly one child-cycles having
a 1- or 2-corner path on C, and the child-cycle is
a 3-legged cycle.

Let C; be the 3-legged child-cycle having a 1-
or 2-corner path on C. Assume that C; shares y
with C as a leg-vertex. Let P;; be the contour
path of C; on P; and. Pj5 be the contour path of
01 on Pz.

Computation for S¢: We consider three cases.

If Cy has a Py; Pyp-strain, then set S¢ = {Cs}U
Sc,USc,U---US¢,; where Cg is the 3-legged cycle
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consisting of the P;; Pjs-strain and the edges on
P, and P; not contained in C;. By the definition
of strain and (c2), Cg is vertex-disjoint to any
cycle in S¢,. In this casewe need to introduce
one new bend for Cs. (See Figs. 9(a)—-(d).)

Otherwise, if C7 has no Pj;Pj>-strain and ei-
ther (i)P1; is a 2-corner path, (ii)Pjs is a 2-corner
path or (iii) Pj; is a l-corner path and Pj, is a
1-corner path, then set S¢ = S¢, USc, U---USg,.
In this case we do not need to introduce any new
bends. (See Figs. 9(e)—(g).)

Otherwise, C; has no Py Pjs-strain, and either
(i) Pp1 is a l-corner path and Pj, is a 0-corner
path, or (ii) Pj; is a O-corner path and Pjy is
a l-corner path. By (c5) G(Ci) has a set Slcl
of vertex-disjoint cycles containing no edge on
C, and consisting of 8'2 2-legged cycles and Eg 3-
legged cycles such that 2- £, + €5 = b(G(C})) — 1.
Set S¢ = {C}U S, USc, U---USg,. Thus in
this case we need to introduce one new bend. (See
Figs. 9(a)—(d).)

Feasible drawings: Omitted. Similar to the
previous case.

Figure 9: Illustration for Case 3(c).

Classification: If either (i) P;; is a 2-corner
path and C; has no P Pis-strain, (i) Pp; is a
1- or 2-corner path and C; has a Pjj Pjo-strain,
or (ili) Py; is a 1-corner path, Pjy is a O-corner
path and C) has no Py Pjs-strain, then P; is a 2-
corner path. (See Figs. 9(e),(a),(a), respectively.)
Otherwise if (i) Pi; is a 1-corner path, Pjs is a 1-
corner path and C has no Py Pig-strain, (ii) Pi;
is a O-corner path, Pjs is a 1- or 2-corner path
and Cy has a PyjPia-strain, or (iii) Pj; is a 0-
corner path, Pjy is a 1-corner path and C} has no
Py1 Pyo-strain, then P; is a 1-corner path. (See
Figs. 9(g),(c),(c), respectively.) Otherwise, Pj; is



a 0O-corner path, Pjo is a 2-corner path and C;
has no Pj; Pjo-strain, then P is a O-corner path.
(See Fig. 9(f).) Classify P similarly.

Case 3(d): C has two or more child-cycles hav-
ing a 1- or 2- corner path on C.

Omitted

Case 4: C'is a 3-legged cycle having one or more
child-cycles.

Let z,y, 2 be the three leg-vertices of C, and

let P;, P, P; be the clockwise contour path from
z to y, from y to 2, and from 2 to z, respectively.
Computation for Sc: If C has no child-cycle
having a 1- or 2-corner path on C' then set S¢ =
{CYUSc, USe, U---USg,. In this case we need
to introduce one new bend. Otherwise set S¢ =
Sc,USc, U---USg,. In this case we do not need
to introduce any new bend.
Feasible drawings: If G(C) has no child-cycle
having a 1- or 2-corner path on C then G(C) has
orthogonal drawings feasible for (P;), (P), (Ps),
respectively. (In this case we need to introduce
one new bend.)

Otherwise, G(C) has an orthogonal drawing
feasible for (P)) if and only if G(C) has a child-
cycle having a 1- or 2-corner path on P;. Simi-
larly we can determine whether G(C) has orthog-
onal drawings feasible for (P) and (Ps).

If C has no child-cycle having a 1- or 2-corner
path on C then G(C) has no orthogonal drawing
feasible for (P;, P, —P3), since we have no chance
to have two bend on P; even if we introduce one
new bend on P;.

G(C) has an orthogonal drawing feasible for
(P, P, —Ps) if and only if (i) C has two child-
cycle having a 1- or 2-corner path on P;, or C
has a child-cycle having a 2-corner path on P,
and (ii) C has no P;Py-strain. (Construction is
omitted. See Figs. 10 and 11.)

Figure 10: Illustration for Case 4.

Classification: If C has no child-cycle having a
1- or 2-corner path on C, then P, P> and P; are
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Figure 11: Tllustration for Case 4.

1-corner paths. Otherwise, if either (i) C has two
or more child-cycles having a 1- or 2-corner path
on P, or C has a child-cycle having a 2-corner
path on P, then P; is classified as a 2-corner
path. Otherwise if C' has exactly one child-cycle
having 1-corner path on P;, then P; is classified
as a l-corner path. Otherwise P, is classified as
a 0-corner path. We classify P, similarly.

Now we give our algorithm to find a bend-
optimal orthogonal drawing. Using a method
similar to one in [RNN96, RNN99, RNNO0O] the
algorithm above runs in linear time.

Algorithm Orthogonal-Draw(G)
begin ;

1 Choose an edge e on C,(G); Find a genealog-
ical tree T;

2 Do the bottom-up computation;

3 Find minimal cycles having 1- or 2-corner
path on C,(G’) as many as possible;

4 Do the following until Gy has exactly four
vertices of degree two.

For each minimal 2-legged cycle C hav-
ing 2-corner path on Gy replace G(C)
with a quadrangle contammg two ver-
tices of (élegree two on Gj.

For each minimal 2-legged cycle C hav-
ing 1-corner path on Gy replace G(C)
with a vertex of degree two.

For each minimal 3-legged cycle C hav-
ing 1-corner path on Gy replace G(C)
with a quadrangle containing one ver-
tex of degree two on Gj.

Put vertices of degree two on the edge
e.

5 Find maximal bad cycles C},Cs, - -, Cy;

6 Let G be the graph derived from G’ by con-
tracting each G(C;),i = 1,2,---, £ into a ver-
tex vg;

7 Find a rectangular drawing D(G") of G”;

8 For each ¢« = 1,2,---,¢, find a feasible or-
thogonal drawing D(G(C;)) of G(C;);

9 Patch the drawings D(G(C;)),i=1,2,---,4,
into D(G") to get an orthogonal drawing of
G} (See Figs. 1(e) and (f).)
end. ~ v



Theorem 4.1 The algorithm above find a bend-
optimal orthogonal drawing of a biconnected cubic
plane graph in linear time.

5 Conclusion

In this paper we presented a linear-time algorithm
to find an orthogonal drawing of a biconnected
cubic plane graph with the minimum number of
bends. It is remained as a future work to find a
linear-time algorithm for a larger class of plane
graphs.
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