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Abstract: We give an overview of the computational complexity of linear and mesh-
connected cellular arrays with respect to well known models of sequential and parallel com-
putation. We discuss one-way communication versus two-way communication, serial input
versus parallel input, and space-efficient simulations. In particular, we look at the parallel
complexity of cellular arrays in terms of the PRAM theory and its implications, e.g., to the
parallel complexity of recurrence equations and loops. We also point out some important
and fundamental open problems that remain unresolved.

Next, we investigate the solvability of some reachability and safety problems concerning
machines operating in parallel and cite some possible applications. Finally, we briefly discuss
the complexity of the “commutativity analysis”technique that is used in the areas of parallel
computing and parallelizing compilers.

Keywords: cellular array, computational complexity, $\mathrm{P}$-complete, parallel complexity, re-
currence equations, reachability, safety, commutativity analysis.

1 Introduction

One of the earliest and simplest models of paral-
lel computation is the cellular array, also called
the cellular automaton. They have been stud-
ied extensively in the literature. Early papers
have studied these devices in the context of pat-
tern and language recognition - their recogni-
tion power, closure and decision properties, and
their relationships to other models of computa-
tion, such as Turing machines, linear bounded
automata, pushdown automata, and finite au-
tomata. In later papers, the study of these ar-
rays has focused on their abilities to perform nu-
meric and nonnumeric computations in various
areas such as computational linear algebra and
signal and image processing. Such arrays, whose
processors need no longer be “finite-state”, have
also been called systolic arrays.

Here we give an overview of the computational
complexity of cellular arrays with respect to well
known models of sequential and parallel compu-
tation. We discuss results concerning one-way
communication versus two-way communication,
linear-time versus real-time, serial input versus

parallel input, space-efficient simulation of one-
way arrays, parallel complexity of cellular arrays,
etc. We also point out some important and fun-
damental open problems that remain unresolved.

Next, we investigate the solvability (existence
of algorithms) of some reachability and safety
problems concerning machines operating in par-
allel. Possible applications of the results are in
load balancing in parallel machines and model-
checking and safety testing in reactive systems.

Two operations commute if they generate the
same result regardless of the order in which they
execute. Commuting operations enable signifi-
cant optimizations in the areas of parallel com-
puting and parallelizing compilers. We briefly
discuss the computational complexity of commu-
tativity analysis.

2 Cellular arrays

A linear cellular array (LCA) is a one-
dimensional array of $n$ identical finite-state
machines (called nodes) that operate syn-
chronously at discrete time steps by means of
a common clock [BUCH84, KOSA74, SMIT70,
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Figure 1. An LCA.

Figure 2. An OLCA.

SMIT71, SMIT72] (see Figure 1). The input
$a_{1}a_{2}\cdots a_{n}$ , where $a_{i}$ is in the finite alphabet $\Sigma$

is applied to the array in parallel at time $0$ by
setting the states of the nodes to $a_{1},$ $a_{2},$ $\cdots,$ $a_{n}$ .
The state of a node at time $t$ is a function of its
state and the states of its left and right neigh-
bors at time $t-1$ . We assume that the leftmost
(rightmost) node has an “imaginary” left (right)
neighbor whose state is $ at all times. We say that
$a_{1}a_{2}\cdots a_{n}$ is accepted by the LCA if, when given
the input $a_{1}a_{2}\cdots a_{n}$ , the leftmost cell eventually
enters an accepting state. The LCA has time
complexity $T(n)$ if it accepts inputs of length $n$

$\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}_{\dot{\mathrm{i}}}\mathrm{n}\tau(n)$ steps. Clearly, for a nontrivial com-
putation, $T(n)\geq n$ . If $T(n)=cn$ for some real
constant $c\geq 1$ , then the LCA is called a $l\dot{i}near-$

time LCA. When $T(n)–n$, it is called a real-time
LCA. Note that an LCA without time restriction
is equivalent to a linear-space bounded determin-
istic Turing machine $(\mathrm{T}\mathrm{M})$ .

A restricted version of an LCA is the one-way
linear cellular array (OLCA) [DYER80], where
the communication between nodes is one-way,
from left to right. The next state of a node de-
pends on its present state and that of its left
neighbor (see Figure 2). An input is accepted
by the OLCA if the rightmost node of the array
eventually enters an accepting state. The time
complexity of an OLCA is defined as in the case
of an LCA.

Although OLCA’s have been studied exten-
sively in the past (see, $e.g.$ , [BUCH84, CHOF84,
DYER80, $\mathrm{I}\mathrm{B}\mathrm{A}\mathrm{R}85\mathrm{b}$ , IBAR86, UMEO82]) a pre-
cise characterization of their computational com-
plexity with respect to space- $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ time-
bounded TM’s is not known. For example, it is
not known whether linear space-bounded deter-

ministic TM’s are more powerful than OLCA’s,
although a positive answer seems likely.

Another simple model that is closely related to
linear cellular arrays is the $l_{\dot{i}}near\dot{i}terab_{\dot{i}}ve$ array
[COLE69, HENN61, $\mathrm{I}\mathrm{B}\mathrm{A}\mathrm{R}85\mathrm{b}$, IBAR86]. The
structure of an LIA is similar to an LCA, as
shown in Figure 3. (Note that here we assume
that the size of the array is bounded by the length
of the input. In some papers, the array is assumed
to be infinite.) The only difference between an
LIA and an LCA is that in an LIA the input
$a_{1}a_{2}\cdots a_{n}$ is fed serially to the leftmost node.
Symbol $a_{i},$ $1\leq\dot{i}\leq n$ , is received by $\mathrm{t}\dot{\mathrm{h}}\mathrm{e}$ leftmost
node at time $\dot{i}-1$ ; after time $n-1$ , it receives
the endmarker $. That is, $ is not consumed and
always available for reading. At time $0$ , each cell
is in a distinguished quiescent state $q_{0}$ . As in an
LCA, the state of a node at time $t$ is a function of
its state and the states of its left and right neigh-
bors at time $t-1$ . For the leftmost node, the
next state depends on its present state and the
input symbol. An OLIA (the one-way version of
the LIA) is defined in a straightforward way.

For a nontrivial computation, the time com-
plexity of an LIA is at least $n$ , and the time com-
plexity of an OLIA is at least $2n$ . An LIA operat-
ing $n$ steps is called a real-time LIA and an OLIA
operating in $2n$ steps is called a $p_{Seud-}oreal-t\dot{i}me$

$\mathrm{O}\mathrm{L}\Gamma \mathrm{A}$ . One can easily show that an LIA and an
LCA can efficiently simulate each other.

Mesh-connected cellular arrays (MCA’s) and
mesh-connected $\dot{i}terat\dot{i}ve$ arrays (MIA’s) are the
two-dimensional analogs of LCA’s and LIA’s.
Here we are mostly interested in the arrays
with one-way communication. A one-way mesh-
connected cellular array (OMCA) and a one-
way mesh-connected iterative array (OMIA) are

82



$mathrm{a}_{\mathrm{n}}\ldots \mathrm{a}_{2\mathrm{h}}$

$\mathrm{n}$

$mathrm{a}_{\mathrm{n}}\ldots \mathrm{a}_{2\mathrm{a}}$

$\mathrm{n}$

Figure 3. An LIA and an OLIA.

shown in Figure 4.
To simplify the presentation, we introduce the

following notations.

1. For any class $C$ of machines and function
$T(n),$ $C(T(n))$ denotes the machines in $C$

operating in time $T(n)$ .

2. Let $C_{1}$ and $C_{2}$ be two classes of machines.
$C_{1}\subseteq C_{2}$ means that every machine $M_{1}$ in
$C_{1}$ can be simulated by some machine $M_{2}$ in
$C_{2}$ . $C_{1}\subset C_{2}$ means that $C_{1}\subseteq C_{2}$ and there
is a machine in $C_{2}$ that cannot be simulated
by any machine in $C_{1}$ .

3 One-way versus two-way

The question of whether one-way communication
reduces the power of a linear array has remained
open for many years. In particular, we do not
know if OLCA $=\mathrm{L}\mathrm{C}\mathrm{A}$ and if OLIA $=\mathrm{L}\mathrm{I}\mathrm{A}$ . The
following result shows $\mathrm{t}\dot{\mathrm{h}}$at an LIA and an LCA
can simulate each other with a delay of at most
$n$ steps $[\mathrm{I}\mathrm{B}\mathrm{A}\mathrm{R}85\mathrm{b}]$ .

Theorem 3.1. For any $T(n)\geq n$ ,

1. $\mathrm{L}\mathrm{C}\mathrm{A}(T(n))\subseteq \mathrm{L}\mathrm{I}\mathrm{A}(T(n)+n)$ ;

2. $\mathrm{L}\mathrm{I}\mathrm{A}(T(n)+n)\subseteq \mathrm{L}\mathrm{C}\mathrm{A}(T(n)+n)$.

Hence LIA $=$ LCA. It seems difficult to pre-
cisely characterize the computational complex-
ity of an OLCA or an OLIA. Nevertheless, it
has been shown in $[\mathrm{C}\mathrm{H}\mathrm{A}\mathrm{N}88\mathrm{b}]$ that OLIA’s are

actually very powerful since they can simulate
the computations of nondeterministic $n^{1/2}$-space
bounded TM’s, i.e.,

Theorem 3.2 NSPACE$(n^{1}/2)\subseteq$ OLIA.

Clearly, OLCA $\subseteq$ OLIA. On the other hand,
it has also been shown (quite surprisingly) that
every OLIA can be simulated by an OLCA
[IBAR87]. The difficulty arises from the fact that
in an OLIA, every node of the array has access
to each symbol of the input string, $\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}^{\mathfrak{l}}\mathrm{e}$as in an
OLCA, the i-th cell can only. $\mathrm{a}\mathrm{c}\mathrm{c},\mathrm{e}\mathrm{s}\mathrm{S}$ th.$\mathrm{e}$ first $\dot{i}$

symbols of the input.

Theorem 3.3. OLCA $=\mathrm{O}\mathrm{L}\mathrm{I}\mathrm{A}$ .

With respect to one-way versus two-way com-
munication, it seems unlikely that OLCA $=\mathrm{L}\mathrm{C}\mathrm{A}$ .
On the other hand, it is easy to show that $\mathrm{L}\mathrm{C}\mathrm{A}--$

$\mathrm{D}\mathrm{S}\mathrm{P}\mathrm{A}\mathrm{C}\mathrm{E}(n)$ , so proving $\mathrm{O}\mathrm{L}\mathrm{C}\mathrm{A}\subset \mathrm{L}\mathrm{C}\mathrm{A}$ would im-
ply NSPACE $(n^{1}/2)\subset \mathrm{D}\mathrm{S}\mathrm{P}\mathrm{A}\mathrm{C}\mathrm{E}(n)$ , which would
be an improvement of Savitch’s well-known re-
sult [SAVI70]. This should explain why the one-
way communication versus two-way communica-
tion problem for linear arrays is hard.

4 The complexity of mesh-
connected arrays

We now consider mesh-connected arrays, espe-
cially the ones with one-way communication.
Theorem 3.3 can be easily extended to OMCA
and OMIA.
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Figure 4. An OMCA and an OMIA.

Theorem 4.1. OMCA $=\mathrm{O}\mathrm{M}\mathrm{I}\mathrm{A}$.

The one-way communication versus two-way
communication question can be answered for
mesh-connected arrays, because of the following
space-efficient simulation result for OMCA’s and
OMIA’s $[\mathrm{C}\mathrm{H}\mathrm{A}\mathrm{N}88\mathrm{a}]$ .

Theorem 4.2. OMCA $=$ OMIA $\subseteq$

$\mathrm{D}\mathrm{S}\mathrm{P}\mathrm{A}\mathrm{C}\mathrm{E}(n^{3}/2)$ .

It is not known if the the above space bound
is the best possible. In fact, we do not know
if OMCA’s are more powerful than OLCA’s.
We also do not know the relationship between
OMCA’s and LCA’s. It is easy to show that MCA
$=\mathrm{M}\mathrm{I}\mathrm{A}=\mathrm{D}\mathrm{S}\mathrm{P}\mathrm{A}\mathrm{c}\mathrm{E}(n^{2})$. It follows from Theorem
3.2 and the space hierarchy theorem for $\mathrm{T}\mathrm{M}/\mathrm{s}$

that one-way mesh-connected arrays are weaker
than their two-way counterparts:

Theorem 4.3. OMCA ($=$ OMIA) $\subset$ MCA $(=$

MIA).

OMCA’s and OMIA’s are quite powerful. They
can accept fairly complex languages efficiently.
For example, the following result can be shown
[IBAR86]:

Theorem 4.4. OMIA’s (OMCA’s) can accept
context-free languages in $2n-1$ time $(3n-1$
time), which is optimal with respect to the model
of computation.

In our definition of an MCA (or an MIA, or
their one-way versions), the number of nodes is
the square of the length of the input. It is
also interesting to consider mesh-connected ar-
rays where the number of nodes is equal to the
length of the input. Denote these models as
$\mathrm{M}\mathrm{C}\mathrm{A}_{1}$ and $\mathrm{M}\mathrm{I}\mathrm{A}_{1}$ . The one-way version of these
arrays are shown in Figure 5.

We do not know if $\mathrm{M}\mathrm{C}\mathrm{A}_{1}=\mathrm{O}\mathrm{M}\mathrm{I}\mathrm{A}_{1}$ . Clearly
each $\mathrm{O}\mathrm{M}\mathrm{C}\mathrm{A}_{1}$ can be simulated by an $\mathrm{O}\mathrm{M}\mathrm{I}\mathrm{A}_{1}$ . It
seems difficult to prove the converse. We also do
not know if $\mathrm{O}\mathrm{M}\mathrm{C}\mathrm{A}_{1}=\mathrm{O}\mathrm{L}\mathrm{C}\mathrm{A}$ , if $\mathrm{O}\mathrm{M}\mathrm{I}\mathrm{A}_{1}=\mathrm{O}\mathrm{L}\mathrm{I}\mathrm{A}$ ,
and if $\mathrm{O}\mathrm{M}\mathrm{C}\mathrm{A}_{1}’ \mathrm{S}$ and $\mathrm{O}\mathrm{M}\mathrm{I}\mathrm{A}_{1^{\mathrm{S}}}$

’ can simulate non-
deterministic $n^{1/2}$ space-bounded TM’s.

5 The parallel complexity of cel-
lular arrays, recurrence equa-
tions, and nested loops

In this section, we look at the parallel com-
plexity of real-time OLCA’s and $\mathrm{p}\mathrm{s}\mathrm{e}\mathrm{u}\mathrm{d}_{0-}\mathrm{r}\mathrm{e}\mathrm{a}1$-time
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Figure 5. An $\mathrm{O}\mathrm{M}\mathrm{C}\mathrm{A}_{1}$ and an $\mathrm{O}\mathrm{M}\mathrm{I}\mathrm{A}_{1}$ . (Here, $m=n^{1/2}.$ )

OLIA’s. We show that it is unlikely that the
classes of languages accepted by these arrays
are contained in the class $NC$, which is defined
as follows: $NC^{i}$ is the class of languages ac-
cepted by uniform boolean circuits of polynomial
size and depth $O(\log^{i}n)$ , and $NC= \bigcup_{i\geq 1}NC^{i}$

[RUZZ81, COOK85]. Thus, it is unlikely that a
general technique can be found that maps any
real-time OLCA (or $\mathrm{p}\mathrm{s}\mathrm{e}\mathrm{u}\mathrm{d}\mathrm{o}-\Gamma \mathrm{e}\mathrm{a}\mathrm{l}$ -time OLIA) al-
gorithm into a parallel random-access machine
(PRAM) algorithm that runs in polylogarithmic
time using a polynomial number of processors.

Formally, we show that there is a language ac-
cepted by a real-time OLCA (and by a pseudo-
real-time OLIA) that is $\mathrm{P}$-complete. Hence, if
such a language is in $\mathrm{N}\mathrm{C}$ , then $\mathrm{P}(=\mathrm{t}\mathrm{h}\mathrm{e}$ class of
languages accepted by deterministic Turing ma-
chines in polynomial time) equals $\mathrm{N}\mathrm{C}$ , which is
widely believed to be unlikely.

Theorem 5.1. There is a real-time OLCA (re-
spectively a $\mathrm{p}\mathrm{s}\mathrm{e}\mathrm{u}\mathrm{d}_{0}-\mathrm{r}\mathrm{e}\mathrm{a}1$-time OLIA) that accepts
a $\mathrm{P}$-complete language L.

Proof. (Omitted.)
Many computational problems can often be ex-

pressed in terms of recurrence equations or sim-
ple nested loops. Examples are problems in com-

putational linear algebra, signal processing, and
dynamic programming. Thus, efficient sequen-
tial and parallel algorithms for solving recurrence
equations are of great practical interest.

We can use Theorem 5.1 to show that recur-
rence equations, even the simple ones, are not
likely to admit fast parallel algorithms, i.e., they
are not likely to be in $\mathrm{N}\mathrm{C}$ . Consider the following
recurrence equation:

$R(0,0)=c$

$R(\dot{i},j)=f(a_{i}, R(i-1,j), bj, R(i,j-1))$ ,

for $0\leq\dot{i}\leq n,$ $0\leq j\leq m$ such that $i+j\geq 1$ ,
where $c,$ $a_{r},$ $b_{s}(1\leq r\leq n, 1\leq s\leq m)$ and the
values of the $R(i,j)_{\mathrm{S}}$

’ are symbols from some fixed
finite alphabet, and $f$ is a finite function of four
arguments. We assume without loss of generality
that $m\leq n$ . For notational convenience, let $a_{0}=$

$b_{0}=\epsilon$ , and the boundary conditions $R(\dot{i}, -1)=$

$R(-1,\dot{i})=\epsilon$, where $\epsilon$ is a dummy symbol. The
objective is to compute $R(n, m)$ . We can have
$f$ depend also on $R(\dot{i}-1,j-1)$ ; however, this
dependence can be removed by a simple coding
technique. Note that the above recurrence can be
written in a form a doubly-nested loop.
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Clearly, this recurrence equation can be solved
by a parallel algorithm in linear time using a lin-
ear number of processors by computing along the
diagonals of the recurrence table $R(\dot{i},j)$ . We can
show that it is unlikely that it can be solved by
a parallel algorithm in polylogarithmic time us-
ing a polynomial number of processors, i.e., it is
unlikely that it belongs in the class $\mathrm{N}\mathrm{C}$ .

Theorem 5.2. There is a recurrence equation
of the form above that accepts a $\mathrm{P}$-complete lan-
guage. Thus, it is unlikely that such a recurrence
can be solved by a parallel algorithm in polylog-
arithmic time using a polynomial number of pro-
cessors.

.
Proof. The idea is to show that

$.$

$\mathrm{t}$ he computation
of a real-time OLCA can be reduced to solving the
above recurrence. The result then follows from
Theorem 5.1.

6 Reachability and safety in
parallel machines

We consider machines that can onlyu-se instruc-
tions of the form:

$q:xarrow x+c$ then goto $p$

$q$ : $xarrow x-c$ then goto $p$

$q$ : if $x\# c$ then goto $p_{1}$ else goto $p_{2}$

$q$ : goto $p$

$q$ : goto $p_{1}$ or goto $p_{2}$

Here $x$ denotes a counter (or variable) that can
only assume integer values, $q,p,$ $\ldots$ are states (or
labels), $c$ is an integer constant, and $\#$ is $<,$ $=$ , or
$>$ . Note that we allow a nondeterministic instruc-
tion “goto $p_{1}$ or goto $p_{2}$ ”. This is sufficient to sim-
ulate all other types of nondeterminism. Without
loss of generality, we assume the counters can only
take on nonnegative values (since the states can
remember the sign). We also assume that each in-
struction takes one time unit to execute and that
the instructions are labeled 1, 2, ..., $n$ . Machines
with no counters correspond to finite-state ma-
chines since the only instructions are the “

$\mathrm{g}.\mathrm{o}\mathrm{t}\mathrm{o}$

”

instructions.
Suppose we are given a problem with input do-

main $X,$ $n$ nondeterministic machines $M_{1},$
$\ldots,$

$M_{n}$ ,

and an input $x$ in $X$ which can be partitioned into
$n$ components $x_{1},$

$\ldots,$
$x_{n}$ . Each machine $M_{i}$ is to

“work” on $x_{i}$ to obtain a partial solution $y_{i}$ . The
solution to $x$ can be derived from $y_{1},$

$\ldots,$
$y_{k}$ . We

want to know if there is a computation (note that
since the machines are nondeterministic, there
may be several such computation) in which each
$M_{i}$ on input $x_{i}$ outputs $y_{i}$ and their running times
$t_{i^{\mathrm{S}}}$

’ satisfy a given linear relation (definable by a
Presburger formula). An example of a relation
is for each $t_{i}$ to be within 5% of the average of
the running times (i.e., the load is approximately
balanced among the $M_{i^{\mathrm{S}}}’$ ), or for the $t_{i^{\mathrm{S}}}$

’ to sat-
isfy some precedence constraints. Note that the
$t_{i^{\mathrm{S}}}$

’ need not be optimal as long as they satisfy
the given linear relation. A strong.er requirement
is to find the optimal running time $t_{i}$ of each $P_{i}$

and determine if $t_{1},$
$\ldots,$

$t_{n}$ satisfy the given linear
relation.

The questions above are unsolvable (no al-
gorithms exist) in general, even when the
machines work independently (no sharing of
$\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{a}/\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{s})$ . This is because a machine with
two counters is equivalent to a TM and, hence,
the halting problem is undecidable.

Now suppose we restrict the operation of each
counter to be $\mathrm{r}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{a}1- \mathrm{b}_{0}.$. unded in the sense that
it changes mode from nondecreasing to nonin-
creasing and vice-versa by at most a fixed con-
stant independent of the computation. Call
such counters reversal-bounded. For example, a
counter with the following behavior: $011233$
$34555432111.2234$ is $2_{- \mathrm{r}\mathrm{e}\mathrm{v}}\mathrm{e}\mathrm{r}\mathrm{s}.\mathrm{a}1.$ .

We are able to $\mathrm{s}\mathrm{h}\mathrm{o}\dot{\mathrm{w}}\prime \mathrm{t}\dot{\mathrm{h}}\mathrm{a}\mathrm{t}$ the $.\mathrm{p}$roblems
above are solvable (algorithms exits) for reversal-
bounded multicounter machines, even when they
are $\dot{\mathrm{a}}$ugmented with. a $\mathrm{p}\mathrm{u}_{r}\mathrm{s}\mathrm{h}\mathrm{d}\mathrm{o}\mathrm{W}\mathrm{n}$ stack.

, Formally, let $M_{1}$ and $M_{2}$ be nondeterministic
reversal-bounded multicounter machines with a
pushdown stack but no input tape operating in-
dependently in parallel. Call them PCMs. For
$\dot{i}=1,2$ , denote by $\alpha_{i}$ a configuration $(q_{i}, X_{i}, w_{i})$

of $M_{i}$ (state, counter values, stack content). Let
$L(m, n)$ be a linear relation definable by a Pres-
burger formula. Define Reach$(M1, M_{2}, L)$ to be
the set of all 4-tuples $(\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2})$ such that for
some $t_{1},$ $t_{2},$ $M_{i}$ when started in configuration $\alpha_{i}$

can reach configuration $\beta_{i}$ at time $t_{i}$ , and $t_{1}$ and
$t_{2}$ satisfy $L$ , i.e., $L(t_{1}, t_{2})$ is true. (Thus, e.g., if
the linear relation is $t_{1}=t_{2}$ , then we want to
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determine if $M_{1}$ when started in configuration $\alpha_{1}$

reaches $\beta_{1}$ at the same time that $M_{2}$ when started
in $\alpha_{2}$ reaches $\beta_{2}.$ ) We can show the following
[IBAROO]:

Theorem 6.1 Reach$(M_{1,2}M, L)$ is effective
computable, i.e., there is an algorithm to decide,
given a 4-tuple of configurations $(\alpha_{1}, \beta_{1}, \alpha 2, \beta 2)$ ,
whether it is in Reach. Moreover, the emptiness
problem for Reach (i.e., determining if the set is
empty) is decidable (an algorithm exits).

The ability to decide whether Reach is empty is
important and very useful in optimizing load dis-
tributions in parallel machines, model-checking,
and verification of reactive systems.

We can allow the machines $M_{1}$ and $M_{2}$ to share
$\mathrm{s}\mathrm{o}\mathrm{m}$. $\mathrm{e}$ common read-only data, i.e., each machine
has a one-way read-only input head. A config-
uration $\alpha_{i}$ will now be a 4-tuple $(q_{i}, X_{i}, w_{i}, h_{i})$ ,
where $h_{i}$ is the position of the input head on the
common input $x$ . If only one of $M_{1}$ and $M_{2}$ has a
pushdown stack, then the reachability set is still
computable and its emptiness decidable. How-
ever, this result is not true if both $M_{1}$ and $M_{2}$

have a pushdown stack, even in the case when
each stack is one-turn (after “popping”the stack
can no longer “push”), there are no counters, and
the linear relation is $t_{1}=t_{2}$ .

Looking now at parallel machines that com-
municate, consider two nondeterministic reversal-
bounded multicounter machines (without push-
down) $M_{1}$ and $M_{2}$ that are connected by a queue.
Thus, there is an unrestricted queue that can be
used to send messages from $M_{1}$ (the “writer”) to
$M_{2}$ (the “reader”). There is no bound on the
length of the queue. When $M_{2}$ tries to read
from an empty queue, it receives an “empty-
queue” signal. When this happens, $M_{2}$ can con-
tinue doing other computation and can access
the queue at a later time. Again, $M_{1}$ and $M_{2}$

operate at the same clock rate, i.e., each tran-
sition (instruction) takes one time unit. There
is no central control. Call the two machines
connected by a queue a queue-connected system
$M$ . We have investigated the decidable proper-
ties of such queue-connected systems. For exam-
ple, we can show that it is decidable (an algo-
rithm exists) to determine, given such a system,
whether there is some computation in which $M_{2}$

attempts to read from an empty queue. Define

a configuration of $M$ (at a given time) to be a
5-tuple $\alpha=(q_{1}, X_{1}, w, q_{2}, X2)$ , where $w$ is the
content of the stack, and $q_{i}$ and $X_{i}$ are the state
and set of counter values of $M_{i},\dot{i}=1,2$ . Let
Reach$(M_{1}, M_{2})=$ set of all pairs of configura-
tions $(\alpha, \beta)$ such that $M$ when started in $\alpha$ at
some time $t$ will reach $\beta$ at some time $t’$ . We
can show that the binary reachability set Reach
is computable, and its emptiness is decidable.

Generalizing the model of the queue-connected
system slightly yields unsolvable results (no al-
gorithms exist). For example, even when $M_{1}$

and $M_{2}$ have $no$ counters (i.e., they are finite-
state): (1) If there are two queues that $M_{1}$ can
use to send messages to $M_{2}$ , then reachability is
not computable. (2) If $M_{2}$ can also send mes-
sages to $M_{1}$ via another queue, then reachability
is not computable. Also, interestingly, if there
is a central control that can coordinate the com-
putations of $M_{1}$ and $M_{2}$ , then reachabilty is not
computable.

In the area of verification, a typical problem
(safety analysis problem) is the following: Given
a machine $M$ and two sets of configurations $I$

and $G$ , verify if “from any configuration in $I,$ $M$

can only reach configurations in G.” Let $B$ be
the complement of $G$ . Then we can rewrite the
question to “Is there a configuration $\alpha$ in $I$ that
can reach some configuration in $B?$” Assuming
that $I$ and $G$ are computable (hence also $B$ ), then
$M$ is safe if Reach$(M)\cap(I\cross B)=\emptyset$ . Thus, the
safety question is reducible to the decidability of
emptiness of Reach$(M)$ .

7 The complexity of commuta-
tivity analysis

Program analysis has been widely used to extract
program properties of interest. Here we look at
a simple property between two program opera-
tions–commutativity. We say two operations A
and $\mathrm{B}$ , each $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}_{0}$,sed of a sequence of basic in-
structions, commute if they generate the same re-
sult regardless of the order in which they execute.
Knowledge of commuting operations is of prac-
tical significance. In the context of optimizing
compilers, commuting program transformations
can be used to reduce the search space for the
optimal program transformation sequence, hence
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reducing the algorithmic complexity of the com-
piler optimization algorithms [SETH74]. In the
context of parallel computing, commuting oper-
ations enable concurrent execution because they
can execute in any order without changing the fi-
nal result $[\mathrm{s}\mathrm{T}\mathrm{E}\mathrm{E}90,\mathrm{s}\mathrm{o}\mathrm{L}\mathrm{w}93]$ . Parallelizing com-
pilers that recognize commuting operations can
exploit this property to automatically generate
parallel code for computations that consist only
of commuting operations [RINA95].

This broad range of applications motivates the
design of static analysis techniques capable of au-
tomatically detecting commuting operations –
commutativity analysis. We have investigated
the theoretical aspects of commutativity analysis
and have identified classes of programs for which
commutativity analysis is undecidable, PSPACE-
hard, $\mathrm{N}\mathrm{P}$-hard, polynomial, and probabilistically
polynomial-time decidable. For some cases we
have shown that the class of programs is complete
for the corresponding complexity class. The re-
sults rely on known complexity results from the
area of theoretical computer science. They serve
two purposes. First, they formally establish the
complexity of commutativity analysis. Second,
they should make researchers working in more
applied areas aware of the inherent limitations
of any commutativity analysis algorithm.
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