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Abstract: We consider the problem of preemptively scheduling a set of $n$ jobs on $m$ (iden-
tical, uniformly related, or unrelated) parallel machines. The scheduler may reject a subset
of the jobs and thereby incur job-dependent penalties for each rejected job, and he must
construct a schedule for the remaining jobs so as to optimize the preemptive makespan on
the $m$ machines plus the sum of the penalties of the jobs rejected.

We provide a complete classification of these scheduling problems with respect to complexity
and approximability. Our main results are on the variant with an arbitrary number of un-
related machines. This variant is APX-hard, and we design a 1.58-approximation algorithm
for it. All other considered variants are weakly $\mathrm{N}\mathrm{P}$-hard, and we provide fully polynomial
time approximation schemes for them.
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in-approximability.

1 Introduction

Consider a system with $m\geq 2$ (identical, uni-
formly related, or unrelated) parallel machines
$M_{1},$

$\ldots$ , $M_{m}$ and $n$ jobs $J_{1},$
$\ldots,$

$J_{n}$ . Job $J_{j}(j=$

$1,$
$\ldots,$

$n)$ has a rejection penalty $e_{j}$ and a process-
ing time $p_{ij}$ on machine $M_{i}$ $(\dot{i}=1, \ldots , m)$ . In the
case of identical machines, the processing times
are machine independent, i.e., $p_{ij}\equiv p_{j}$ . In the
case of uniformly related machines, the $\dot{i}\mathrm{t}\mathrm{h}$ ma-
chine $M_{i}$ runs at speed $s_{i}$ , and $p_{ij}=p_{j}/s_{i}$ . In the
case of unrelated machines, the processing times
$p_{ij}$ are arbitrarily structured. In the standard
three-field scheduling notation (see e.g. Lawler,
Lenstra, Rinnooy Kan &Shmoys [7] $)$ identical
machines are denoted by the letter $P$ , uniformly
related machines by $Q$ , and unrelated machines
by $R$ .

We consider the following optimization prob-
lem in such systems: For each job $J_{j}$ , we must

decide whether to accept that job or whether to
reject it. The accepted jobs are to be scheduled
on the $m$ machines. Preemption is allowed, i.e.,
ajob may be arbitrarily interrupted and resumed
later on. Every machine can process at most one
job at a time, and every job may be processed
on at most one machine at a time. For the ac-
cepted jobs, we pay the makespan of the con-
structed schedule, i.e., the maximum job com-
pletion time in the schedule. For the rejected
jobs, we pay the corresponding rejection penal-
ties. In other words, the objective value is the
preemptive makespan of the accepted jobs plus
the total penalty of the rejected jobs. We denote
this objective function by an entry $\zeta‘ \mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$

”

in the third field of the three-field scheduling no-
tation. For example, $P5|pmtn|\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ de-
notes this problem on five identical machines;
$Qm|pmin|$ Rej $+C_{\max}$ denotes the problem on
uniformly related machines where the number of
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machines is a fixed constant $m$ that is not part of
the input; $R|pmtn|\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ denotes the prob-
lem on unrelated machines where the number of
machines is part of the input.

Related scheduling problems with rejec-
tion have been studied by Bartal, Leonardi,
Marchetti-Spaccamela, Sgall & Stougie [2] for
non-preemptive makespan on identical machines,
by Engels, Karger, Kolliopoulos, Sengupta, Uma
&Wein [5] for total weighted job completion time
on a single machine, and by Sengupta [8] for late-
ness and tardiness criteria.

Complexity. Whereas classical preemptive
makespan minimization (the problem where all
jobs must be accepted) is polynomially solvable
even on an arbitrary number of unrelated ma-
chines [7], preemptive makespan minimization
with rejection is hard even in the case of two
identical machines. A complete complexity clas-
sification is given in Table 1. In Section 4, we will
prove weak $\mathrm{N}\mathrm{P}$-hardness of $P2|pmtn|\mathrm{R}\mathrm{e}\mathrm{j}+c_{\max}$

and strong $\mathrm{N}\mathrm{P}$-hardness of $R|pm\theta n|\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ .
These two results induce all negative results
stated in Table 1. The results in Section 3 on
uniformly related machines and the results in
Section 2 on unrelated machines yield the exis-
tence of pseudo-polynomial time algorithms for
$Q|pmtn|\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ and $Rm|pmtn|\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ .
Perhaps surprisingly, we did not manage to find
$‘ \mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}^{)}$ pseudo-polynomial time algorithms for
these two problems. Instead, we took a detour
and constructed a fully polynomial time approx-
imation scheme (FPTAS); the existence of the
FPTAS then implies the existence of a pseudo-
polynomial time algorithm. Anyway, these two
positive results induce all other positive results
stated in Table 1.

Approximability. Our approximability classifi-
cation is given in Table 2. In Section 3 we will
derive an FPTAS for the problem $Q|pmtn|\mathrm{R}\mathrm{e}\mathrm{j}+$

$C_{\max}$ , and in Section 2 we derive another FPTAS
for $Rm|pmtn|\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ . These two results in-
duce all FPTAS-entries in Table 2. The variant
$R|pmtn|$ Rej $+C_{\max}$ with an arbitrary number
of unrelated machines is APX-complete, even for
the case of uniform rejection penalties (cf. Sec-
tion 4). In Section 2, we construct a polyno-
mial time $e/(e-1)$-approximation algorithm for
$R|pmbn|\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ ; note that $e/(e-1)\approx 1.58$ .

Organization of the paper. Section 2 con-
tains the positive results on unrelated machines
and Section 3 contains the positive results on
uniformly related machines. All negative results
( $\mathrm{N}\mathrm{P}$-hardness and APX-hardness) are proved in
Section 4.

2 Unrelated machines

In this section we derive a polynomial time
$e/(e-1)$-approximation algorithm for problem
$R|pmtn|\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ and an FPTAS for prob-
lem $Rm|pmtn|\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ . Consider the follow-
ing mixed integer linear programming formula-
tion (1) of $R|pmin|\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ . For job $J_{j}$ , the
binary variable $y_{j}$ decides whether $J_{j}$ is rejected
$(y_{j}=0)$ or accepted $(y_{j}=1)$ . The variables
$x_{ij}$ describe which percentage of job $J_{j}$ should be
processed on machine $M_{i}$ . The variable $T$ de-
notes the optimal preemptive makespan for the
accepted jobs.

$\min$ $T+ \sum_{j=1}^{n}(1-y_{j})e_{j}$

$\mathrm{s}.\mathrm{t}$ . $\sum_{j=1}^{n}x_{ij}p_{ij}\leq T$ for $\dot{i}=1,$
$\ldots,$ $m$

$\sum_{i=1}^{m}x_{ij}p_{ij}\leq T$ for $j=1,$ $\ldots,$
$n$

$\sum_{i=1}^{m}Xij=y_{j}$ for $j=1,$ $\ldots$ , $n$

$x_{ij}\geq 0$ for $\dot{i}=1,$
$\ldots,$ $m$

for $j=1,$ $\ldots$ , $n$

$y_{j}\in\{0,1\}$ for $j=1,$ $\ldots$ , $n$

(1)
The first set of restrictions states that for every
machine the total assigned processing time is at
most $T$ . The second set of restrictions states that
the total processing time of every job cannot ex-
ceed $T$ . The third set of restrictions connects the
binary decision variables $y_{j}$ with the continuous
variables $x_{ij}$ . If we want to schedule every job $J_{j}$

on the $m$ machines according to the values $x_{ij}$ ,
then we essentially are dealing with a preemptive
open shop problem; it is well-known [7] that the
smallest number $T$ fulfilling the first two sets of
constraints in (1) yields the optimal preemptive
makespan. To summarize, every feasible solution
of (1) corresponds to a feasible schedule with ob-
jective value $T+ \sum_{j=1}^{n}(1-y_{j})e_{j}$ .

Now we replace the integrality conditions $y_{j}\in$

$\{0,1\}$ in (1) by $0\leq y_{j}\leq 1$ . This yields the lin-
ear programming relaxation LPR which can be
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solved to optimality in polynomial time. Let $x_{ij}^{*}$ ,
$y_{j}^{*}$ , and $\tau*$ constitute an optimal solution to LPR.
From this solution, we compute a rounded solu-
tion $\tilde{x}_{ij},\tilde{y}_{j}$ , and $\tilde{T}$ for (1) in the following way:
We randomly choose a threshold $\alpha$ from the uni-
form distribution over $[1/e, 1]$ . If $y_{j}^{*}\leq\alpha$ , then we
set $\tilde{y}_{j}:=0$ , and otherwise we set $\tilde{y}_{j}:=1$ . Similar
dependent randomized rounding procedures have
already proven useful in other contexts (see e.g.
Bertsimas, Teo&Vohra [3] $)$ .

For $j$ with $\tilde{y}_{j}=0$ , we set all variables $\tilde{x}_{ij}=0$ .
For $j$ with $\tilde{y}_{j}=1$ , we set all variables $\tilde{x}_{ij}$ $:=$

$x_{ij}^{*}/y_{j}^{*}$ . Finally, we set

$\tilde{T}:=\max\{\max\sum_{j1}^{n}1\leq i\leq m\tilde{x}_{ij}=pij’\max_{1\leq j\leq n}\sum^{m}\tilde{X}_{i}jpiji=1\}$

It can $\mathrm{b}\mathrm{e}|\mathrm{v}\mathrm{e}\mathrm{r}\dot{\mathrm{i}}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{d}$

that the values $\tilde{x}_{ij},\tilde{y}_{j},$

$\mathrm{a}\mathrm{n}\mathrm{d}\tilde{T}(2)$

constitute a feasible solution of (1): All variables
$\overline{y}_{\dot{j}}$ are binary. For $j$ with $\tilde{y}_{j}=0$ , the variables $\tilde{x}_{ij}$

add up to $0$ . For $j$ with $\tilde{y}_{j}=1$ , the variables $\tilde{x}_{ij}$

add up to $\sum_{i}x_{ij}^{*}/y_{j}^{*}=1$ . Finally, in (2) the value
of $\tilde{T}$ is fixed to fulfill the first and the second set
of restrictions.

Now let us analyze the quality of the rounded
solution. For any fixed value of $\alpha,\tilde{x}_{ij}$ is less than
a factor of $1/\alpha$ above $x_{ij}^{*}$ , and hence by linear-
ity also $\tilde{T}$ is less than a factor of $1/\alpha$ above $\tau*$ .
Therefore, the expected multiplicative increase in
the makespan is at most a factor of

$\frac{e}{e-1}\int_{1/e}^{1}1/\alpha d\alpha=\frac{e}{e-1}$

In the LPR solution, the contribution of job $J_{j}$

to the total penalty is $(1-y_{j}^{*})e_{j}$ . The expected
contribution of $J_{j}$ to the penalty in the rounded

solution. is

$e_{j}\cdot \mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}[y_{j}^{*}\leq\alpha]$ $=$ $e_{j} \int_{\max\{}^{1}1/e,yj\}\frac{e}{e-1}d\alpha*$

$\leq$ $e_{j} \int_{y_{j}^{*}}^{1}\frac{e}{e-1}d\alpha$

$=$ $\frac{e}{e-1}\cdot(1-y_{j}^{*})e_{j}$

All in all, the expected objective value for the
rounded solution is at most a factor of $e/(e-1)\approx$

$1.58$ above the optimal objective value of LPR.
Hence, our procedure yields a randomized poly-
nomial time $e/(e-1)$-approximation algorithm.

Since the only critical values for the threshold pa-
rameter $\alpha$ are the values $y_{j}^{*}(j=1, \ldots, n)$ , it is
straightforward to derandomize this algorithm in
polynomial time.

Theorem 2.1 The problem $R|pmtn|Rej+c_{\max}$

has a deterministic polynomial time $e/(e-1).-$
approximation algorithm.

Let us turn to problem $Rm|pmtn|\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ .
The crucial fact for deriving positive results
on this problem is the.following discretization
lemma.

Lemma 2.2 Let $\delta$ be a real number with $0<\delta\leq^{\mathrm{I}}$

$1/m$ , such that $1/\delta$ is integer. Then, the mixed
integer linear program (1) possesses a feasible so-
lution, in which the values $x_{ij}$ all are integer mul-
tiples of $\delta^{3}$ and whose objective value is at most
a factor $\mathit{0}.f1+\dot{\delta}$ above the optimal objective value
of (1).

Proof. Consider an optimal solution $x_{ij}^{*},$ $y_{j}^{*}$ , and
$\tau*$ of the mixed integer linear program (1). An-
other feasible solution $\tilde{x}_{ij}$ and $\tilde{y}_{j}$ for (1) is con-
structed job-wise in the following way. For job
$J_{j}$ , let $\ell(j)$ denote a machine index that maxi-
mizes $X_{f(j),j}^{*}$ , i.e., an index with $x_{\ell(j),j}^{*}\geq x_{ij}^{*}$ for
all $1\leq\dot{i}\leq m$ . Then for $\dot{i}\neq\ell,\tilde{x}_{ij}$ is the value $x_{ij}^{*}$

rounded down to the next multiple of $\delta^{3}$ . More-
over, we set $\tilde{y}_{j}=y_{j}^{*}$ and $\tilde{x}_{\ell(j)},j=\tilde{y}_{j}-\sum_{i\neq}\ell(j)\tilde{x}ij$ .
Finally, $\tilde{T}$ is computed according to (2). It is
straightforward to verify that $\tilde{x}_{ij},\tilde{y}_{j}$ , and $\tilde{T}$ is
feasible for (1), and that the values $\tilde{x}_{ij}$ all are
integer multiples of $\delta^{3}$ .

We claim that for all $j=1,$ $\ldots,$
$n$ and $\dot{i}=$

$1,$
$\ldots,$ $m$ , the inequality $\tilde{x}_{ij}\leq(1+\delta)x^{*}ij$ is ful-

filled. If $y_{j}^{*}=0$ , this inequality trivially holds
since $\tilde{y}_{j}=\tilde{x}_{ij}=0$ for $\dot{i}=1,$ $\ldots$ , $m$ then. Oth-
erwise, if $\dot{i}\neq\ell(j)$ , the inequality holds since
$x_{ij}^{*}-\delta^{3}<\tilde{x}_{ij}\leq x_{ij}^{*}.\cdot$ Moreover, f.or $\dot{i}=\ell(j)$

we have

$\tilde{x}_{f(j),j}$ $=$
$\tilde{y}_{j}-\sum_{(i\neq tj)}\tilde{X}_{i}j$

$<$
$y_{j}^{*}- \sum_{i\neq\ell(j)}(x_{i}^{*}j-\delta^{3})$

$<$ $x_{t}^{*}(j),j+m\delta^{\mathrm{s}}$

$\leq$ $(1+\delta)x_{\ell(j)}^{*},j$

The first inequality follows from the definition of
the $\tilde{x}_{ij}$ with $\dot{i}\neq\ell(j)$ . The second inequality is
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straightforward. The last inequality is equivalent
to $m\delta^{2}\leq x_{\ell(j),j}^{*}$ ; this is true since $\delta\leq 1/m$ and
$x_{\ell(j),j}^{*}\geq y_{j}^{*}/m=1/m$ . Summarizing, the claimed
inequalities are indeed fulfilled. Since $\tilde{y}_{j}\equiv y_{j}$ ,
the objective value in (1) increases at most by a
factor of $1+\delta$ . $\blacksquare$

In the following, we call a feasible solution of
(1) where all values $x_{ij}$ are integer multiples of

$\delta^{3}$ as in Lemma 2.2 a $\delta$-discrete feasible solution.
Moreover, we assume without loss of generality
that all processing times $p_{ij}$ and rejection penal-
ties $e_{j}$ are integral. Our next goal is to show that
the best $\delta$-discrete feasible solution can be com-
puted in pseudo-polynomial time by a dynamic
programming approach. A state of the dynamic
program encodes a partial schedule for the first
$k$ jobs $(1 \leq k\leq n)$ . Every state has $m+2$ com-
ponents. The first $m$ components store the loads
of the $m$ machines in the partial schedule. Com-
ponent $m+1$ stores the length of the longest job
scheduled so far (i.e., the maximum time that any
job needs in the schedule). Component $m+2$
stores the total penalty of all jobs from $J_{1},$

$\ldots$ , $J_{k}$

that have been rejected so far. The state space $S_{0}$

is initialized with the all-zero vector. When job
$J_{k}$ is treated, every state $s\mathrm{f}arrow \mathrm{r}\mathrm{o}\mathrm{m}$ the state space
$S_{k-1}$ is updated and yields several new states.. First, job $J_{k}$ may be rejected. The corre-

sponding new state results from adding the
penalty $e_{k}$ to the last component of $s\sim$.

$\bullet$ Otherwise, job $J_{k}$ is accepted. We try
all $O(1/\delta^{3m})$ possibilities for the $m$ pieces
$x_{1j},$ $\ldots,$ $x_{mj}$ that are integer multiples of $\delta^{3}$

and that add up to 1. For each appropriate
combination the $\dot{i}\mathrm{t}\mathrm{h}$ $(\dot{i}=1, \ldots , m)$ compo-
nent of $sarrow \mathrm{i}\mathrm{s}$ increased by $x_{ij}p_{ij}$ . The new
$(m+1)\mathrm{t}\mathrm{h}$ component is the maximum of the
old $(m+1)\mathrm{t}\mathrm{h}$ component and $\sum_{i=1}^{m}x_{ij}p_{ij}$ .

Finally, after treating the last job $J_{n}$ we compute
the objective values for all states in $S_{n}$ and output
the best one; the objective value equals the max-
imum of the first $m+1$ components plus the last
component. The running time of this dynamic
program is polynomial in $n,$ $1/\delta$ , and in the size
of the state spaces. Component $i(\dot{i}=1, \ldots , m)$

indicates the load of machine $\dot{i}$ , which is measured
in units of $\delta^{3}$ ; hence, the number of possible states
for component $\dot{i}$ is $O( \sum_{j=1}^{n}pij/\delta^{3})$ . Similarly, the

number of possible states for component $(m+1)$
is $O( \sum_{i=}^{m_{1}}pij/\delta^{3})$ . Finally, the number of pos-
sible states for component $m+2$ is $O( \sum_{j=1j}^{n}e)$ .
Clearly, this yields a pseudo-polynomial running
time.

Lemma 2.3
For any instance of $Rm|pmtn|Rej+C_{\max}$ and
for any $\delta$ with $0<\delta\leq 1/m$ and $1/\delta$ integer,
the best $\delta$-discrete schedule can be computed in
pseudo-polynomial time. $\blacksquare$

By applying standard methods, this dynamic pro-
gramming formulation can be transformed into
a fully polynomial time approximation scheme;
in fact, the dynamic program belongs to the
class of so-called $ex$-benevolent dynamic pro-
grams (Woeginger [9]), and therefore automati-
cally leads to an FPTAS for computing the best $\delta-$

discrete feasible solution. Finally, let us turn back
to the general problem $Rm|pmtn|\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ .
For a given $\xi j>0$ , we set $\delta=\min\{1/m, 1/\lceil 3/\epsilon\rceil\}$

and then compute in fully polynomial time a
$(1 +\in/3)$ -approximation for the best $\delta$-discrete
feasible solution. It is easily verified that this
yields a $(1 +\epsilon)$-approximation of the optimal
objective value; hence there is.an FPTAS. for
$Rm|pmtn|\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ . Since every sufficiently
well-behaved optimization problem with an FP-
TAS is $\mathrm{S}\mathrm{o}\mathrm{i}_{\mathrm{V}\mathrm{a}\mathrm{b}1}\mathrm{e}$ in pseudo-polynomial time (see
e.g. Theorem 6.8 in Garey $\ \mathrm{J}\mathrm{o}\dot{\mathrm{h}}\mathrm{n}\mathrm{s}\mathrm{o}\mathrm{n}[6])$ and
since $Rm|pm\mathrm{f}n|\dot{\mathrm{R}}\mathrm{e}\mathrm{j}.+C_{\max}$ is well-behaved, we
may conclude that $Rm|pmtn|\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ is solv-
able in pseudo-polynomial time.

Theorem 2.4 The problem $Rm|pmtn|Rej+$
$C_{\max}$ has an $FPTAs_{f}$ and it is solvable in pseudo-
polynomial time. $\blacksquare$

3 Uniformly related machines

In this section we will construct an FPTAS
and a pseudo-polynomial time algorithm for
$Q|pmtn|$ Rej $+C_{\max}$ . Our line of approach is
quite similar to that for $Rm|pmtn|$ Rej $+C_{\max}$

in Section 2 which also gave an FPTAS and a
pseudo-polynomial time algorithm.

Now consider an instance of $Q|pmtn|$ Rej $+$

$C_{\max}$ with $m$ machines and $n$ jobs. Without loss
of generality we assume that $m=n$ holds: If
$m>n$ , then the $m-n$ slowest machines wiil not
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be used in any reasonable schedule and may be
removed from the instance. If $m<n$ , then we in-
troduce $n-m$ dummy machines of speed $0$ ; these
dummy machines will not be used in any reason-
able schedule. Let $s_{1}\geq s_{2}\geq\cdots\geq s_{n}$ denote the
speeds of the machines (so that processing of a
job piece of length $L$ on machine $M_{i}$ takes $L/s_{i}$

time). For $\dot{i}\leq n$ let $S_{i}= \sum_{k=1}^{i}S_{k}$ denote the
total speed of the $\dot{i}$ fastest machines.

Let $a_{1}\geq a_{2}\geq\cdots\geq a_{q}$ denote the lengths of
the $q$ accepted jobs in some schedule. For $\dot{i}\leq$

$q$ let $A_{i}= \sum_{k=1}^{i}a_{k}$ denote the total length of
the $\dot{i}$ longest accepted jobs. It is well-known [7]
that for $m=n$ machines the optimal preemptive
makespan for the accepted jobs equals

$\max_{1\leq i\leq q}A_{i}/S_{i}$ (3)

This leads to the following dynamic programming
formulation of $Q|pmtn|\mathrm{R}\mathrm{e}\mathrm{j}+\mathit{0}_{\max}$. Without loss
of generality we assume that $p_{1}\geq p_{2}\geq\cdots\geq p_{n}$ ,
i.e., that the jobs are ordered by non-increasing
processing times. Every state of the dynamic
program consists of four values $v_{1},$ $v_{2},$ $v_{3}$ , and
$v_{4}$ and encodes a schedule for a prefix $J_{1},$

$\ldots,$
$J_{k}$

of the job sequence. Value $v_{1}$ stores the total
penalty of the jobs rejected so far, value $v_{2}$ stores
the total processing time of the jobs accepted so
far, value $v_{3}$ stores the number of accepted jobs,
and value $v_{4}$ stores the maximum value $A_{i}/S_{i}$

over 1 $\leq\dot{i}\leq v_{3}$ . How do we update a state
$[v_{1}, v_{2}, V3, v_{4}]$ for $J_{1},$

$\ldots,$
$J_{k}$ , if also job $J_{k+1}$ has to

be considered?

$\bullet$ If job $J_{k+1}$ is rejected, we replace $v_{1}$ by $v_{1}+$

$e_{k+1}$ and leave everything else unchanged.
This yields the state $[v_{1}+e_{k1}+’ v_{2}, v_{3}, v4]$ .. If job $J_{k+1}$ is accepted, we define $v_{2}^{new}$ $:=$

$v_{2}+p_{k+1}$ and $v_{3}^{new}:=v_{3}+1$ . Moreover, $v_{4}^{new}$

becomes the maximum of the old component
$v_{4}$ and $v_{2}^{new}$ divided by $S_{v_{3}^{n\mathrm{e}w}}$ . This yields the
state $[v_{1}, v_{2’ 3}^{ne}v, v_{4}]wn6wnew$ .

We handle job by job in this way, until we end
up with a state space for $J_{1},$

$\ldots,$
$J_{n}$ . Then we ex-

tract from every state $[v_{1}, v_{2}, V3, v_{4}]$ its objective
value $v_{1}+v_{4}$ . The state with the best objective
value gives the solution of $Q|pmtn|\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ .
The time complexity of this dynamic program-
ming formulation mainly depends on the num-
ber of states. Since every component in every

state is a number whose size is bounded by the
input size, the total number of states is pseudo-
polynomial. Moreover, we can prove that this dy-
namic program belongs to the class of benevolent
dynamic programming formulations [9]. Hence, it
can be transformed into an FPTAS by trimming
the state space appropriately.

Theorem 3.1 The problem $Q|pmtn|Rej+\mathit{0}_{\max}$

has an FPTAS, and it is solvable in pseudo-
polynomial time. $\blacksquare$

4 Negative results

In this sect,ion we prove two negative results,
the $\mathrm{N}\mathrm{P}$-hardness of $P2|pmtn|\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ and
the APX-hardness of $R|pmtn|\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ . The
strong $\mathrm{N}\mathrm{P}$-hardness of $R|pmtn|\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ fol-
lows along the same lines: our $L$-reduction (from
the APX-hard maximum bounded 3-dimensional
matching problem) at the same time constitutes
a Turing-reduction (from the strongly NP-hard
3-dimensional matching problem). Moreover, we
note that our $L$-reduction also implies APX-
hardness and strong $\mathrm{N}\mathrm{P}$-hardness for the non-
preemptive problem variant $R||\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ .

Theorem 4.1 The problem $P2|pmtn|Rej+$
$C_{\max}$ is $\mathrm{N}\mathrm{P}$ -hard in the ordinary sense.

Proof. The proof is a straightforward reduc-
tion from PARTITION. Consider an instance of
PARTITION, i.e., $n$ positive integers $a_{1},$ $\ldots$ , $a_{n}$

that add up to $2A$ . The question is whether
there exists an index set $I\subset\{1, \ldots, n\}$ with
$\sum_{j\in I}a_{j}=A$ . We introduce $n+1$ jobs. The
jobs $J_{j}$ with $1\leq j\leq n$ have penalties $a_{j}$ and pro-
cessing times $3a_{j}$ . The job $J_{n+1}$ has penalty $5A$

and processing time $3A$ .
We $\mathrm{c}\mathrm{l}\dot{\mathrm{a}}$im that the instance of PARTITION has

answer YES if and only if there exists a preemp-
tive schedule with objective value at most $4A$ .
(Only if): Suppose that there exists an index set
$I$ with $\sum_{j\in I}a_{j}=A$ . Process all jobs $J_{j}$ with
$j\in I$ on machine $M_{1}$ . Process job $J_{n+1}$ on ma-
chine $M_{2}$ . Reject all remaining jobs. The result-
ing schedule has makespan $3A$ and total penalty
$A$ ; hence, its objective value equals $4A$ . (If): Sup-
pose that there exists a schedule with objective
value at most $4A$ . Then job $J_{n+1}$ has been ac-
cepted, and hence the makespan is at least $3A$ .
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Denote by $X$ the total penalty of the rejected
jobs. Since the makespan is $\geq 3A$ and the objec-
tive value is at most $4A$ , we must have $X\leq A$ .
The total processing time of the accepted jobs is
equal to $3(2A-^{x)}$ (for the jobs $1\leq j\leq n$) plus
$3A$ (for job $J_{n+1}$ ). The preemptive makespan on
two machines is at least the total scheduled pro-
cessing time divided by 2. Hence, the objective
value of this schedule is at least

$X+ \frac{1}{2}(9A-3X)=\frac{1}{2}(9A-x)$

This must be no more than $4A$ , which implies
that $X\geq A$ . Hence, we conclude that $X=A$,
which implies that PARTITION has answer YES.

$\blacksquare$

Now we turn to problem $R|pmtn|\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ .
The APX-hardness proof is done for the special
case of uniform rejection penalties $e_{j}\equiv 1$ and
so-called restricted assignment, where the pro-
cessing times of jobs are not machine-dependent
but each job may only be processed on a sub-
set of machines, i.e., $p_{ij}\in\{p_{j}, \infty\}$ . We provide
an $L$-reduction from the APX-hard maximum
bounded 3-dimensional matching problem.

MAXIMUM BOUNDED 3-DIMENSIONAL MATCHING
(MAX-3DM-B)

Input: Three sets $A=\{a_{1}, a_{2}, \ldots, a_{q}\},$ $B=$
$\{b_{1}, b_{2}, \ldots , b_{q}\}$ and $C=\{c_{1}, c_{2}, \ldots, C_{q}\}$ . A sub-
set $T$ of $A\cross B\cross C$ of cardinality $s$ , such that
any element of $A,$ $B$ and $C$ occurs in exactly one,
two, or three triples in $T$ . Note that this implies
that $q\leq s\leq 3q$ .
Goal: Find a subset $T’$ of $T$ of maximum cardi-
nality such that no two triples of $T’$ agree in any
coordinate.
Measure: The cardinality of $T’$ .

Without loss of generality, we restrict ourselves to
instances of MAX-3DM-B where the value $q$ and
the value of an optimal solution both are even.
Notice that an arbitrary instance can easily be
modified to fulfill these requirements by taking
two disjoint copies of the instance. The following
simple observation will be useful.

Lemma 4.2 For any instance I of $\mathrm{M}\mathrm{A}\mathrm{X}$-3DM-
$\mathrm{B}$ we have $\mathrm{o}_{\mathrm{P}\mathrm{T}}(I)\geq\frac{1}{7}s$ .

Proof. Select an arbitrary triple $t$ from $T$ . Re-
move $t$ together with all triples that agree with
$t$ in some coordinate from $T$ . Repeat this pro-
cess until $T$ becomes empty. Since every element
occurs in at most 3 triples, at most 7 triples are
removed from $T$ in every step. Hence, there are
at least $\frac{1}{7}s$ steps and at least $\frac{1}{7}s$ selected triples.
Since the selected triples do not agree in any coor-
dinate, they form a feasible 3-dimensional match-
$\mathrm{i}\mathrm{n}\mathrm{g}$. $\blacksquare$

Let $I=(q, T)$ be an instance of MAX-3DM-B.
We construct an instance $R(I)$ of the schedul-
ing problem $R|pmtn,$ $ej\equiv 1,p_{ij}\in\{p_{j}, \infty\}|\mathrm{R}\mathrm{e}\mathrm{j}+$

$C_{\max}$ with $s+22q$ jobs and $s+17q$ machines, where
all penalties $e_{j}$ are 1 and the processing time of
job $J_{j}$ on machine $\dot{i}$ is either $p_{j}$ or infinite (i.e.,
a job can only be processed on a subset of ma-
chines). The core of the instance consists of $s+7q$

jobs and $s+2q$ machines. There are further $15q$

non-core machines and $15q$ non-core jobs. The
non-core jobs are matched to the non-core ma-
chines. The processing time of each non-core job
is $15q$ on its matching non-core machine, and it is
infinite on all other (core and non-core) machines.
Processing of a core job on a non-core machine
also takes infinite time (and thus is impossible).

Now we continue our description of the core of
the instance. There are $s$ machines, which corre-
spond to the triples in $T$ , and therefore are called
the triple machines. Moreover, there are $2q$ so-
called element machines. As to the jobs, each
$a_{j},$ $b_{j}$ , and $c_{j}$ element corresponds to an element
job with processing time $5q$ . An element job can
be processed on any element machine; moreover,
each triple machine can process the element jobs
of the elements occurring in the corresponding
triple. Each triple machine has its own match-
ing dummy job; processing this dummy job takes
$15q$ units of time, and no other dummy job can
be processed on the machine. Each element ma-
chine has two matching dummy jobs with pro-
cessing times $5q$ and $10q$ , respectively; again, no
other dummy job can be processed on an element
machine.

As we will see later, the sole purpose of adding
the $15q$ non-core machines with corresponding
non-core jobs is to enforce that in the optimal
schedule $C_{\max}\geq 15q$ . The following lemma gives
the basic intuition of how the reduction works.
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Lemma 4.3 If the optimal solution to an in-
stance I of MAX-3DM-B consists of $k$ triples,
then there is a solution to the instance $R(I)$

of the scheduling problem with objective value
$16q+(q-k)/2$ .

Proof. Without loss of generality, we assume
that the first $k$ triples in $T$ constitute an opti-
mal solution of $I$ . We construct the following
solution with makespane $15q$ to instance $R(I)$ .
The first $k$ triple machines process the element
jobs belonging to their triples; the dummy jobs
corresponding to the first $k$ triple machines are
rejected. The remaining $3(q-k)$ element jobs
are grouped into $3(q-k)/2$ pairs which are then
processed on an arbitrary subset of $3(q-k)/2$
element machines; the corresponding $3(q-k)/2$
dummy jobs of size $10q$ are rejected. This yields
a schedule with $C_{\max}=15q$ and $k+3(q-k)/2$
rejected jobs. Hence, the objective value is equal
to $16q+(qarrow k)/2$ . $\blacksquare$

The following lemma shows that the schedule
constructed in the proof of Lemma 4.3 in fact is
optimal.. $\cdot$

.

Lemma 4.4 Let I be an instance of $\mathrm{M}\mathrm{A}\mathrm{X}$-3DM-
$\mathrm{B}$ and $0$ $\leq$ $k$ $\leq$ $q$ . Given a solution $\sigma$ to
the scheduling $\dot{i}nstanceR(I)$ with objective value
$c(\sigma)<16q+(q-k)/2$ , one can construct in poly-
nomial time a $solui_{\dot{i}}.on_{l}S(\sigma)$ to I consisting of at
lea$st$

-.
$k+$

.
$1$ triples.

.

Proof. If the makespan of the given schedule is
less than $15q$ , then at least $17q+s$ dummy jobs
(one for each machine) must have been rejected.
Thus, the objective value is at least $17q+s$ which
is a contradiction to $c(\sigma)<16q+(q-k)/2$ ; this
yields $C_{\max}=15q+\triangle$ for some $\triangle\geq 0$ .

If all dummy jobs of length $10q$ are rejected,
then the capacity of the $2q$ element machines suf-
fices to process all element jobs and all dummy
jobs of length $5q$ within the interval $[0,15q]$ .
Thus, if an element job or a dummy job of length
$5q$ has been rejected in the given schedule and if it
cannot be added to any element machine without
increasing the makespan, then there must be at
least one dunimy job of length $10_{q}$ which was not
rejected. Interchanging the two jobs does not de-.
teriorate the value of the schedule. Thus, we can
modify the given schedule such that no element

job and no dummy job of length $5q$ is rejected.
We denote the number of rejected jobs in the re-
sulting schedule by $R$ ; notice that the makespan
of this schedule is still bounded by $15q+\triangle$ and
$R+\triangle<q+(q-k)/2$ .

We consider the triple machines iteratively one
after another and construct a solution of instance
$I$ ; at the same time, we also modify the current
schedule accordingly: If a triple machine pro-
cesses (fractions of) element jobs for more than
$10q$ time units, then we add the corresponding
triple to the solution of $I$ . Since the load of the
triple machine is at most $15q+\triangle<17q$ , its
dummy job must have been rejected; we move
all fractions of the three corresponding element
jobs to the triple machine increasing its load to
$15q$ . We denote the cardinality of the resulting
solution of instance $I$ by $k’$ . It remains to show
that $k’>k$ . .

We bound the total amount of time that is used
in the resulting schedule by triple machines and
by element machines for processing element jobs:. Any triple machine which corresponds to one

of the $k’$ chosen triples spends $15q$ time units
for processing element jobs.

$\bullet$ Any other machine which does not process
all its dummy jobs spends at most $10q+\triangle$

time units for processing element jobs; there
are $(R-k’)$ such machines.. Each of the $s+2q-R$ remaining machines
spends at most $\triangle$ time units for processing
element jobs.

Summarizing, the total processing time of all el-
ement jobs is at most

$15qk’+(10q+\triangle)(R-k’)+\triangle(_{S+2}q-R)$

$\leq$ $5qk’+1\mathrm{o}qR+5q\triangle$

$\leq$ $5qk’+1\mathrm{o}q(R+\triangle)$

$\leq$ $5q(k’-k)+5q\cdot 3q$

The last inequality follows from $R+\triangle<q+$

$(q-k)/2$ . Since the total processing time of all
$3q$ element jobs is $3q\cdot 5q$ , we get $k’>k$ which
concludes the proof. $\blacksquare$

Lemmas 4.3 and 4.4 together yield the following
result.
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Corollary 4.5 If an optimal solution to the in-
stance I of MAX-3DM-B consists of $k$ triples,
then the value of an optimum solution to the in-
stance $R(I)$ of the scheduling problem is equal to
$16q+(q-k)/2$ . $\blacksquare$

[3] D. BERTSIMAS, C. TEO, AND R. VOHRA
[1996]. On Dependent Randomized Round-
ing Algorithms. Proceedings of the 5th Inter-
national IPCO Conference, Springer LNCS
1084, 330-344.

We can now state the main result of this section
(Since the notion of preemption is not used in
the proof of Lemmas 4.3 and 4.4, we can use
the very same $L$-reduction to establish APX-
hardness of the nonpreemptive problem $R|e_{j}\equiv$

$1,p_{ij}\in\{p_{j}, \infty\}|\mathrm{R}\mathrm{e}\mathrm{j}+c_{\max})$ .

Theorem 4.6 The prob-
lem $R|pmtn,$ $ej\equiv 1,p_{ij}\in\{p_{j}, \infty\}|Rej+C_{\max}$

is APX-hard.

Proof. Our $L$-reduction now looks as fol-
lows. Given an instance $I$ of MAX-3DM-B,
we construct the instance $R(I)$ of the problem
$R|pmin,$ $e_{j}\equiv 1,p_{ij}\in\{p_{j}, \infty\}|\mathrm{R}\mathrm{e}\mathrm{j}+C_{\max}$ as de-
scribed above. The transformation $S$ that maps
a given solution for $R(I)$ to a feasible solution of
$I$ is given in the proof of Lemma 4.4. Clearly, $R$

and $S$ can be implemented to run in polynomial
time. Moreover, we have for any instance $I$ of
MAX-3DM-B that

OPT $(R(I).)\leq 17q\leq 17s\leq 119\mathrm{O}\mathrm{P}\mathrm{T}(I)$ ;

the first inequality follows from Lemma 4.3 and
the last inequality from Lemma 4.2. Finally, for
any feasible schedule a of $R(I)$ , the feasible solu-
tion $S(\sigma)$ of instance $I$ fulfills the inequality

$\mathrm{o}_{\mathrm{P}\mathrm{T}}(I)-|S(\sigma)|\leq 2(c(\sigma)-\mathrm{o}\mathrm{P}\mathrm{T}(R(I))$

by Lemma 4.4 and Corollary 4.5. $\blacksquare$
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Table 1: The complexity landscape of preemptive makespan with rejection.

$\ovalbox{\tt\small REJECT}^{m\mathrm{n}\mathrm{o}\mathrm{t}}m_{\mathrm{P}\mathrm{P}\mathrm{p}\mathrm{p}\mathrm{n}}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{u}\mathrm{t}\mathrm{F}\mathrm{P}\mathrm{T}\mathrm{A}\mathrm{S}\mathrm{F}\mathrm{P}\mathrm{T}\mathrm{A}\mathrm{s}158- \mathrm{a}\mathrm{p}_{\mathrm{O}}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{o}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{F}\mathrm{P}\mathrm{T}\mathrm{A}\mathrm{S}\mathrm{F}\mathrm{p}\mathrm{T}\mathrm{A}\mathrm{s}\mathrm{F}\mathrm{p}_{\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{e}}\mathrm{T}\mathrm{r}\mathrm{o}\mathrm{x}\mathrm{A}\mathrm{p}\mathrm{x}_{-}1\mathrm{e}\mathrm{t}\mathrm{A}\mathrm{i}\mathrm{m}\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}$,

Table 2: The approximability landscape of preemptive makespan with rejection.
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