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Abstract: In Tutte’s seminal paper on matching, he associates a skew-symmetric matrix
with a graph; this matrix is now known as the Tutte matrix. The rank of the Tutte matrix is
exactly twice the size of a maximum matching in the graph. This formulation easily leads to
an efficient randomized algorithm for matching. The Tutte matrix is also useful in obtaining
a min-max theorem and an efficient deterministic algorithm. We review these results and
look at similar formulations of other problems; namely, linear matroid intersection, linear
matroid parity, path matching, and $\mathrm{m}\mathrm{a}\mathrm{t}_{\mathrm{C}}\mathrm{h}\mathrm{i}_{1}$ forests.
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1 Introduction

Two problems that play a fundamental role in
combinatorial optimization are the maximum
cardinality matching problem and the matroid in-
tersection problem. This paper surveys matrix-
rank formulations of these and related problems.
We begin by considering the size of a maximum
cardinality matching in a bipartite graph, which
is a special case of both of the aforementioned
problems.

Let $G=(V, E)$ be a bipartite graph with bi-
partition $(V_{r}, VC)$ , and let $(z_{e} : e\in E)$ be
algebraically independent commuting indetermi-
nates. We let $\nu(G)$ denote the size of a maximum
cardinality matching of $G$ . Now, define a V. by
$V_{\mathrm{c}}$ matrix $X$ , such that $X_{i,j}=z_{\mathrm{e}}$ if $ij=e\in E$

and $X_{i,j}=0$ otherwise. We call $X$ the bipartite-
matching matrix of $G$ . If $|V_{r}|=|V_{c}|$ , then, by
considering the determinate expansion for $X$ , it
is straightforward to see that $X$ is nonsingular if
and only if $G$ has a perfect matching. More gener-
ally, $\nu(G)=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}X$ . Thus, we have reformulated
the bipartite matching problem as a matrix-rank
problem. This formulation is not a panacea, as
the matrix in question has indeterminate entries,
so it is non-trivial to compute its rank. However,
we shall see that such formulations easily provide
efficient randomized algorithms, and mav be used
to obtain min-max theorems and efficient deter-

ministic algorithms.
We now progress to matching in general graphs;

for this we introduce “Pfaffians”. Let $I\mathrm{C}’$ be a
$V$ by $V$ skew-symmetric matrix, where $V=$
$\{1, \ldots, n\}$ . The determinant of $I\mathrm{t}^{-}$ is the square
of its Pfaffian. The Pfaffian has an expansion
somewhat like the permutation expansion of the
determinant. Let $G(K)$ denote the graph (V, $E’$)
where $E’=\{ij : I\mathrm{f}_{ij}\neq 0\}$ , and let At $K$ denote
the set of perfect matchings of $G(K)$ . The Pfaf-
fian of $I\mathrm{t}^{\vee}$ , denoted $Pf(I\mathrm{t}^{\vee})$ , is defined as follows:

$\mathrm{P}\mathrm{f}(K):=\sum_{M\in u_{K}}\sigma M\prod Iuuv<v\in M\mathrm{t}_{uv}-$

, (1)

where $\sigma_{\Lambda I}$ takes the value 1 or $-1$ as appropri-
ate; see Godsil [7]. For $X\subseteq V.$ we will denote
$K[X, X]$ by $K[X]$ .

Now, let $G=(l^{\gamma}, E)$ be a simple graph, and
let $(z_{e} : e\in E)$ be algebraically independent
commuting indeterminates. We define a $V$ by $V$

skew-symmetric matrix $T$ , called the Tutte ma-
trix of $G$ , such that $T_{ij}=\pm z_{\mathrm{e}}$ if $ij=e\in E$ , and
$T_{ij}=0$ otherwise. By (1), it is immediate that
$T$ is nonsingular if and only if $G$ admits a perfect
matching. In fact, rank $T=2\nu(G)$ . The Tutte
matrix was introduced by Tutte, in 1947, in his
seminal paper on matching [20].

Finallv we consider matroid intersection.
(Those readers not familiar with matroids are di-
rected to Cook, Cunningham, Pulleyblank, and
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Schrijver [2] for an excellent introduction.) Ma-
troids are a natural abstraction of linear indepen-
dence. Basically, a matroid $M=(V,\mathcal{I})$ is deter-
mined by a finite ground set $V$ and a collection $\mathcal{I}$

of independent sets, that satisfy certain axioms.
If $Q$ is a $V_{r}$ by $V_{\mathrm{c}}$ matrix, then $M(Q)$ denotes
the matroid on ground set $V_{c}$ where $A\subseteq V_{c}$ is
independent if the columns of $Q$ indexed by $A$

are linearly independent. We call $M(Q)$ a linear
matroid. Similarly, we can define a matroid on
the rows of $Q$ ; this matroid is denoted by $M^{\mathrm{r}}(Q)$ .
(We often use the following elementary fact: if $X_{r}$

is a basis of $M^{r}(Q)$ and $X_{c}$ is a basis of $M(Q)$

then $Q[X_{r’ C}X]$ is nonsingular.)
Let $M_{1}$ and $M_{2}$ be matroids on a common

ground set $V$ . The intersection problem for $M_{1}$

and $M_{2}$ is the problem of finding a maximum
cardinality common independent set of $\mathrm{i}\mathcal{V}I_{1}$ and
$M_{2}$ . Now consider the intersection problem for
linear matroids $M_{1}:=M(Q_{1})$ and $kI_{2}:=\mathrm{J}\sim I(Q2)$

on a common ground set $V:=\{1, \ldots , n\}$ . Let
$(z_{1}, \ldots, z_{n})$ be algebraically independent com-
muting indeterminates, and consider the follow-
ing matrix:

$Z:=$ .

Murota [18] proved that the size of a maxi-
mum common independent set of $M_{1}$ and $i\downarrow ir_{2}$ is
rank $Z-n$ . Thus we have a matrix-rank formu-
lation of the linear matroid intersection problem.

If $X$ is a $V_{r}$ by $V_{c}$ bipartite-matching matrix
and $Q$ is a $V_{r}$ by $V_{c}$ matrix over the rationals,
then we call $Q+X$ a mixed matrix. The matrix
$Z$ , above, is a mixed matrix. Thus, the prob-
lem of determining the rank of a mixed matrix
contains the linear matroid intersection problem.
Murota [18] studies mixed matrices extensively,
and shows that computing their rank is in fact
equivalent to linear matroid intersection. In par-
ticular, we can compute the rank of $Q+X$ using
Edmonds’ [5] matroid intersection algorithm.

Randomized algorithms

The matrix-rank formulations do not immedi-
ately provide efficient algorithms, as we cannot
efficiently perform basic operations on a matrix

with indeterminate entries. For example, the de-
terminant of a mixed matrix is a polynomial that
may have exponentially many terms. Lov\’asz [15]
overcomes this problem by replacing the indeter-
minates with rational values; of course the rank
may decrease, but, fortunately, this is unlikely. If
$I1^{-}$ is a matrix with indeterminate entries, then
an evaluation of $I1^{\vee}$ is $\mathrm{a}\mathrm{n}.\mathrm{v}$ matrix obtained from
$K$ by replacing the indeterminates with rational
values.

Theorem 1.1 Let $Q+X$ be an $n$ by $m$ mixed
matrix and let $\tilde{X}$ be an evaluation of $X$ with en-
tries chosen independently and at random from
$\{1, \ldots, m+n\}$ , then rank $(Q+X)=rank(Q+\tilde{X})$

with probability at least $\frac{1}{2}$ .

Theorem 1.2 Let $T$ be an $n$ by $n$ Tutte matrix,
and let $\tilde{T}$ be an evaluation of $T$ with entries $ch_{\mathit{0}-}$

$sen \dot{i}thenrankndependentlyandatra\tau=rank\tilde{T}w\dot{i}thprobab_{\dot{i}}nd_{\mathit{0}}mfrl\dot{i}ty\{om1,\ldots,natleaSt\frac{1\}}{2}.J$

We prove Theorems 1.1 and 1.2 in Section 2.
These theorems provide efficient randomized al-
gorithms for computing the rank of a mixed ma-
trix and determining the size of a maximum
matching. The reader may not be comfortable
with a one in two chance of failure, but the
odds improve significantly with rcpcatcd trials.
Among $n$ independent evaluations, one has the
correct rank with probabilitv at least $1-1/2^{n}$ .

Let $T$ be the Tutte matrix of a graph $G$ , and
let $\tilde{T}$ be an evaluation of $T$ . We know that
$\nu(G)\geq$ (rank $\tilde{T}$ ) $/2$ , however, knowing the evalu-
ation $\tilde{T}$ does not provide a more efficient method
of finding a matching of size (rank $\tilde{T}$ ) $/2$ . Never-
theless, Cheriyan [1] shows that random evalua-
tions of the Tutte matrix contain a lot of infor-
mation about matching structure.

Min-max theorems

Consider a $V_{r}$ by $V_{c}$ mixed nlatrix $Q+X$ . If
$Y_{r}\subseteq V_{r},$ $Y_{c}\subseteq V_{c}$ and $X[Y_{r}.Y_{c}]=0$ then

rank $Q+X\leq \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}Q[Yr’ YC]+|V_{r}-Y_{r}|+|V_{c}-Y_{c}|$ .

Since $Q[Y_{r}, YC]$ is a rational matrix, we can easily
evaluate the right side of tlle inequality above.
Murota [17] proved that, for all appropriate
choice of $Y_{r}$ and $Y_{c}$ , this inequality is in fact at-
tained with equality; this generalized the result of
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Hartfiel and Loewy [12], who characterized singu-
lar mixed matrices.

Theorem 1.3 Let $Q+X$ be a $V_{r}$ by $V_{c}$ mixed
matrix. If $Y_{r}\subseteq V_{r},$ $Y_{c}\subseteq V_{c}$ and $X[Y_{r}, Y]C=0$

then

rank $Q+X\leq rankQ[\mathrm{Y}_{f}, Y_{\mathrm{C}}]+|V_{r}-\mathrm{Y}_{r}^{r}|+|l_{c}^{r}’-Y|C$ .

Moreover, there exists $Y_{r}^{*}\subseteq V_{r}$ and $Y_{c}^{*}\subseteq V_{c}$ such
that $X[Y_{r’ C}^{*}Y^{*}]=0$ and

rank $Q+X\leq rank$ $Q[Y_{r}^{*}, \mathrm{Y}_{\mathrm{C}^{*}}]+|V_{r}-Y^{*}r|+|Vc-Y^{*}\mathrm{c}|$ .

For a bipartite-matching matrix $X$ , the above
theorem is $\mathrm{K}\acute{\acute{\mathrm{o}}}\mathrm{n}\mathrm{i}\mathrm{g}’ \mathrm{s}$ Theorem: The rank of $X\dot{i}S$

equal to the minimum number of lines required to
cover all of the nonzero entries in $X$ .

We now consider a canonical version of Theo-
rem 1.3 that appears in [9]; we require the fol-
lowing definitions. Let $Q$ be a $V_{r}$ by $V_{c}$ ma-
trix. An element $i\in V_{r}$ is an avoidable row if
rank $Q[V_{r}-\{\dot{i}\}, V_{c}]=$ rank $Q$ . Thus, $i$ is an
avoidable row if and only if $i$ is not a coloop
of $M^{r}(Q)$ . We define avoidable columns sim-
ilarly. Now let $D^{r}(Q)$ and $D^{c}(Q)$ denote the
set of avoidable rows and columns respectively.
For $i\in V_{c}-D^{c}(Q)$ , it is straightforward to
see that $D^{r}(Q)\subseteq D^{r}(Q[V_{r’ C}V-\{i\}])$ . We let
$A^{c}(Q)$ denote the set of elements $i\in V_{c}-D^{C}(Q)$

such that $D^{r}(Q)=D^{r}(Q[V_{r’ \mathrm{C}}V-\{\dot{i}\}])$ , and let
$A^{r}(Q)=A^{c}(Q^{t})$ . These definitions were moti-
vated by the Dulmage-Mendelsohn decomposi-
tion of a bipartite graph [4].

Theorem 1.4 Let $Q+X$ be a $V_{r}$ by $V_{c}$ mixed
matrix. If $Y_{r}^{*}=D^{r}(Q+T)$ and $Y_{c}^{*}=V_{c}-A_{c}$

then $X[Y_{r}^{**}, Y]C=0$ and

rank $Q+X\leq rank$ $Q[\mathrm{Y}_{r}^{*}, \mathrm{Y}_{C^{*}}]+|V_{r}-\mathrm{Y}_{r}’*|+|\mathrm{T}_{C}’-\gamma\iota_{c}^{r*}|$ .

When applied to a bipartite-matching matrix,
the above theorem implies Dulmage and Mendel-
sohn’s decomposition theorem [4].

Since Tutte [20] introduced the Tutte matrix
to prove his matching theorem, it should be little
surprise that the Tutte matrix helps in proving
the following min-max theorem.

Theorem 1.5 (Tutte-Berge Theorem) For
any graph $G=(\mathrm{t}^{7}’, E)$ ,

$2 \nu(G)=\min_{A\subseteq V}|V|-(odd(c-A\mathrm{I}-|A|)$ .

(Here, odd $(H)$ denotes the number of compo-
nents of $H$ that have an odd number of vertices.)

Let $T$ be the Tutte matrix of a graph $G$ . The
matroid $M(T)$ is called the matching matroid of
$G$ . A subset $X$ of $V$ is a matchable set of $G$ if
$G[X]$ , the subgraph of $G$ induced by $X$ , has a
perfect matching. Note that, if $X$ is a match-
able set, then $X$ is independent in $M(T)$ . The
converse need not hold, since, unless $G$ is triv-
ial, $M(T)$ has independent sets of odd cardinality
which cannot be matchable. However, consider a
basis $X$ of $M(T)$ . By skew-symmetry, $X$ is also
a basis of $M^{r}(T)$ . Therefore, $T[X]$ is nonsingu-
lar, and, hence, $X$ is a matchable set. Therefore,
the bases of $M(T)$ are the maximum cardinality
matchable sets of $G$ .

Let $D(G)$ denote the set of vertices $v\in V$ such
that $\nu(G-v)=\nu(G)$ . and let $A(G)$ denote the
set of vertices in $V-D(G)$ that have a neighbour
in $D(G)$ . It is $\mathrm{e}\mathrm{a}\mathrm{S}_{\backslash }\mathrm{y}$ to see that $D^{r}(T)=D(G)$ ,
however, we shall see that more surprising fact
that $A^{r}(T)=A(G)$ . The following canonical ver-
sion of the Tutte-Berge Theorem is tantamount
to the Edmonds-Gallai Decomposition Theorem;
see [16].

Theorem 1.6 For any graph $G=(V, E)$ ,

$2\iota \text{ノ}(c)=|V|-(odd(G-A(G))-|A(G)|)$ .

Moreover, $D(G)=D(G-A(c))$ .

Theorems 1.4 and 1.6 shall be proved in Sec-
tion 3.

Deterministic algorithms

Edmonds’ has efficient augmenting path algo-
rithms for both the matching problem [6] and the
matroid intersection problem [5]. Therefore, the
ranks of Tutte matrices and mixed matrices can
be computed efficiently. We describe a different
approach, based on evaluations.

Let $Q+\overline{X}$ be an evaluation of a mixed matrix
$Q+X$ . For an indeterminate $z$ in $X$ , we denote by
$\tilde{X}^{arrow}(zarrow a)$ the evaluation of $X$ obtained from $\tilde{X}$

be replacing the old value of $z$ with $a$ ; we call this
perturbation. A heuristic algorithm for finding a
good evaluation is to make perturbations if doing
so increases the rank. Unfortunately, this method
is not guaranteed to produce an evaluation with
the same rank as $Q+X$ ; see [9]. We overcome this
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problem by considering a more refined ordering
on matrices than simply comparing rank.

Let $Q_{1}$ and $Q_{2}$ be $V_{r}$ by $V_{c}$ matrices. We write
$Q_{1}\succeq Q_{2}$ if rank $Q_{1}>$ rank $Q_{2}$ , or rank $Q_{1}=$

rank $Q_{2}$ and $D^{r}(Q_{2})\subseteq D^{r}(Q_{1})$ . Similarly, we
write $Q_{1}$ $\approx Q_{2}$ if rank $Q_{1}$ $arrow-$ rank $Q_{2}$ and
$D^{r}(Q_{1})=D^{r}(Q_{2})$ . If $Q_{1}\succeq Q_{2}$ but $Q_{1}\not\simeq Q_{2}$ then
we write $Q_{1}\succ Q_{2}$ . This gives a quasi-ordering of
matrices; if $Q_{1}\succ Q_{2}$ then we say that $Q_{1}$

.
is more

independent than $Q_{2}$ .
Another heuristic algorithm for finding a good

evaluation is to make perturbations if doing so in-
$\mathrm{c}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{S}_{1}\mathrm{t}\mathrm{h}\mathrm{e}$ independence. This algorithm is guar-
anteed to produce an evaluation with the same
rank as $Q+.X$ ; see [9].

Theorem 1.7 If $Q+\tilde{X}$ is an evaluation of a $|/_{r}^{\mathit{7}}$

by $V_{c}$ mixed matrix $Q+X$ , then either rank $Q+$

$\tilde{X}=rankQ+X$ , or there exists an indet.erminate. $\iota$

$z$ in $X$ and $a\in\{1, \ldots, |V_{r}|+1\}$ such that $Q+$
$\tilde{X}(zarrow a)\succ Q+\tilde{X}$ .

This theorem clearly provides a polynomial-time
deterministic algorithm for computing the rank
of a mixed matrix. The algorithm is not partic-
ularly efficient if implemented naively. However.
the are many ways to improve the running time.
In fact, it is possible to perform an iteration in
the same order of time that it takes to perform
a matrix inversion. (This is not straightforward.)
The charitable reader will also note that, if the
initial evaluation is chosen at random, then it is
likely to have near-optimal independence.

We can also compute the rank of a Tutte matrix
with a similar algorithm; see [8].

Theorem 1.8 Let $\tilde{T}$ be an evaluation of $a$ V $by$

$V$ Tutte matrix $T$ , then either rank $\tilde{T}=rank$ $T$ ,
or there exists an indeterminate $z$ in $T$ and $a\in$

$\{1, \ldots, |V|\}$ such that $\tilde{T}(zarrow a)\succ\tilde{T}$ .

We prove Theorems 1.7 and 1.8 in Section 4. The
proof of Theorem 1.7 in [8] is quite technical; we
present a simpler proof using the techniques of [9].

Path-matching

Above we described matrix-rank formulations for
matching and linear matroid intersection, and in-
dicated why these formulations are useful. We
conclude the introduction by briefly describing

matrix-rank formulations for three other combi-
$\mathrm{n}\mathrm{a}\mathrm{t}_{0}\mathrm{r}\mathrm{i}\mathrm{a}\iota$ problems.

Let $T$ be the Tutte matrix of a graph $G=$

(V, $E$ ). Given $A,$ $B\subseteq V$ , consider the problem
of computing the rank of $T[A, B]$ . Cunningham
and Geelen [3], show that rank $T[A, B]$ can be
computed by a slight variation on the algorithm
given by Theorem 1.8. The problem of comput-
ing rank $T[A.B]$ has a graphical interpretation;
see [3]. We will only collsider the special case
of deciding whether $T[A, B]$ is nonsingular when
$|A|=|B|$ . A perfect path-matching consists of a
set of $|A-B|$ vertex disjoint paths from $A-B$
to $B-A$ and a perfect matching the subgraph
induced by the vertices that are not covered by
the paths. Cunningham and Geelen [3] show that
$T[A, B]$ is nonsingular if and only if $G[A\cup B]$ has
a perfect path matching.

Matching forests

A mixed graph is a graph with both directed and
undirected edges. We write $G:=(V, E, A)$ for a
mixed graph with vertex set V, undirected edge
set $E$ , and directed edge set $A$ . For $xy\in E$ we
call $x$ and $y$ heads of $xy$ , and for $xy\in A$ we call
$y$ a head of $xy$ . A matching forest is a subset $M$

of $E\cup A$ such that each vertex is the head of at
most one edge in $\lambda I$ , and $\ovalbox{\tt\small REJECT}’I\cap A$ does not con-
tain a directed cycle. A vertex t) is covered by
a nlatching forest $M$ if $v$ is a head of some edge
in $f1l$ . Let $\mu(G)$ denote the maximum number of
vertices that can be covered bv a a matching for-
est of $G$ . If $G$ is undirected then $\mu(G)--2\nu(c)$ .
If $G$ is directed then $\mu(G)$ is the maximum size
of a directed forest. Matching forests were in-
troduced by Giles [11] who found an alternating
path algorithm for computing $\mu(G)$ .

Let $H=(V, A)$ be a directed graph, and let
$(z_{e} : e\in A)$ be algebraically independent com-

$\mathrm{m}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{l}$ indeterminates. Now define a $V$ by $V$ ma-
trix $B$ where, for $x\neq y,$ $B_{xy}=z_{\mathrm{e}}$ if $xy=e\in A$

and $B_{xy}=0$ otherwise. The diagonal of $B$ is de-
fined so that the $\mathrm{r}\mathrm{o}\mathrm{w}-\theta \mathrm{u}\mathrm{m}\mathrm{s}$ of $B$ are $\mathrm{a}!1$ zero. We
call $B$ the branchings matrix of $H$ .

Now, let $G=(\mathrm{T}^{\gamma}, E, A)$ be a mixed graph. let
$T$ be the Tutte matrix of (V, $E$ ), and let $B$ be the
branchings nlatrix of (V, $A$ ). Webb [21] proved
that $\mu(G)=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(T+B)$ . Using this formulation
Webb also proved a min-max theorem and ob-
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tained an efficient deterministic algorithm. The
algorithm is more complicated than the algorithm
given by Theorem 1.8 for matching. In particu-
lar, Webb’s algorithm may require perturbing two
variables at once (one for a directed edge and an-
other for an undirected edge), and uses a more
refined notion of independence for evaluations.

Linear matroid parity

Consider the following problem.

Matroid parity problem Given a matroid $M$

on the ground set $V$ , and a partition $\Pi$ $=$

$(\pi_{1}, \ldots, \pi_{m})$ of $V$ into pairs, find a maximum size
collection $(\pi_{i_{1}}, \ldots T)\mathrm{g}i_{k}$ of these pairs such that. $\mathrm{t}$

$\pi_{i_{1}}\cup\cdots\cup\pi_{i_{k}}$ is independent in $M$ .
Lov\’asz showed that the matroid parity problem

is intractable (using the usual oracle based ap-
proach to matroid algorithms) and $\mathrm{N}\mathrm{P}$-hard [16].
More surprisingly, Lov\’asz showed that the ma-
troid parity problem can be solved efficiently if
$M$ is linear. Let $\nu_{\Pi}(M)$ denote the maximum
number of pairs in $\Pi$ whose union is independent
in $M$ .

Let $Q$ be a matrix with rows and columns in-
dexed by $R$ and $V$ respectively, and let $\Pi$ be a
partition of $V$ into pairs. Now let $T$ be the Tutte
matrix of the graph with vertex set $R\cup V$ and
edge set II, and let

$R$ $V$

$I\mathrm{t}^{-}:=VR$ .

Then, $2\nu_{\Pi}(M(A))=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(T+K)-|V|$ ; see [10].
More generally, if $T$ is a V by $V$ Tutte ma-

trix and $K$ is a $V$ by $V$ rational skew-symmetric
matrix, then we call $T+K$ a mixed skew-
symmetric matrix. It seems likely that some ana-
logue of Theorem 1.8 should hold for a mixed
skew-symmetric matrix, but this problem re-
mains open. Nevertheless, there is a min-max
formula for determining the rank of a mixed
skew-symmetric matrix; see [10].

2 Randomized algorithms

In this section we prove Theorems 1.1 and 1.2,
for which we require the following lemma which

was discovered independently by Zippel [22] and
Schwartz [19].

Lemma 2.1 Let $p(x_{1,\ldots,k}x)$ be a nonzero poly-
nomial of degree at most $d$ , and let $S$ be a finite
subset of R. If $(\hat{x}_{1}, \ldots,\hat{x}_{k})$ is a random element
of $S^{k}$ , then $p(\hat{x}_{1}, \ldots,\hat{x}_{k})\neq 0$ with probability at
least $1- \frac{d}{|S|}$ .

Proof. The proof is by induction on $k$ . If $k=$
$1$ , then the the result follows from the fact that
a nonzero single-variable polynomial of degree $d$

has at most $d$ roots. Suppose that $k>1$ , and
that the result holds for polynomials with fewer
than $k$ variables. Collecting $p(x)$ in powers of $x_{k}$

we get

$p(x_{1}, \ldots, x_{k})=\sum_{i=0}^{d}pi(x1, \ldots, xk-1)x_{k}^{i}$ .

Since $p(x)$ is not identically zero, there exists
$j\in\{0, \ldots, d\}$ such that $pj(x1, \ldots, xk-1)$ is not
identically zero. Choose $j$ maximal such that
$pj(x1, \ldots, xk-1)$ is not identically zero. Thus, by
the induction hypothesis, $p_{j}(\hat{X}_{1}, \ldots,\hat{x}_{k}-1)\neq 0$

with probability at least 1 – $\frac{d-j}{|S|}$ . Now, the
probability that $p(\hat{x}_{1,\ldots,k}\hat{X})\neq 0$ given that
$p_{j}(\hat{X}_{1}, \ldots,\hat{x}_{k}-1)\neq 0$ is at least 1 – $\frac{J^{-}}{|S|}$ . There-
fore, $p(\hat{x}_{1,\ldots,k}\hat{X})\neq 0$ with probability at least

$(1- \frac{d-j}{|S|})(1-\frac{j}{|S|})$ $=$ $1- \frac{d}{|S|}+\frac{j(d-j)}{|S|^{2}}$

$\geq$ $1- \frac{d}{|S|}$ ,

as required. 1

Proof of Theorem 1.1. Let $(Q+X)[A, B]$ be a
maximal square nonsingular submatrix of $Q+X$ .
Then, $\det(Q+X)[A, B]$ is a polynomial of degree
at most rank $(Q+X) \leq\frac{m+n}{2}$ . Therefore, by
Lemma 2.1, $(Q+\tilde{X})[A, B]$ is nonsingular with
probability at least 1/2. Thus, rank $(Q+\tilde{X})=$

rank $(Q+X)$ with probability at least 1/2, as
claimed. I

Similarly, by considering the Pfaffian of a skew-
symmetric matrix we easily obtain Theorem 1.2.

3 Min-max theorems
In this section we prove Theorems 1.4 and 1.6,
for which, we require the following lemma.
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Lemma 3.1 Let $Q$ be a $V_{r}$ by $V_{c}$ matrix. let
$X_{r}=D^{r}(Q)$ , and let $X_{c}=V_{c}-A^{\mathrm{C}}(Q)$ . Then

(1) rank $Q[X_{r}, V_{\mathrm{c}}]$ $=$ rank $Q$ -

$D^{r}(Q[x_{\Gamma}, V_{c}])=X_{r}$ ,
$randD^{c}(Q[X\gamma’ V_{\mathrm{c}}|\mathrm{t}^{\mathit{7}}\text{ノ}-\wedge\chi^{-}|rr]\mathrm{I}=$

’

$X_{c}$ , and

(2) rank $Q[X_{r’ C}X]$ $=$ rank $Q-|V_{r}-X_{r}|$ -

$|V_{c}$ – $X_{c}|$ , $D^{r}(Q[XX_{C}]r’)$ $=$ $X_{r}$ , and
$D^{c}(Q[X_{r}, X_{C}])=x_{c}$ .

Proof. Since $V_{r}-X_{r}$ is the set of coloops
of $M^{r}(Q)$ , we see that, for any basis $B$ of
$M^{r}(Q[X_{r}, Vc])$ the set $B\cup(V_{r}-X_{r})$ is a basis
of $M^{\mathrm{r}}(Q)$ . Conversely, for any basis $B’$ of $M^{r}(Q)$

the set $B’\cap X_{r}$ is a basis $M^{r}(Q[x_{r’ c}V])$ . It fol-
lows that rank $Q[X_{t’ C}V]=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}Q-(|V_{r}|-|_{arrow\chi_{r}^{arrow}}|)$

and $D^{r}(Q[Xr’ V\mathrm{C}])=X_{r}$ .
Now, it is straightforward to see that

$D^{\mathrm{c}}(Q[Xr’ Vc])$ contains $D^{c}(Q)$ . Now consider
$i\in V^{c}-D^{c}(Q)$ . Since $\dot{i}$ is not a coloop of
$M(Q)$ , rank $Q[V_{r}, V_{c}-\{i\}]=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}Q-1$ . There-
fore, rank $Q[X_{r}, V_{c}-\{\dot{i}\}]\geq \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}Q-|V_{c}-X^{\vee}C|-$

$1=$ rank $Q[X_{r}, V_{c}]-1$ , with equality if and
only if the elements of $V_{\mathrm{c}}-X_{c}$ are coloops of
$M^{r}(Q[V_{r’ \mathrm{C}}V-\{\dot{i}\}])$ . That is, $i\in V_{c}-D^{c}(Q)$

is a coloop of $M^{r}(Q[V_{t}, Vc-\{i\}])$ if and only if
$i\in A^{c}(Q)$ . This completes the proof of (1); (2)
follows easily. I

Lemma 3.2 Let $Q$ be a $V_{r}$ by $V_{c}$ matrix, $i\in V_{r}$

and $j\in V_{c}$ . Now let $Q’$ be a matrix obtained by
changing the $(i, j)$ entry of $Q$ to $\alpha\neq Q_{i,j}$ . If $\dot{i}$

is an avoidable row of $Q$ and $j$ is an avoidable
column of $Q$ then rank $Q’>rank$ $Q$ .

Proof. Let $X$ be a basis of $M^{r}(B)$ that does not
contain $i$ and let $Y$ be a basis of $l\mathrm{t}l^{\mathrm{C}}(Q)$ that
does not contain $j$ . Thus, $Q[X, Y]$ is a maxi-
$m$al nonsingular submatrix of $Q$ . Consequently,
$Q[X\cup\{\dot{i}\}, Y\cup\{j\}]$ is singular. Now,

$\det Q’[x\cup\{\dot{i}\}, Y\cup\{j\}]$

$=\det Q[x\cup\{i\}, Y\cup\{j\}]$

$\pm(\alpha-Qij)\det Q[x, \mathrm{Y}]$

$=\pm(\alpha-Qij)\det Q[x, Y]$

$\neq 0$ .

Thus, rank $Q’\geq$ rank $Q’[X\cup\{i\}, Y\cup\{j\}]>$

rank $Q[X, Y]=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}Q$ , as required. 1

Essentially the same proof gives the following
result.

Lemma 3.3 Let $X+Q$ by a mixed matrix. If $i$ is
an avoidable row of $X+Q$ and $j$ is an avoidable
column of $X+Q$ then $X_{i,j}=0$ . I

Proof of Theorem 1.4. Since deleting a row
or a column decreases the rank of a matrix by at
most one, we easily see that

rank $Q+X\leq \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}Q[Y_{r}, \}_{C}^{r}]+|V_{r}-Y_{r}|+|l^{\gamma}\mathrm{c}-\mathrm{Y}^{\Gamma}|c$ .

Now, by Lemma 3.1,

rank $Q+X$ $\leq$ rank $(Q+X)[Y^{*}, Y^{*}rc]$

$+|V_{r}-Y_{r}*|+|\nu r_{C^{-}}Y_{c}^{*}|$ ,

moreover, each row and column of $(Q+$
$X)[Y_{r’ c}^{*}Y^{*}]$ is avoidable. Thus, from Lemma 3.2,
$X[Y_{r’ c}^{**}Y]=0$ , as required. 1

We now consider Theorem 1.6, for which re-
quire a little extra matroid theory. Let $i$ and $j$ be
distinct elements of a matroid $M$ . If neither $i$ nor
$j$ is a coloop of $M$ and $r_{M}(V-\{i,j\})<r_{M}(V)$

then we say that $i$ and ;/ are in series. It is well-
known, and easy, that series-pairs are transitive.
A series-class of $\mathrm{J},I$ is a maximal set of elements
that, pairwise, are in series.

Lemma 3.4 (Gallai’s Lemma) If $G$ is a con-
nected graph and $D(G)=V$ then $|V|$ is odd and
$2\nu(G)=|V|-1$ .

Proof. Let $T$ be the Tutte matrix of $G$ . Since
$D(G)=V,$ $l\mathrm{t}l(T)$ has no coloops. Now, for any
edge $vw$ of $G,$ $\nu(G-v-w)<\nu(G)$ . Therefore,
$v$ and $u$) are in series. Now, by transitivity and
since $G$ is connected, $l\mathfrak{l}f(T)$ has a single series-
class; namely, $V$ . Thus, for any vertex $v,$ $V-\{v\}$

is a matchable set. It follows that $|V|$ is odd and
$2\nu(G)=|V|-1$ , as required. 1

Proof of Theorem 1.6. Let $T$ be the Tutte
$\mathrm{n}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{x}$ of $G$ . Recall that $D(G)=D^{r}(T)$ . Now,
let $A:=A^{r}(T),$ $X_{r}:=D^{r}(T)$ , and $X_{c}:=V-$
$A$ . Note that $-\lambda_{r}^{-}\subseteq \mathrm{a}\mathrm{Y}_{c}$ . By Lemma 3.1, each
line of $T[_{-\chi-}r’ x_{c}]$ is avoidable. By mimicking the
proof of Lemma 3.2, we see that no indeterminate
occurs exactly once in $T[X_{r}, x_{C}]$ . Thus, by skew-
symmetry, $T[x_{r}, x_{C}-X_{r}]=0$ . That is, $A(G)\subseteq$

$A$ .
By Lemma 3.1, we deduce that rank $T=$

rank $T[V-A]+2|A|$ , and $D^{r}(\tau[V-A])=X_{r}$ .
Thus, $2\nu(G)=2\nu(G-A)+2|A|$ , and $D(G-A)=$
$X_{r}=D(G)$ . Moreover, as $-4(G)\subseteq.4$ , there
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are no edges in $G-A$ from $X_{r}$ to $X_{c}-arrow \mathrm{X}_{r}^{-}$ .
Then, since $D(G-A)=X_{r},$ $D(G[x_{r}])=X_{\Gamma}$

and $G[x_{\mathrm{C}^{-}}X_{r}]$ has a perfect matching. Using
Lemma 3.4 and the fact that $D(G[X-r])=X_{r}^{-}$ , we
see that the components of $G[Xr]$ are all odd, and
that $2\nu(c-A)=|V-A|-\mathrm{o}\mathrm{d}\mathrm{d}(G-A)$ . There-
fore, $2\nu(G)=$ ( $|V-A|$ –odd $(G-A)$ ) $+2|A|=$
$|V|-(\mathrm{o}\mathrm{d}\mathrm{d}(G-A)-|A|)$ . Now, it remains to
prove that $A=A(G)$ . Suppose not, then there
exists $a\in A$ that has no neighbours in $X_{r}$ . Thus,
the components of $G[x_{r}]$ are all components of
$G-(A-\{a\})$ , so odd $(G-(A-\{a\}))\geq \mathrm{o}\mathrm{d}\mathrm{d}(c-A)$ .
Hence, $|V|-(\mathrm{o}\mathrm{d}\mathrm{d}(G-(A-\{a\}))-|A-\{a\}|)<$

$|V|-(\mathrm{o}\mathrm{d}\mathrm{d}(G-A)-|A|)=\nu(G)$ . This is clearlv
a contradiction, and this completes the proof. 1

4 Deterministic algorithms

In this section we prove Theorems 1.7 and 1.8;
for which we require the following lemmas.

Lemma 4.1 Let $Q_{1}$ and $Q_{2}$ be $V_{r}$ by $V_{c}$ matrices
such that $Q_{1}\approx Q_{2}$ , and let $X_{r}:=D^{r}(Q_{1})$ . Then.
rank $Q_{1}[X_{r}, VC]=rankQ_{2}[X_{\Gamma}, Vc]$ .

Proof. This is an immediate corollarv of
Lemma 3.1. 1

Lemma 4.2 Let $Q+\tilde{X}$ be an evaluation of a
$V_{r}$ by $V_{c}$ mixed matrix $X+Q$ , and let $z$ be an
indeterminate in $X$ that takes the value $\tilde{z}$

$in\swarrow\overline{\mathrm{t}}^{\vee}$ .
Then, there exists $a\in\{1, \ldots, |V_{r}|+1\}-\{\tilde{z}\}$ such
that $Q+\tilde{X}(zarrow a)\succeq Q+\tilde{X}$ .

Proof. Consider any nonsingular submatrix $Q’+$
$\tilde{X}’$ of $Q+\overline{X}$ . The determinant of $Q’+\tilde{X}^{-\prime}(\approxarrow a)$

is a nonzero linear function in $a,$ and, hence. has
exactly one root. Consequently, for any subnla-
trix $Q’+\tilde{X}^{J}$ of $Q+\tilde{X}$ , we have rank $Q’+\tilde{X}’(\mathcal{Z}arrow$

$a)\geq \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}Q’+\tilde{X}’\mathrm{f}\mathrm{o}\Gamma$ all but at most one choice
$\mathrm{o}\mathrm{f}a$ .

Let $\tilde{X}_{a}$ denote $\tilde{X}(zarrow a)$ . Suppose that
rank $Q+\tilde{X}=|V_{r}|$ . Then $D^{r}(Q+\swarrow\tilde{\mathrm{Y}})=\emptyset$ , so,
$Q+\tilde{X}_{a}\succ Q+\tilde{X}$ if and only if rank $Q+arrow\hat{\mathrm{Y}}_{a}\geq$

rank $Q+\tilde{X}^{\vee}$ ; so the result holds. Now suppose
that rank $Q+\tilde{X}<|V_{r}|$ . Then, $Q+\hat{X}_{a}^{-}\succeq Q+_{-\hat{\chi}^{-}}$

if and only if rank $(Q+\overline{X}_{a})[\mathrm{f}^{\prime_{r}}-\{i\}, l_{c}^{r}]$ $\geq$

rank $(Q+arrow\tilde{\mathrm{Y}})[V_{r}-\{i\}, \mathrm{f}_{c}^{\Gamma}\text{ノ}]$ for all $\dot{i}\in V_{r}$ . If the in-
determinate $z$ is in row $j$ of $X$ then $(Q+-\tilde{\mathrm{Y}}^{-}a)[\mathrm{T}_{\Gamma^{-}}^{r}$

$\{j\},$ $V_{c}]=(Q+\tilde{X})[V_{r}-\{j\}, V_{c}]$ ; for each of the

$|V_{r}|-1$ other rows, the rank condition excludes at
most one possible value for $a$ . $\mathrm{N}\mathrm{e}\mathrm{V}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{l}\mathrm{e}_{*\Re}$ . t,his

leaves some choice for $a\in\{1, \ldots, |V_{r}|+1\}-\{\tilde{z}\}$

such that $Q+\tilde{X}_{a}^{\vee}\succeq Q+\tilde{X}$ . 1

Lemma 4.3 Let $Q+_{\sim}\overline{\mathrm{X}}^{-}$ be an evaluation of a $V_{r}$

by $V_{c}$ mixed matrix $Q+X,$ let $\mathrm{Y}_{r}^{r}:=D^{r}(Q+\tilde{X})$

and let $l_{c}’:=V_{c}-A^{c}(Q+\tilde{X})$ . If there exists
an indeterminate $z$ in $X[l_{r}’, Y_{C}]$ , then there exists
$a\in\{1, \ldots, |V_{r}|+1\}$ such that $Q+\tilde{X}(zarrow a)\succ$

$Q+\tilde{X}$ .

Proof. Suppose that $z$ takes the value $\tilde{z}$ in $\tilde{X}$ . By
Lemma 4.2, there exists $a\in\{1, \ldots, |V_{c}|+1\}-\{\underline{\tilde{z}}\}$

such that $Q+\tilde{X}(zarrow a)\succeq Q+\tilde{X}$ . Let $X_{a}$

denote $X^{\tilde{-}}(zarrow a)$ . We may assume that $Q+\tilde{X}_{a}\approx$

$Q+arrow\tilde{\lambda}’$ . By Theorem 3.1, $D^{r}((Q+\tilde{X})[Y_{r’ C}V])=$

$Y_{r}$ and $D_{c}((Q+-\tilde{K})[Y_{r’ C}V])=Y_{c}$ . Therefore, by
Lemma

$3.2\mathrm{c}’ \mathrm{o}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}\mathrm{d}(Q+\tilde{X}_{a})[\}^{\Gamma}r’ VC]$

.
$>$ rank

$(Q\backslash +\mathrm{I}$

$\tilde{X})[l_{r}^{r}, V_{C}]$ ; contradicting Lemma 4.1.

Proof of Theorem 1.7. Let $\}_{r}’:=D^{r}(Q+$
$\tilde{X})$ and $Y_{c}:=V_{c}-A^{c}(Q+\tilde{X}),$ alld suppose
that we cannot $\mathrm{i}\mathrm{m}\mathrm{I}$) $\mathrm{r}\mathrm{o}\mathrm{v}\mathrm{e}$ the independence of
$Q+\wedge\tilde{\chi}^{\vee}$ by such perturbations. Therefore, by
Lemnua 4.3, $X[l’Y_{c}]\mathrm{r}’=0$ . Thus, rank $Q+X\leq$

rank $Q[l_{r}^{r}, Y_{C}]+|V_{1}$. $-l_{r}^{r}|+|\iota_{/-}^{r}CY_{c}|$ . However,
by Lenlma 3.1, rank $Q+-\tilde{\chi}^{-}=$ rank $Q[Y_{r}, Y_{c}]+$

$|l^{r_{r}}-l_{r}^{r}|+|\mathrm{T}_{c}^{r}-Y_{c}|$ $\geq$ rank $Q+X$ . Thus
rank $Q+arrow\tilde{\mathrm{X}}^{-}=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}Q+X^{-}$ as required. 1

Now consider Theorem 1.8. We omit the proof
of the following Lemma, which is essentially the
same as the proof of Lemma 4.2.

Lemma 4.4 Let $\tilde{T}$ be an evaluation of a $V$ by $V$

Tutte matrix $T$ , and $let\approx be$ an indeterminate in
$T$ that takes the value $\tilde{z}$ in $\tilde{T}$ . Then, there $exiSt_{S}$

$a\in\{1, \ldots, |V|\}-\{\tilde{z}\}$ such that $\tilde{T}(zarrow a)\succeq\tilde{T}$ .

We also omit the proof of the following Lemma,
which is essentially the same as the proof of
Lemma 4.3.

Lemma 4.5 Let $T$ be the Tutte matrix of a graph
$G=(V_{\}}E)$ . let $\tilde{T}$ be an evaluation of $T$ , let $Y_{r}$ $:=$

$D^{r}(\tilde{T})$ and let $Y_{c}:=l_{C^{-}}^{r}.4^{C}(\tilde{T})$ . If there exists
an edge $\epsilon=xy\in E$ stlch that $x\in\}_{r}’$ and $y\in$

$\mathrm{Y}_{C}^{r}-Y_{r}$ , then there exists $a\in\{1, ..., |V|\}$ such
that $\dot{T}(z_{\mathrm{e}}arrow a)\succ\tilde{T}$ .

Lemma 4.6 Let $T$ be the Tutte matrix of a graph
$G=(V, E)$ . let $\tilde{T}$ be an evaluation of $T$ , and let
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$Y_{r}:=D^{r}(\tilde{T})$ . If there $ex\dot{i}St_{S}$ an edge $\epsilon=xy\in E$

such that $x,$ $y\in Y_{r}$ and $x$ and $y$ are in different
series classes of $M(\tilde{T}[Y_{r}, V])$ then there exists $a\in$

$\{1, \ldots, |V|\}$ such that $\tilde{T}(z_{\mathrm{e}}arrow a)\succ\tilde{T}$ .

Proof. Let $Y_{c}:=V_{c}-A^{C}(\tilde{T})$ , and suppose that
$z_{e}$ takes the value $\tilde{z}_{\mathrm{e}}$ in $\tilde{T}$ . By Lemma 4.4,
there exists $a\in\{1, \ldots, |V|\}-\{\tilde{z}_{\mathrm{e}}\}$ such that
$\tilde{T}(z_{e}arrow a)\succeq\tilde{T}$ . Let $\tilde{T}_{a}$ denote $\tilde{T}(zarrow a)$ .
We may assume that $\tilde{T}_{a}$

$\approx$
$\tilde{T}$ . Note that

$x,$ $y\in$ $Y_{r}$ and $Y_{r}$ $\subseteq$ $Y_{c}$ . By Theorem 3.1,
$D^{r}(\tilde{T}[Yr’ V])=Y_{r}$ and, since $x$ and $y$ are not
in series in $M(\tilde{T}[Y_{r}, V]),$ $x$ is an avoidable col-
umn of $\tilde{T}[l_{\Gamma}^{r}, V-\{y\}]$ . Therefore, by Lemma 3.2.
rank $\tilde{T}_{a}[Y_{r}, V-\{y\}]>\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}\tilde{T}Yr’ V-\{y\}]$ . How-
ever, rank $\tilde{T}[Y_{r}, V-\{y\}]=$ rank $\tilde{T}[Y_{r}, l\text{ノ}]r$ , so
rank $\tilde{T}_{a}[Y_{r}, V_{c}]>$ rank $\tilde{T}[\mathrm{Y}_{r}, V_{C}]$ ; contradicting
Lemma 4.1. 1

Proof of Theorem 1.8. Let $A:=A^{c}(\tilde{T}),$ $l’,$. $:=$

$D^{r}(\tilde{T})$ and $Y_{c}:=V-A$ ; and suppose that we can-
not improve the independence of $\tilde{T}$ by such $\mathrm{I}$) $\mathrm{e}\Gamma-$

turbations. Therefore, by Lemma 4.5, $T[l_{r’ c}’l’-$

$Y_{r}]=0$ . Thus rank $\tilde{T}[\mathrm{Y}_{r}, Y_{c}]=$ rank $\tilde{T}[l_{\Gamma}^{r}]$ .
Moreover, by Lemma 4.6, for each edge $xy$ of
$G[Y_{r}],$ $x$ and $y$ are in series in $M(\tilde{T}[Y_{r}, V])$ . The
elements of $A$ are coloops of $M(\tilde{T}[Y_{\Gamma}, V])$ and
the elements in $Y_{c}-Y_{r}$ are loops of $\mathbb{J}t(\check{T}Yr’\eta)$ .
Therefore, for each edge $xy$ of $G[Y_{r}],$ $X$ and $y$ are
in series in $M(\tilde{T}[Yr])$ . Hence, by the transitivity
of series-pairs, the series-classes of $M(\tilde{T}[Y_{r}])$ are
determined by the components of $G[Y_{r}]$ . Conse-
quently, rank $\tilde{T}[Y_{r}]=|Y_{r}|$ -odd $(G[l_{r}^{r}])$ . Now. by
Lemma 3.1,

rank $\tilde{T}=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}\tilde{\tau}[Y_{r’ C}Y]+|V-Y_{r}|+|V-Y_{C}|$

$=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}\tilde{T}[Y]r+|V-Y_{r}|+|A|$

$=(|Y_{r}|$ –odd $(G[Y_{r}])+|\mathrm{T}’/-1_{r}^{r}|+|A|$

.. $\geq$ ( $|Y_{r}|$ –odd $(G-A)$ ) $+|V-Y_{r}|+|.4|$

$=|V|-(\mathrm{o}\mathrm{d}\mathrm{d}(G-A\mathrm{I}-|A|)$

$\geq \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}T$ .

Hence, rank $\tilde{T}=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}T$ , as required. 1
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