
Cost optimal parallel algorithms
for P-complete problems

Akihiro FUJIWARA1 , Michiko INOUE2 and Toshimitsu MASUZAWA2
1Department of Computer Science and Electronics,

Kyushu Institute of Technology
680-4 Kawazu, Iizuka, Fukuoka, 820-8501, Japan

fuj iwara@cse.kyutech.ac. jp

2 Graduate School of Information Science,
Nara Institute of Science and Technology

8916-5.’ Takayama, Ikoma, 630-0101, Japan
{kounoe, $\mathrm{m}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{z}\mathrm{a}\mathrm{w}\mathrm{a}$} $@\mathrm{i}\mathrm{s}.\mathrm{a}\mathrm{i}\mathrm{S}\mathrm{t}-\mathrm{n}\mathrm{a}\mathrm{r}\mathrm{a}.\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}$

Abstract: In this paper, we consider parallelizability of two P-complete problems, the
convex layers problem and the lexicographically first maximal 3 sums problem. For the convex
layers problem, we first introduce a parameter which indicates parallelizability of the problem.
We prove P-completeness of the problem and propose a cost optimal parallel algorithm
according to the parameter. For the lexicographically first maximal 3 sums problem, we
prove P-completeness of the problem, and propose two cost optimal parallel algorithms for
the problem and a related problem. The above results show that some P-complete problems
have efficient cost optimal parallel algorithms.

Keywords: parallel algorithms, P-completeness, convex layers, lexicographically first max-
imal 3 sums.

1 Introduction

In parallel computation theory, one of primary
complexity classes is the class NC . Let n be
the input size of a problem. The problem is in
the class NC if there exists an algorithm which
solves the problem in $T(n)$ time using $P(n)$ pro-
cessors where $T(n)$ and $P(n)$ are polylogarith-
mic and polynomial functions for n , respectively.
The problem in the class NC are regarded as ef-
ficiently solvable by parallel algorithms. Many
problems in the class P. which is the class of prob-
lems solvable in polynomial time sequentially. are
shown to be in the class NC .

On the other hand, some problems in the class
P seem to have no parallel $\mathrm{a}1_{\mathrm{b}}\sigma \mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}$ which runs
in polylogarithmic time using a polynomial num-
ber of processors. Such problems are called P-
complete. A problem is P-complete if the problem
is in the class P and we can reduce any problem
in P to the problem using NC-reduction. Al-
though there are some efficient probabilistic par-
allel algorithms for some P-complete problems.
it is believed that the P-complete problems are
inherently sequential and hard to be parallelized.

However polylogarithmic time complexity is
not so important for real parallel computation.

The polylogarithmic time complexity $O((\log n)^{k})$

needs at least $\frac{T_{s}(n)}{(\log n)^{k}}$ processors, where $T_{s}(n)$ is
sequential time complexity for the same problem
and usually greater than n . This fact implies
that more than $n^{1-\epsilon}$ processors are needed for
the polylogarithmic time complexity, where ϵ is a
constant which satisfies $0<\epsilon<1$. On the other
hand, the number of processor p for real paral-
lel computation is independent of the size n and
$p<<n$. This fact implies that p is smaller than
$n^{1-\epsilon}$ in most cases and is inconsistent with the
polylogarithmic time complexity.

In consequence. cost optimality for $p<<n$
is the most important measure for parallel algo-
rithms in practice. The cost of a parallel algo-
rithm is defined as the product of running time
and the number of processors of the algorithm.
A parallel algorithm is cost optimal if its cost is
asymptotically equal to the lower bound of se-
quential time complexity for the same problem.
In other words, the cost optimal parallel algo-
rithm achieves optimal speedup, which is asymp-
totically equal to the number of processors.

Therefore one way to practically parallelize a
P-complete problem is to find a cost optimal par-
allel algorithm which runs in polynomial time.
Let $\Omega(n^{k})$ be the lower bound of sequential time

数理解析研究所講究録
1185巻 2001年 53-62 53

complexity for a P-complete problem A . It seems
that the problem A has no parallel algorithm
which runs in polylogarithmic time since A is P-
complete. However, the problem A may have a
parallel algorithm which runs in $O(n^{k\epsilon}-)$ time us-
ing n^{ϵ} processors where $0<\epsilon<k$. Since the
parallel algorithm is cost optimal, the algorithm
probably achieves optimal speedup for $p<<n$.
In this paper, we call P-complete problems par-
allelizable if the problem has a cost optimal par-
allel $\mathrm{a}1_{\mathrm{b}}\sigma \mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}$ whose number of processors is an
increasing function of the input size, and aim to
show some P-complete problems are paralleliz-
able.

Among many P-complete problems, only some
graph problems are known to be parallelizable.
Vitter and Simons[11] showed that the unifica-
tion, path system accessibility. monotone circuit
value and ordered depth-first search problems
have cost optimal parallel algorithms if their in-
put graphs are dense graphs, that is, the number
of edges is $m=\Omega(n^{1+\epsilon})$ for a constant $\epsilon>0$

where the number of vertices is n . For exam-
ple, they showed that the monotone circuit value
problem can be solved in $O(\frac{m}{p}+n)$ time using p

processors on the common CRCW PRAM. The
time complexity becomes $O(\frac{n^{2}}{p})$ if $m=\ominus(n^{2})$

and $p<n$, then the algorithm achieves cost op-
timality.

In this paper, we consider parallelizability of
two P-complete problems. First we consider a

convex layers problem. The convex layers is a ge-
ometric problem and closely relates to the other
layering problems, such as a visibility layers prob-
lem. Dessmark et $\mathrm{a}\mathrm{i}.[5]$ proved that the problem
is P-complete, and $\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{Z}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{e}[1]$ proposed an opti-
mal sequential algorithm which runs in $O(n\log n)$

time. where n is the input size of the problem.
We introduce a parameter d to the problem so
that it restricts positions of input points: the in-
put points are on d horizontal lines. We show
that the parameter indicates parallelizability of
the problem. For the parameterized convex lay-
ers problem, we prove that the problem is still
P-complete if $d=n^{\epsilon}$ with $0<\epsilon$ <1 . Next
we propose a parallel algorithm which runs in
$O(\frac{n\log n}{p}+\frac{d^{2}}{p}+d\log d)$ time using p processors
$(1 \leq p\leq d)$ on the EREW PRAM. From the
complexity, the problem is in NC if $d=(\log n)^{k}$

where k is a positive constant, and has a cost op-

timal parallel algorithm if $d=n^{\epsilon}$ with $0< \epsilon\leq\frac{1}{2}$

for $1\leq p\leq n^{\epsilon}$. We also consider complexity of
the $\mathrm{a}1_{\mathrm{t}\supset}\sigma_{\mathrm{o}\mathrm{r}}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}$ in case that all inputs are sorted,
and show the complexity achieves similar cost op-
timality.

The second P-complete problem is a lexico-
graphically first maximal 3 sums problem, which
is a problem to compute a lexicographically
first maximal set of sequences of 3 integers.
$\{(a_{0,0}b, c\mathrm{o}\mathrm{I}, (a_{1}.b_{1}, C_{1}), \ldots, (a_{m-1}, b_{m-1}, C_{m-1})\}$

which satisfy $a_{i}+b_{i}+c_{\iota}=0$ for all $i(0\leq$

$i\leq m-1)$. from a given set of integers. We
prove the problem is also P-complete by reduc-
ing a lexicographically first maximal independent
set problem, which is a graph problem known as
$P_{- \mathrm{c}\mathrm{o}}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{t}\mathrm{e}[10]$. Next we propose a parallel al-
gorithm. which runs in $O(\frac{n^{2}}{p}+n\log n)$ using p

processors $(1 \leq p\leq n)$ on the CREW PRAM.
for the problem. In addition, we propose a par-
allel algorithm for a related P-complete prob-
lem. which is a lexicographically first maximal set
of 3 arguments problem. The algorithm runs in
$O(\frac{n^{3}}{p}+n\log n)$ time for $1\leq p\leq n^{2}$ on the CREW
PRAM. The above two algorithms are cost opti-
mal for $1 \leq p\leq\frac{n}{\log n}$ and $1 \leq p\leq\frac{n^{2}}{\log n}$, respec-
tively. These results show that some P-complete
problems have efficient cost optimal parallel algo-
rithms.

2 Preliminaries

2.1 Definition of P-completeness

In this subsection, we describe a brief definition
of P-completeness. (For details of precise defini-
tions of P-completeness, see [8].)

Let n be the input size of a problem. The
problem is in the class P if there exists a se-
quential algorithm which solves the problem in
$t(.n)$ time where $t(n)$ is a polynomial function for
n . The class P is a well known class which de-
notes sequential efficiency. An analogous class
of efficiency for parallel computation is the class
NC . A problem is in the class NC if there exists
an algorithm which solves the problem in $T(n)$

time using $P(n)$ processors, and $T(n)$ and $P(n)$

are polylogarithmic and polynomial functions for
n , respectively. Using the above classes, the P-
completeness is defined as follows.

Definition 1 (P-complete problem) A prob-

54

$lemQ$ is P -complete if the following two condi-
tions are satisfied.
(1) Q is in P .

(2) For every problem S in $P,$ S is NC-reducible
to Q . \square

From the above definition, we can prove P-
completeness of a problem if we can reduce a
known P-complete problem to the problem using
NC-reduction.

3 Parameterized convex layers

3.1 Definitions

First we give some definitions for the convex lay-
ers.

Definition 2 (Convex layers) Let S be a set
of n points in the Euclidean plane. The convex
layers is a problem to compute a set of convex
hulls, $\{CH_{0}, cH1, , . . , cH_{m}-1\}$, which satisfies
the following two conditions.

(1) $CH_{0}\cup CH_{1}\cup\ldots\cup CH_{m-1}=s$.

(2) Each $CH_{i}(0\leq i\leq m-1)$ is a convex hull of
a set of points

$S-(CH0\cup CH1\cup\ldots\cup cH_{i-1})\square$
.

Dessmark et $\mathrm{a}1.[5]$ proved P-completeness of
the convex layers problem, and $\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{Z}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{e}[1]$ pro-
posed a sequential algorithm which runs in
$O(n\log n)$ time. The time complexity is opti-
mal because computation of a convex hull, which
is the first hull of the convex layers, requires
$\Omega(n\log n)$ time [12].

In this paper, we introduce a parameter d for
the problem. and restrict its input points on d

horizontal lines.

Definition 3 (Convex layers for d lines)
The convex layers for d lines is a convex layers
problem whose input points are on d horizontal
lines. \square

The parameter d is at most n if there is no
restrictions for positions of input points. In the
following, $CL(d)$ denotes the convex layers for d

lines problem. We can solve the problem sequen-
tially in $O(n\log n)$ time using the $\mathrm{a}_{\mathrm{o}\mathrm{r}}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}[1]$.

The above two convex layers problems are il-
lustrated in Figure 1.

(a) (b)

Figure 1: Convex layers problems: (a) convex
layers, and (b) $\mathrm{C}\mathrm{L}(6)$.

3.2 P-completeness of $CL(d)$

In this subsection, we discuss relationship be-
tween P-completeness and the parameter d . First
we prove the problem $CL(d)$ is P-complete if
$d=n^{\epsilon}$ with $0<\epsilon\leq 1$. We prove the P-
completeness by NC-reduction from the original
convex layers problem.

Theorem 1 The problem $CL(n^{\epsilon})$ with $0<\epsilon\leq 1$

is P-complete.

(Proof) It is obvious that $CL(n^{\epsilon})$ is in P be-
cause the problem has an $O(n\log n)$ time se-
quential algorithm. If $\epsilon=1$, the $CL(n^{\epsilon})$ is the
original convex layers problem, which.is proved
to be P-complete. Thus, we consider the case
that $0<\epsilon<1$ in the following. Let $U_{0}=$

$\{u_{0}, u_{1}, \ldots, un-1\}$ be input points of the convex
layers problem in the Euclidean plain. . We as-
sume that $u_{N}=(x_{N}, y_{N})$ and $u_{S}=(x_{S}, y_{S})$ are
points which have the largest and the smallest
y-coordinates in U_{0} , and also assume that $u_{E}=$

(x_{E}, y_{E}) and $u_{W}=(x_{W}, y_{W})$ are points which
have the largest and the smallest x-coordinates
in U_{0} , respectively.

First we add 4 points to the input. The points
are U_{1} $=$ $\{u_{NW}, u_{N}E, uSE, usW\}=\{(x_{W}$ -

1, $y_{N}+2$), $(x_{E}+1, y_{N}+1),$ $(x_{E}+1, y_{S}-2)$,
$(x_{W}-1, ys-1)\}$. (These 4 points form a paral-
lelogram which contains all points in $U_{0}.$) Next
we add a set of $k=(n+4)^{\frac{1}{\epsilon}}-(n+4)$ points
which are on a line $y=y_{N}+2$, that is, $U_{2}=$

$\{(x_{0}’, y_{N}+2), (x_{1}’, y_{N}+2), \ldots, (x_{k-1}’, yN+2)\}$ so
that $x_{W}-1<x_{0}’<x_{1}’<\ldots<x_{k-1}’<x_{E}+1$.
(Since $0<\epsilon<1,$ $k>0$ holds.) These added
points are illustrated in Figure 2. .. \cdot ,

55

$\mathrm{U}_{1}=$ { $\mathrm{u}\mathrm{N}\mathrm{W}’ \mathrm{u}\mathrm{N}\mathrm{E}’$ usE’ $\mathfrak{U}\mathrm{S}\mathrm{w}$}

Figure 2: Points in $U_{0},$ U_{1} and U_{2} .

We give a set of points $U_{0}\cup U_{1}\cup U_{2}$ as input
points for $CL(d)$. The size of the input is $n+4+$
$(n+4)^{\frac{1}{\epsilon}}-(n+4)=(n+4)^{\frac{1}{\epsilon}}$ and the number of
horizontal lines is $d=n+4$. Therefore, by letting
$m=(n+4)^{\frac{1}{\epsilon}}$, the problem becomes $CL(m^{\epsilon})$ with
$0<\epsilon<1$.

The result of $CL(m^{\epsilon})$ are convex hulls, and
the outmost convex hull consists of all points in
$U_{1}\cup U_{2}$. Thus, after peering the outmost convex
hull of the results, the remaining convex hulls are
equal to the result of the original convex layers.
Since m is a polynomial function of n , all of the
above steps can be done using NC-reduction. \square

In the next subsection, we propose a cost op-
timal algorithm for $CL(d)$. Using the algorithm,
we prove that $CL((\log n)^{k})$ is in NC where k is
an arbitrary positive constant.

3.3 A cost optimal parallel algorithm
for $CL(d)$

The basic idea of the cost optimal parallel algo-
rithm for $CL(d)$ is as follows. We assume that
input points are on lines $\{l_{0}, l_{1}, \ldots, l_{d-}1\}$ and a
line l_{i} is above l_{i+1} for each $\dot{i}(0\leq\dot{i}\leq d-2)$.
First we compute a set of points on each line and
store the points in a double-ended queue in order
of x coordinates for each line. (The double-ended
queue is a queue which allows insertion and dele-
tion at both ends.) Next we compute the outmost
convex hull. The outmost convex hull consists of
the following points.

(a) All points on lines l_{0} and l_{d-1} .

(b) A subset of the leftmost and the rightmost
points on lines $l_{1},$ $l_{2},$

$\ldots,$
$l_{d2}-\cdot$

We can compute points included in (b) in par-
allel for each line in $O(1)$ time because points
on each line are stored in a double-ended queue.
Since obtained points are sorted in order of y co-
ordinates, we can compute the outmost convex
hull of the points using a cost optimal parallel
$\mathrm{a}_{\mathrm{o}\mathrm{r}\mathrm{i}}\mathrm{t}\mathrm{h}\mathrm{m}[2,3]$ which computes a convex hull for
sorted points. We repeat the above computation,
after peering the outmost convex hull, until no
point remains. The number of convex hulls are
at most $\lceil\frac{d}{2}\rceil$ because the top and bottom lines
are removed by peering the outmost convex hull.
Therefore the number of repetition is also at most

$\mathrm{r}\frac{d}{2}\rceil$.
We summarize the overall algorithm in the fol-

lowing.

Algorithm for computing $CL(d)$

Input: A set of points $\{u_{0}, u_{1,\ldots\prime}.un-1\}$ on
horizontal lines $\{l_{0}, l_{1}, \ldots, l_{d-}1\}$.

Step 1: Set variables TOP $=0$ and $BOT=$
$d-1$. (l_{TOP} and l_{BOT} denote the top and
bottom lines respectively.) Compute a set of
points on each line $l_{i}(0\leq\dot{i}\leq d-1)$, and
store them in a double-ended queue Q_{i} in
order of x coordinates.

Step 2: For each line l_{i} (TOP $\leq\dot{i}\leq BOT$),
compute the leftmost point u_{left}^{i} and the
rightmost point $u_{riht}^{i}g$.

Step 3: Let $U_{lef^{t}}$ and U_{right} denote sets of points
$\{u_{lef^{P}’ fe}^{\tau O}u^{TO},., u\}tletlP+1..BO\tau ft$

and $\{u_{ri_{\mathit{9}^{h}}}^{ToPT}uu^{B}\}t’ ri\mathit{9}h^{+}t’ rOP1\ldots,gio\tau ht$ respectively.
Compute a left hull of U_{left} and a $\mathrm{r}\mathrm{i}_{\mathrm{b}}\sigma \mathrm{h}\mathrm{t}$ hull
of U_{right} , and store the obtained points on
each hull in $CH_{lef^{t}}$ and $CH_{rigt}h$, respec-
tively. (The left hull of U_{left} consists of
points on a convex hull of $U_{lef^{t}}$, which are
from $u_{left}^{Bo}T$ to $u_{left}^{\tau}OP$ in clockwise order. The
right hull of U_{right} is defined similarly.)

Step 4: Remove points in $Q_{TOP},$ Q_{BOT} . CH_{left}

and $CH_{rigt}h$ as the outmost convex hull.

Step 5 Compute the top and bottom lines on
which there remains at least one point. Set
TOP and BOT to obtained top and bottom
lines respectively.

56

Step 6: Repeat Steps 2, 3, 4 and 5 until no point
remains.

We discuss complexities of the above parallel
algorithm on the EREW PRAM. We use at most
p processor $(1 \leq p\leq d)$ in the algorithm except
for Step 1.

Step 1 takes $O(\frac{n\log n}{p}+\log n)$ using Cole’s
merge $\mathrm{s}\mathrm{o}\mathrm{r}\mathrm{t}[4]$ and primitive operations, and Step
2 takes $O(\frac{d}{p})$ time obviously. We can compute the
left and right hulls in Step 3 using a known paral-
lel $\mathrm{a}_{\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}}\mathrm{h}\mathrm{m}[2,3]$ for computing a convex hull of
sorted points. The $\mathrm{a}1_{\mathrm{o}^{\mathrm{O}}}\sigma \mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}$ runs in $O(\frac{d}{p}+\log d)$

time for each hull. Step 4 takes $O(\frac{d}{p})$ time to re-
move the points. (Points in $Q_{TOP},$ Q_{BOT} are au-
tomatically removed by changing TOP and BOT

in Step 5.) We can compute the top and bottom
lines in Step 5 in $O(\frac{d}{p}+\log d)$ time using a basic
parallel algorithm computing the maximum and
the minimum. As we described above, the num-
ber of the repetition of Step 6 is $\lceil\frac{d}{2}\rceil$. Therefore
we can compute $CL(d)$ in $O(\frac{n\log n}{p}+\log n+(\frac{d}{p}+$

$\log d)\mathrm{X}\lceil\frac{d}{2}\rceil)=O(\frac{n\log n}{p}+\frac{d^{2}}{p}+d\log d)$, and obtain
the following theorem.

because $\frac{n\log n}{p}\geq n^{1-\epsilon}\log n\geq n^{\epsilon}\log n$. Therefore
we can obtain a cost optimal parallel algorithm
for $CL(n^{\epsilon})$.

Corollary 2 We solve $CL(n^{\epsilon})$ with $0< \epsilon\leq\frac{1}{2}$

in $O(\frac{n\log n}{p})$ time using p processors
$(1 \leq p\leq n^{\epsilon})\coprod$

on the EREW PRAM.

Finally we notice that Stepl runs in $O(\frac{n}{p})$ time
if all points on each line are known and sorted in
order of x coordinates. In this case, we can solve
$CL(d)$ efficiently. We call the problem $CLS(d)$

(convex layers for sorted points on d lines). From
the above discussion, we can solve the $CLS(d)$ se-
quentially and in parallel with the following com-
plexities. (Both complexities are optimal.)

Corollary 3 We can solve $CLS(n^{\epsilon})$ with $0<$
$\epsilon<\frac{1}{2}$ in $O(n)$ time sequentially, and in $O(\frac{n}{p})$

time using p processors $(1 \leq p\leq n^{\epsilon})$ on the
EREW PRAM. \square

4 Lexicographically first maxi-
mal 3 sums

Theorem 2We solve $CL(d) \dot{i}nO(\frac{n\log n}{p}+\underline{d^{2}}+$

$d\log d)t_{i}meuSingpproceSsorS(\mathit{1}\leq p\leq df_{on}$

the EREW PRAM. \square

4.1 Definitions

We first define the maximal 3 sums problem as
follows.

We show that the class of the problem $\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{n}_{b}^{\sigma}\mathrm{e}\mathrm{S}$

according to the number of lines d . First we
consider the case of $d=(\log n)k$ where k is a
positive constant. The complexity is $O(\frac{n\log n}{p}+$

$(\log n)k\log\log n)$ in the case. If we use n

processors in Step 1, the complexity becomes
O ($(\log n)k$ log log n). Consequently, we obtain the
following corollary.

Corollary 1 We solve $CL((\log n)^{k})$, where k is
a positive constant, in O ($(\log n)^{k}$ log log n) time
using n processors on the EREW PRAM, that

$iS\square$
’

$CL((\log n)^{k})$ is in NC .

Next we consider the time complexity in case
of $d=n^{\epsilon}$ where $0<\epsilon<1$. The complexity is
$O(\frac{n\log n}{p}+\frac{n^{2\epsilon}}{p}+n^{\epsilon}1_{0_{\circ}^{\sigma}}n)$ in the case. In addition
to this, we assume that $\epsilon\leq\frac{1}{2}$ and $p\leq d=n^{\epsilon}$.
Under the assumption, $\frac{n\log n}{p}\geq\frac{n^{2\epsilon}}{p}$ holds because
$n\log n>n\geq n^{2\epsilon}$, and $\frac{n\log n}{p}>n^{\epsilon}\log n$ holds

Definition 4 (Maximal 3 sums) Let I be a
set of n distinct integers. The maximal 3 sums
is a problem to compute the set of sequences of
3 integers $M3S=\{(a_{0,0}b, c\mathrm{o}),$ (a_{1}, b_{1}, C_{1}) , . . .,
$(a_{m-1,-1,1}bmCm-)\}$, which satisfies the following
three conditions.

1. The set S $=$

$\{a0, b0, C0, a1, b1, C_{1}, \ldots, am-1, bm-1, c_{m}-1\}\dot{i}S$

a subset of I .

2. For each $(a_{i}, b_{i}, \mathrm{q})(0\leq i\leq m-1),$ $a_{i}+b_{i}+$

$c_{i}=0$.

3. There is no sequence of three integers
$(a’, b’, c’)$ which satisfies a’, $b’,$ $c’\in I-S$ and
$a’+b’+C’=0$. \square

Note that solution of the maximal 3 sums
is not unique. For example, let I $=$

$\{-10, -9, -2, \mathrm{o}, 9,10,11,12\}$ be an input for the

57

maximal 3
sums. Then both of $\{(-10, -2,12), (-9,0,9)\}$,
$\{(-10, \mathrm{o}, 10), (-9, -2,11))\}$ are solutions for the
problem.

The lexicographically first maximal 3 sums
problem is a modified maximal 3 sums problem
so as to have the unique solution. Let $A=$
$(a_{0}, a_{1,\ldots-1}a_{m})$ and $B=(b_{0,1,\ldots,-1}bb_{m})$ be
two sequences of m numbers. We call that A is
lexicographically less than B if $a_{0}<b_{0}$, or there
exists an integer $\iota(1\leq\dot{i}\leq m-1)$ such that
$a_{j}=b_{j}$ for all $j(0\leq j\leq\dot{i}-1)$ and $a_{i}<b_{i}$. We
call that A is the lexicographically first among a
set of sequences if A is less than all of the other
sequences in the set.

Definition 5 (Lexicographically first max-
imal 3 sums $(\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}))$ Let I be a set of n

distinct integers. The lexicographically first $\max-$

imal 3 sums is a problem to compute the set of
sequences of 3 integers $LFM3S=\{(a_{0}, b_{0,0}C)$,
$(a_{1}, b_{1,1}C),$

$\ldots,$
$(a_{m-1,m-}b1, C_{m}-1)\}$, which satis-

fies the following two conditions.

1. The $LFM3S\dot{i}S$ a solution of the maximal 3
sums for I .

2. Let s_{i} $=$ { $a_{i,i,}b$ c } $(0\leq\dot{i} \leq m-1)$.
z

Then, $(a_{i}, b_{\mathrm{i}}, C_{i})$ is the lexicographically first
sequence of 3 integers which satisfies $a_{i}+b_{i}+$

$c_{i}=0$ for $I-(s0^{\cup}s_{1^{\cup}}\ldots\cup s_{i-1})$. \square

.

We can compute $\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$ sequentially by the
following algorithm for a set of distinct integers
I.

(1) Repeat the following substeps until no set of
3 integers is found in (1-1).

(1-1) Find a sequence of 3 integers (a, b, c) which
satisfies the following two conditions.

(a) $a,$ $b,$ c are elements in I which satisfy $a+$

$b+c=0$.
(b) (a, b, c) is the lexicographically first se-

quence among all sequences which sat-
isfy (a).

(1-2) Output the sequence (a, b, c) as a solution,
and remove $a,$ $b,$ c from I , whenever they ex-
ist.

In case of the
above example, $\{(-10, -2,12), (-9,0,9)\}$ is the
unique solution of $\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$ for I .

4.2 P-completeness of $\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$

We show reduction from the lexicographically first
maximal independent set (LFMIS) problem to

$\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$. The LFMIS is a well known P-complete
$\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{m}[10]$: Let $G=(V, E)$ be an input graph
for LFMIS. We assume that all vertices in $V=$

$\{v_{0}.v_{1}, \ldots, v_{n}-1\}$ are totally ordered, that is, v_{i} is
less than v_{j} if $\dot{i}<j$. We can compute LFMIS se-
quentially as follows. (VS is an output of LFMIS
for $G.$)

(1) Set $VS=\phi$.

(2) Repeat the following substeps until $V=\phi$.

(2-1) Compute the first vertex $v_{i}\in V$.

(2-2) Add v_{i} to VS . and remove v_{i} and its adja-
cent vertices from V , and also remove

$\mathrm{a}\mathrm{d}\mathrm{j}\mathrm{a}-\coprod$

cent edges from E .

In [10], Miyano proved the following lemma for
LFMIS.

Lemma 1 The LFMIS restricted to graphs with
degree at most 3 is P-complete. \square

Using the above lemma, we prove the following
theorem.

Theorem 3 The problem $LFM\mathit{3}S$ is P-complete.

(Proof)
It is obvious that $\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$ is in P .
First we introduce a key set of integers for

$\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$. The set is as follows.

Q $=$ $\{q_{0}, q_{1,\ldots,q_{12}}\}$

$=$ $\{-64,$ $-61,$ $-32,$ $-31,$ $-29,$ -15 . -14 ,
$-13,$ $-10,$ $-8,23,46,93\}$

We describe property of the above set Q . Let
Q be the input for $\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$. Then the solution of
$\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$ is as follows.

$\{(-64, -29,93), (-32, -14,46), (-15, -8,23)\}$

58

Next, letting $Q-\{-64\}$ be the input, the solution
becomes as follows.

(b) $LT_{2}(\dot{i},j)=[|VV(\dot{i})|+|VV(j)|,$ $|q0|+$

$|q_{3}|,$ $|VV(j)|,$ $|VV(i)|]$

$\{(-61, -32,93), (-31, -15,46), (-13, -10,23)\}$

The most important difference between the above
two solutions is that three numbers, $q_{1}=-61$,
$q_{3}=-31$ and $q_{7}=-13$, are not in the first solu-
tion but in the second solution.

We show precise reduction from LFMIS to
$\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$ using the above key set Q in the follow-
ing. Let $G=(V, E)$ with $V=\{v_{0}, v_{1}, \ldots, v_{n-}1\}$

be an input graph with $\mathrm{d}\mathrm{e}_{1\supset}\sigma \mathrm{r}\mathrm{e}\mathrm{e}$ at most 3. First
we define a vertex value $VV(\dot{i})$ for each vertex v_{i} .
The vertex value is a negative integer and defined
as $VV(i)=i-n$. Thus vertices $v0,$ $v1,$ $\ldots,$ v_{n-1}

have vertex values $-n,$ $-(n-1),$ $\ldots,$
-1 respec-

tively. Using the key set $Q=\{q0, q1, \ldots, q_{12}\}$ and
the vertex values, we define the following 4-tuples
for each vertex $v_{i}(0\leq\dot{i}\leq n-1)$ in V as inputs
for $\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$.

1. Vertex tuple for v_{i} :
$VT(\dot{i})=[VV(i), q0, VV(\dot{i}), 0]$

2. Auxiliary tuples for v_{i} :

(a) $AT_{1}(\dot{i})=[VV(\dot{i}), q_{1}, \mathrm{o}, VV(\dot{i})]$

(b) $AT_{2}(\dot{i})=[VV(\dot{i}), q2\text{ノ}.VV(\dot{i}), 0]$

(c) $AT_{3}(\dot{i})=[VV(\dot{i}), q3, \mathrm{o}, VV(i)]$

(d) $AT_{4}(i)=[VV(\dot{i}), q_{4}, \mathrm{o}, VV(\dot{i})]$

(e) $AT_{5}(\dot{i})=[VV(\dot{i}), q5, VV(i), \mathrm{o}]$

(f) $AT_{6}(i)=[VV(\dot{i}), q_{6}, \mathrm{o}, VV(\dot{i})]$

(g) $AT_{7}(\dot{i})=[VV(\dot{i}), q_{7}, \mathrm{o}, VV(\dot{i})]$

(h) $AT_{8}(\dot{i})=[VV(\dot{i}), q_{8}, VV(\dot{i}), 0]$

(i) $AT_{9}(i)=[VV(i), q_{9}, \mathrm{o}, VV(\dot{i})]$

(j) $AT_{10}(\dot{i})$ $=$

$[2*|VV(\dot{i})|, q10, |VV(\dot{i})|, |VV(\dot{i})|]$

(k) $AT_{11}(\dot{i})$ $=$

$[2*|VV(\dot{i})|, q_{11}, |VV(\dot{i})|, |VV(i)|]$

(1) $AT_{12}(i)$ $=$

$[2*|VV(i)|, q12\cdot|VV(\dot{i})|, |VV(i)|]$

3. Link tuples for v_{i} : For each adjacent ver-
tex v_{j} of v_{i} , which satisfies $i<j$. add one of
the following tuples.

(a) $LT_{1}(i,j)=[|VV(\dot{i})|+|VV(j)|,$ $|q_{0}|+$

$|q_{1}|,$ $|VV(j)|,$ $|VV(\dot{i})|]$

(c) $LT_{3}(\dot{i},j)=[|VV(\dot{i})|+|VV(j)|,$ $|q_{0}|+$

$|q_{7}|,$ $|VV(j)|,$ $|VV(\dot{i})|]$

(In case that v_{i} has only one adjacent ver-
tex v_{j} which satisfies $i<j$, add $LT_{1}(\dot{i}, j)$

for v_{j} . In case that v_{i} has the two adjacent
vertices $v_{j_{1}},$ $v_{j_{2}}$ which satisfies $\dot{i}<j_{1}<j_{2}$,
add $LT_{1}(\dot{i},j1)$ and $LT_{2}(\dot{i},j_{2})$. In case that v_{i}

has the three adjacent vertices, add all three
tuples similarly.)

The above 4-tuples have the following special
feature. Let $\{VT(\dot{i}),$ $A\tau 1(\dot{i}),$ $AT_{2()}\dot{i},$

$\ldots,$
$A\tau_{12}(\dot{i})$,

$LT_{1}(\dot{i}, S),$ $LT_{2}(\dot{i}, t),$ $LT_{3}(\dot{i}, u),$ $VT(S),$ $V\tau(t),$ $V\tau(u)\}$

be the input for $\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}^{1}$. (We assume $v_{s},$ v_{t} and
v_{u} are adjacent vertices which satisfy $i<s<t<$
$u.)$ Then the solution of $\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$ is as follows.
(We call the solution TYPE A sums.)

$\{(VT(\dot{i}), A\tau 4(\dot{i}),$ $AT12(\dot{i}))$,
$(AT_{2}(\dot{i}), A\tau 6(\dot{i}),$ ATll $(\dot{i}))$,
$(A\tau_{5(\dot{i}),T_{9(),T(\dot{i}}}A\dot{i}A10))$,

$(AT_{1}(i), V\tau(S),$ $L\tau_{1(s)}\dot{i},)$,
$(AT_{3}(\dot{i}), VT(t),$ $L\tau_{2(\dot{i}},$ $t))$,

$(AT_{7(\dot{i}}),$ $VT(u),$ $LT_{3())}\dot{i},$$u\}$

Note that vertex tuples, $VT(s)$, $VT(t)$ and
$VT(u)$, are in the sums. In other words, the above
vertex tuples are not in the remaining inputs after
the computation.

Next, we consider the solution without $VT(i)$

in the input. (We call the solution TYPE B

sums.)

$\{(AT_{1(\dot{i}}),$ $A\tau 2(i),$ $AT12(\dot{i}))$,
$(AT3(\dot{i}), A\tau 5(\dot{i}),$ $AT_{1}1(i))$,
$(AT_{7}(\dot{i}), A\tau 8(i),$ $AT10(i))\}$

In this case, the vertex tuples, $VT(s),$ $VT(t)$ and
$VT(u)$, remain in the inputs.

We give the above 4-tuples for all vertices in V

of LFMIS, and compute $\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$. Then the vertex
$v_{i}\in V$ is in the solution of LFMIS if and only if

1The sum of tuples $A=$ $[\alpha_{0}, \alpha 1, \alpha_{2}, \alpha_{3}]$ and $B=$
$[\beta 0, \beta_{1}, \beta 2\cdot\beta_{3}]$ is defined as $A+B=[\alpha_{0}+\beta 0,$ $\alpha_{1}+\beta_{1},$ $\alpha_{2}+$

$\beta_{2},$ $\alpha_{3}+\beta_{3}]$, and $A<B$ if A is lexicographically less than
B . We assume that the sum is zero if the sum of tuples is
$[0,0,0, \mathrm{o}]$.

59

there exists a sum of three 4-tuples (T_{1}, T_{2}, T_{3})

which satisfies $T_{1}=VT(\dot{i})$ in the solution of
$\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$.

In the following, we describe correctness of the
reduction briefly. Let $[\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha \mathrm{s}]$ be one of in-
put tuples. The α_{0} is a vertex value, its absolute
values or the sum of the values, and ensures that
the sums of tuples are computed for each vertex
lexicographically; that is, the sums are computed
in order of the vertex values. The α_{2} and α_{3}

are vertex values, its absolute values or 0 , and
ensures that no invalid sum is obtained. (The
invalid sum means the sum between tuples of dif-
ferent vertices except for link tuples.) Since the
α_{1} is one element of the key set Q , only TYPE A
or TYPE B sums for each vertex are obtained in
computation of $\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$.

It is easy to see that the above reduction is in
NC . Although we define that inputs of $LFM3S$
are integers, inputs of the above reduction are 4-
tuples. We can easily reduce each 4-tuple to an
integer without loss of the features. Let $2^{g}\leq n<$

2^{g+1} and $h= \max\{g, 6\}$. Then we can reduce
each 4-tuple $[\alpha 0, \alpha_{1}, \alpha_{2}, \alpha \mathrm{s}]$ to

$\alpha_{0}*2^{3(h+1)}+(\alpha_{1}-\square$

$65)*2^{2(}h+1)+\alpha_{2^{*2}}++1\mathrm{s}h\alpha$.
In addition to this, we consider P-completeness

of the following problem as generalization of
$\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$.

Definition 6 Lexicographically first maxi-
mal set of 3 arguments $(\mathrm{L}\mathrm{F}\mathrm{M}\mathrm{s}3\mathrm{A})$ Let E

be a totally ordered set of $ndist\dot{i}nCt$ elements.
The lexicographically first maximal set of 3 ar-
guments is a problem to compute the set of se-
quences of 3 elements $LFMS3A=\{(a_{0}, b_{0}, c\mathrm{o})$,
(a_{1}, b_{1}, C_{1}) , . .., $(a_{m-1}, b_{m-}1, cm-1)\}$, which sat-
isfies the following three conditions for a given
function $f(x, y, z)$ whose value is TRUE or
FALSE.

1. The set S $=$

$\{a0, b0, C_{0}, a_{1}, b_{1,1}c, \ldots, am-1, bm-1, Cm-1\}$ is

a subset of E .

Since $\mathrm{L}\mathrm{F}\mathrm{M}\mathrm{S}3\mathrm{A}$ is generalization of $\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$, we
can obtain the following corollary from Theorem
3.

Corollary 4 The problem $LFMS\mathit{3}A$ is
P-complete. \square

4.3 Cost optimal parallel algorithms

In this subsection, we propose two cost optimal
parallel algorithms for $\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$ and $\mathrm{L}\mathrm{F}\mathrm{M}\mathrm{S}3\mathrm{A}$. The
first and second algorithms run in $O(\frac{n^{2}}{p}+n\log n)$

and $O(\frac{n^{3}}{p}+n\log n)$ time using p processors, re-
spectively.

4.3.1 A parallel algorithm for $\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$

In this subsection, we consider a parallel algo-
rithm for $\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$ on the CREW PRAM. We
can propose a sequential algorithm which solves
$\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$ in $O(n^{2})$ by modifying an algorithm com-
puting the 3 sum $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{m}[7]$. (The 3 sum is a de-
cision problem which decides whether there exist
$a,$ $b,$ $c\in I$ satisfying $a+b+c=0.$) The algo-
rithm is the known fastest sequential algorithm
for $\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$. Note that non-trivial lower bound of
$\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$ is not known. However the 3 sum has no
$o(n^{2})$ algorithm and has an $\Omega(n^{2})$ lower bound
on a weak model of $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}[6]$.

We propose a cost optimal parallel algorithm
for $\mathrm{L}\mathrm{F}\mathrm{M}3\mathrm{S}$ in the following.

Algorithm for computing $LFM3S$
Input: A set of n integers I .

Step 1: Sort all elements in I. (Let S $=$

$(s_{0}, s_{1,\ldots,n-}S1)$ be the sorted sequence.)

Step 2: Repeat the following substeps from $\dot{i}=$

0 to $\dot{i}=n-3$.

(2-1) Create the following two sorted sequences
$S’$ and $S_{R}’$ from S .

2. Let $e_{i}=$ { $a_{i,i,}b$ c} $(0\leq\dot{i}\leq m-1)$. Then,
($a_{i,i,}b$ c) is the lexicographically first set
of 3 elements which satisfies $f(a_{i}, b_{i}, C_{i})=$

TRUE for $I-(e_{0}\cup e_{1}\cup\ldots\cup e_{i-1})$.

3. There is no set of three elements $(a’, b’, C^{J})$

which satisfies $a’,$ $b/,$ c
;

\in I – S and
$f(a’, b’, c’)=TRUE$. \square

$S’$ $=$ $(_{S_{i+1}S},i+2, \ldots, s_{n-1})$

$S_{R}’$ $=$ $(-s_{n-1}-Si, -S_{n-}2-s_{i}, \ldots, -S_{i+1}-s_{i})$

(For $b\in S$’ and $c\in S_{R}’$ which satisfy $b=s_{g}$

and $c=-s_{h}-S_{i}$ respectively, $b=c$ if and
only if $s_{i}+s_{g}+s_{h}=0.$)

60

(2-2) Merge $S’$ and $S_{R}’$ into a sorted sequence
$ss=(_{SsSS}0,1, \ldots, sS2(n-i-1)-1)$.

(2-3) Compute the smallest element ss_{j} in SS

which satisfies $ss_{j}=ss_{j+}1$.

(2-4) If the above ss_{j} is obtained, compute s_{g}

and s_{h} in S such that $s_{g}=ss_{j}$ and $s_{h}=$

$-s_{g}-s_{i}$, respectively. (It is obvious that
$s_{g}\in S’\mathrm{a}\mathrm{n}\mathrm{d}-s_{g}-s_{i}\in S_{R}’$ since all elements
in S are distinct.) Delete $s_{i},$ $s_{g},$ S_{h} from I ,
and output ($s_{i},$ $s_{g},$

$S_{h}\mathrm{I}$, whenever they exist.

We assume the number of processors p is re-
stricted to $1\leq p\leq n$. We can sort n elements in
$O(\frac{n\log n}{p}+\log n)$ time using Cole’s $\mathrm{m}\mathrm{e}\mathrm{r}_{\mathrm{o}}\sigma \mathrm{e}$ sort[4]
in Step 1. In Step 2, we can compute a substep
(2-1) in $O(\frac{n}{p})$ time easily. We can compute sub-
steps (2-3) and (2-4) in $O(\frac{n}{p}+\log n)$ time using
simple known algorithms and basic operations.
In a substep (2-2), we can merge two sorted se-
quence in $O(\frac{n}{p}+\log\log n)$ time using a fast merg-
ing $\mathrm{a}_{\mathrm{o}\mathrm{r}}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}[9]$. Since repetition of Step 2 is n ,
we obtain the following theorem.

Theorem 4 We solve $LFM3S$ in $O(\frac{n^{2}}{p}+$

$n\log n)$ time using p processors $(1 \leq p\leq n)$ on
the CREW PRAM. \square

In case of $1 \leq p\leq\frac{n}{\log n}$, the time complexity

becomes $O(\frac{n^{2}}{p})$. Therefore the above algorithm
is cost optimal for $1 \leq p\leq\frac{n}{\log n}$.

4.3.2 A parallel algorithm for $\mathrm{L}\mathrm{F}\mathrm{M}\mathrm{S}3\mathrm{A}$

with an unresolvable function

We consider the case that a given function
$f(x, y.z)$ of $\mathrm{L}\mathrm{F}\mathrm{M}\mathrm{S}3\mathrm{A}$ is unresolvable. that is.

1. For given $a,$ $b,$ c , we can colnpute a value
$f(a.b, c)$ in $O(1)$ time.

2. For a set $E’$. we cannot resolve $a,$ $b.c\in E’$

which satisfy $f(a, b.c)=TRUE$ in practical
time.

In this case, the only way to solve $\mathrm{L}\mathrm{F}\mathrm{M}\mathrm{S}3\mathrm{A}$ is
to compute $f(a, b, c)$ for all combinations $(a.b, c)$

where $a,$ $b,$ $c\in E$. The computation obviously
requires $\Omega(n^{3})$ time sequentially.

A parallel algorithm for computing $\mathrm{L}\mathrm{F}\mathrm{M}\mathrm{S}3\mathrm{A}$

on the CREW PRAM is simple as follows.

Algorithm for computing $\mathrm{L}\mathrm{F}\mathrm{M}\mathrm{S}3\mathrm{A}$ with an
unresolvable function
Input: A set of n elements E .

Step 1: Sort all elements in E. (Let S $=$

$(s_{01\cdot\cdot n-1}, s,., s)$ be the sorted sequence.)

Step 2: Repeat the following substeps from $\dot{i}=$

0 to $\dot{i}=n-3$.

(2-1) Compute all pairs (s_{9}, Sh) which $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}\mathrm{f}\mathrm{y}$

$f(s_{i}, s_{\mathit{9}}, Sh)=TRUE(\dot{i}<g<h\leq n-1)$.

(2-2) Compute the lexicographically first pair
$(s_{g}’, s_{h^{;}})$ among the pairs obtained in (2-
1), delete $s_{i},$ $s_{g}’,$ s_{h} ’ from I , and output
$(s_{i\cdot h}, s_{g}\prime\prime SJ)$, whenever they exist.

We assume the number of processors is $p(1\leq$

$p\leq n^{2})$. Since Step 1 is the same as the first
$\mathrm{a}1_{\iota^{\sigma_{\mathrm{o}\mathrm{r}}}}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}\supset$

’ we consider complexity of Step 2. In a
substep (2-1), there are at most $\frac{(n-1)(n-2)}{2}$ pairs,
and we can compute the pairs in $O(\frac{n^{2}}{p})$ time. We

can compute a substep (2-2) in $O(\frac{n^{2}}{p}+\log n)$ time
easily. Since repetition of Step 2 is $O(n)$, we ob-
tain the following theorem.

Theorem 5 We solve $LFMS3A$ with an unre-
solvable function in $O(\frac{n^{3}}{p}+n\log n)$ time using p

processors $(1 \leq p\leq n^{2})$ on the CREW PRAM.
口

The above algorithm is also cost optimal for
$1 \leq p\leq\frac{n^{2}}{\log n}$.

5 Conclusions

In this paper, we proved that two problems,
$CL(n^{\epsilon})$ and $LFM3S$, are P-complete, and pro-
posed cost optimal algorithms for the prob-
lems. The results imply that some P-complete
problems are parallelizable within the reasonable
number of processors.

In the future research, we investigate other par-
allelizable P-complete problems. The result may
imply new classification of problems in P . An-
other future topic is proposition of fast paral-
lel algorithms which run in $O(n^{\epsilon})$ time where
$0<\epsilon<1$ for P-complete problems. Only a
few P-complete problems are known to have such
algorithms [11].

61

References

[1] B. Chazelle. On the convex layers of a pla-
nar set. IEEE Transactions on Information
Theory, IT-31 (4):509-517, 1985.

[12] A. C. Yao. A lower bound to finding convex
hulls. Journal of the ACM, $28(4):780-787$,
1981.

[2] D. Z. Chen. Efficient geometric algorithms
on the EREW PRAM. IEEE transactions on
parallel and distributed systems, $6(1):41^{-47}$,
1995.

[3] W. Chen. Parallel Algorithm and Data
Structures for Geometric Problems. PhD
thesis, Osaka University, 1993.

[4] R. Cole. Parallel merge sort. SIAM Journal
of Computing, $17(4):770-785$, 1988.

[5] A. Dessmark, A. Lingas, and A. Mahesh-
wari. Multi-list ranking: $\mathrm{c}\mathrm{o}\mathrm{m}_{\mathrm{P}}.1\mathrm{e}\mathrm{X}\mathrm{i}\mathrm{t}\mathrm{y}$ and
applications. In 10th Annual Symposium
on Theoretical Aspects of Computer Science
(LNCS665), pages 306-316, 1993.

[6] J. Erickson and R. Seidel. Better lower
boun.ds on detecting affine and spherical de-
generacies. In 34th Annual IEEE Symposium
on Foundations of Computer Science (FOCS
’93), pages 528-536, 1993.

[7] A. Gajentaan and M. H. Overmars. On a
class of $O(n^{2})$ problems in computational ge-
ometry. Computational geometry, 5:165-185,
1995.

[8] R. Greenlaw, H.J. Hoover, and W.L.
Ruzzo. Limits to Parallel Computation: P-
Completeness Theory. Oxford university
press, 1995.

[9] C. Kruskal. Searching, merging and sorting
in,parallel $\mathrm{C}\mathrm{O}.\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$. IEEE Transactions
on Computers, $\mathrm{C}- 32(10):942-946,1’\dot{9}83$.

[10] S. Miyano. The lexicographically first max-
imal subgraph problems: P-completeness
and NC $\mathrm{a}1_{\mathrm{t}\supset}\sigma_{\mathrm{o}\mathrm{r}\mathrm{i}}\mathrm{t}\mathrm{h}\mathrm{m}\mathrm{s}$. Mathematical Systems
Theory, 22:47-73, 1989.

[11] J.S. Vitter and R.A. Simons. New classes
for parallel complexity: A study of uni-
fication and other complete problems for
P. IEEE Transactions of Computers, C-
$35(5):403-418$, 1986.

62

