goooboooobgon
11850 2001 0 53-62

53

Cost optimal parallel algorithms
for P-complete problems

Akihiro FUJIWARA!, Michiko INOUE? and Toshimitsu MASUZAWA?

!Department of Computer Science and Electronics,
Kyushu Institute of Technology
680-4 Kawazu, lizuka, Fukuoka, 820-8501, Japan
fujiwara@cse.kyutech.ac. jp

2 Graduate School of Information Science,
Nara Institute of Science and Technology
8916-5, Takayama, Ikoma, 630-0101, Japan
{kounde , masuzawa}@is.aist-nara.ac.jp

Abstract: In this paper, we consider parallelizability of two P-complete problems, the
convex layers problem and the lexicographically first maximal 3 sums problem. For the convex
layers problem, we first introduce a parameter which indicates parallelizability of the problem.
We prove P-completeness of the problem and propose a cost optimal parallel algorithm
according to the parameter. For the lexicographically first maximal 3 sums problem, we
prove P-completeness of the problem, and propose two cost optimal parallel algorithms for
the problem and a related problem. The above results show that some P-complete problems
have efficient cost optimal parallel algorithms.

Keywords: parallel algorithms, P-completeness, convex layers, lexicographically first max-

imal 3 sums.

1 Introduction

In parallel computation theory, one of primary
complexity classes is the class NC. Let n be
the input size of a problem. The problem is in
the class NC if there exists an algorithm which
solves the problem in T'(n) time using P(n) pro-
cessors where T'(n) and P(n) are polylogarith-
mic and polynomial functions for n, respectively.
The problem in the class NC' are regarded as ef-
ficiently solvable by parallel algorithms. Many
problems in the class P, which is the class of prob-
lems solvable in polynomial time sequentially, are
shown to be in the class NC.

On the other hand, some problems in the class
P seem to have no parallel algorithm which runs
" in polylogarithmic time using a polynomial num-
ber of processors. Such problems are called P-
complete. A problem is P-complete if the problem
is in the class P and we can reduce any problem
in P to the problem using NC-reduction. Al-
though there are some efficient probabilistic par-
allel algorithms for some P-complete problems,
it is believed that the P-complete problems are
inherently sequential and hard to be parallelized.

However polylogarithmic time complexity is
not so important for real parallel computation.

The polylogarithmic time complexity O((logn)¥)
Ts(n)
(logn)*
sequential time complexity for the same problem

and usually greater than n. This fact implies
that more than n'~¢ processors are needed for
the polylogarithmic time complexity, where € is a
constant which satisfies 0 < € < 1. On the other
hand, the number of processor p for real paral-
lel computation is independent of the size n and
p << n. This fact implies that p is smaller than
n!~¢ in most cases and is inconsistent with the
polylogarithmic time complexity.

needs at least

processors, where Tg(n) is

In consequence, cost optimality for p << n
is the most important measure for parallel algo-
rithms in practice. The cost of a parallel algo-
rithm is defined as the product of running time
and the number of processors of the algorithm.
A parallel algorithm is cost optimal if its cost is
asymptotically equal to the lower bound of se-
quential time complexity for the same problem.
In other words, the cost optimal parallel algo-
rithm achieves optimal speedup, which is asymp-

_totically equal to the number of processors.

Therefore one way to practically parallelize a
P-complete problem is to find a cost optimal par-
allel algorithm which runs in polynomial time.
Let Q(n*) be the lower bound of sequential time

complexity for a P-complete problem A. It seems
that the problem A has no parallel algorithm
which runs in polylogarithmic time since A is P-
complete. However, the problem A may have a
parallel algorithm which runs in O(n*~¢) time us-
ing n® processors where 0 < € < k. Since the
parallel algorithm is cost optimal, the algorithm
probably achieves optimal speedup for p << n.
In this paper, we call P-complete problems par-
allelizable if the problem has a cost optimal par-
allel algorithm whose number of processorsis an
increasing function of the input size, and aim to

show some P-complete problems are paralleliz-
able. _ ; . ‘

Among many P-complete problems, only some
graph problems are known to be parallelizable.
Vitter and Simons[11] showed that the unifica-
tion, path system accessibility, monotone circuit
value and ordered depth-first search problems
have cost optimal parallel algorithms if their in-
put graphs are dense graphs, that is, the number
of edges is m = Q(n!*€) for a constant ¢ > 0
where the number of vertices is n. For exam-
ple, they showed that the monotone circuit value
problem can be solved in O(%— + n) time using p
processors on the common CRCW PRAM. The
time complexity becomes O("Tf) if m = ©(n?)
and p < n, then the algorithm achieves cost op-
timality. ‘

‘In this paper, we considér parallelizability of
two P-complete problems. First we consider a
convez lagers problem. The convex layers is a ge-
ométri_c problem and closely relates to the other
layering problems, such as a visibility layers prob-
lem. Dessmark et al.[5] proved that the problem
is P-complete, and Chazelle[1] proposed an opti-
mal sequential algorithm which runs in O(nlogn)
time, where n is the input size of the problem.
We' introduce a parameter d to the problem so
that it restricts positions of input points: the in-
put points are on d horizontal lines. We show
that the parameter indicates parallelizability of
the problem. For the parameterized convex lay-
ers problem, we prove that the problem is still
P-complete if d = n® with 0 < ¢ < 1. Next
we propose a parallel ‘algorithm which runs in
O(”—‘lof.ﬂ + d;f + dlogd) time using p processors
(1 £ p < d) on the EREW PRAM. From the
complexity, the problem is in NC if d = (logn)*
where k is a positive constant, and has a cost op-

54

timal parallel algorithm if d = n€ with 0 < e < %
for 1 < p < nf. We also consider complexity of
the algorithm in case that all inputs are sorted,
and show the complexity achieves similar cost op-
timality.

The second P-complete problem is a lezico-
graphically first maximal 8 sums problem, which
is a problem to compute a lexicographically
first maximal set of sequences of 3 integers,
{(ao, bo, co), (a1, b1,¢1),- - -, (@m—1, bm—1,Ccm—1)}
which satisfy a; + b; + ¢ = 0 for all i (0 <
i < m—1), from a given set of integers. We
prove the problem is also P-complete by reduc-
ing a lexicographically first maximal independent
set problem, which is a graph problem known as
P-complete[10]. Next we propose a parallel al-
gorithm, which runs in O(”—2 + nlogn) using p
processors (1 < p < n) on the CREW PRAM,
for the problem. In addition, we propose a par-
allel algorithm for a related P-complete prob-
lem, which is a lezicographically first mazimal set
of 8 arguments problem. The algorithm runs in
O(%f%—nlog n) time for 1 < p < n? on the CREW
PRAM. The above two algorithms are cost opti-
mal for 1 < p < E%ﬁ and 1 <p < %, respec-
tively. These results show that some P-complete
problems have efficient cost optimal parallel algo-
rithms.

2 Preliminaries

2.1 Definition of P-completeness

In this subsection, we describe a brief definition
of P-completeness. (For details of precise defini-
tions of P-completeness, see [8].)

Let n be the input size of a problem. The
problem is in the class P if there exists a se-
quential algorithm which solves the problem in
t(n) time where t(n) is a polynomial function for
n. The class P is a well known class which de-
notes sequential efficiency. An analogous class
of efficiency for parallel computation is the. class
NC'. A problem is in the class NC if there exists
an algorithm which solves the problem in T'(n)
time using P(n), processors, and T'(n) and P(n)
are polylogarithmic and polynomial functions for
n, respectively. Using the above classes, the P-
completeness is defined as follows.

Definition 1 (P-complete problem) A prob-

lem Q is P-complete if the following two condi-
tions are satisfied.

(1) Q is in P.
(2) For every problem S in P, S is NC-reducible
to Q. |

From the above definition, we can prove P-
completeness of a problem if we can reduce a
known P-complete problem to the problem using
NC-reduction.

3 Parameterized convex layers

3.1 Definitions

First we give some definitions for the convex lay-
ers.

Definition 2 (Convex layers) Let S be a set
of n points in the Euclidean plane. The conver
layers is a problem to compute a set of convex
hulls, {CHy,CHy,...,CHnyn_1}, which satisfies
the following two conditions.

(1) CHyUCHyU...UCH,,_1=S.

(2) Each CH; (0 <i<m-—1) is a convez hull of
a set of points S—(CHyUCHU...UCH;_1).
|

Dessmark et al.[5] proved P-completeness of
the convex layers problem, and Chazelle[1] pro-
posed a sequential algorithm which runs in
O(nlogn) time. The time complexity is opti-
mal because computation of a convex hull, which
is the first hull of the convex layers, requires
Q(nlogn) time[12].

In this paper, we introduce a parameter d for
the problem, and restrict its input points on d
horizontal lines.

Definition 3 (Convex layers for d lines)

The convex layers for d lines is a convex layers
problem whose input points are on d horizontal
lines. m]

The parameter d is at most n if there is no
restrictions for positions of input points. In the
following, CL(d) denotes the convex layers for d
lines problem. We can solve the problem sequen-
tially in O(nlogn) time using the algorithm[1].

The above two convex layers problems are il-
lustrated in Figure 1.

55

(@) ()

Figure 1: Convex layers problems: (a) convex
layers, and (b) CL(6).

3.2 P-completeness of CL(d)

In this subsection, we discuss relationship be-
tween P-completeness and the parameter d. First
we prove the problem CL(d) is P-complete if
d = n® with 0 < ¢ < 1. We prove the P-
completeness by NC-reduction from the original
convex layers problem.

Theorem 1 The problem CL(n®) with0 <e <1
is P-complete.

(Proof) It is obvious that CL(n®) is in P be-
cause the problem has an O(nlogn) time se-
quential algorithm. If ¢ = 1, the CL(n¢) is the
original convex layers problem, which is proved
to be P-complete. Thus, we consider the case
that 0 < € < 1 in the following. Let Uy = -
{ug,u1,...,un—1} be input points of the convex
layers problem in the Euclidean plain. We as-
sume that uy = (zn,yn) and us = (zs,ys) are
points which have the largest and the smallest
y-coordinates in Up, and also assume that ug =
(zg,yE) and uw = (zw,yw) are points which
have the largest and the smallest z-coordinates
in Uy, respectively. ,

First we add 4 points to the input. The points
are Uy = {unw,unE,use,usw} = {(zw —
Lyn +2), (zg + Lyy + 1), (ze + 1L,ys — 2),
(zw — 1,ys — 1)}. (These 4 points form a paral-
lelogram which contains all points in Uy.) Next
we add a set of k = (n + 4)% — (n + 4) points
which are on a line y = yny + 2, that is, Uy =
{(x()’yN +2)7 (xllayN_i'Z)v B ($;c—17yN+2>} 50
that zw —1 < zp < @) < ... <)y <zg+ 1.
(Since 0 < € < 1, k > 0 holds.) These added
points are illustrated in Figure 2. e :

u. Mm H
SW RSt a u
SE

Uy = {unw UNE: UsE> Usw}

Figure 2: Points in Uy, Uy and Us.

We give a set of points Uy U U; U Us as input
points for CL(d). The size of the input is n +4+
(n+ 4)% —(n+4)=(n+ 4)% and the number of
horizontal hnes is d = n+4. Therefore, by letting

(n+4) <, the problem becomes CL(m*®) with
0 <e<l1.

‘The result of CL(m¢) are convex hulls,” and
the outmost convex hull consists of all points in
Ui U Us,. Thus, after peering the outmost convex
hull of the results, the remaining convex hulls are
equal to the result of the original convex layers.
Since m is a polynomial function of n, all of the
above steps can be done using NC-reduction. O

In the next subsection, we propose a cost op-
timal algorithm for CL(d). Using the algorithm,
we prove that CL((logn)¥) is in NC where k is
an arbitrary positive constant.

3.3 A cost optimal parallel algorithm
for CL(d)

The basic idea of the cost optimal parallel algo-
rithm for CL(d) is as follows. We assume that
input points are on lines {lo,!1,...,l4-1} and a
line I; is above liy; for each i (0 < ¢ < d — 2).
First we compute a set of points on each line and
store the points in a double-ended queue in order
of z coordinates for each line. (The double-ended
queue is a queue which allows insertion and dele-
tion at both ends.) Next we compute the outmost
convex hull. The outmost convex hull consists of
the following points.

(a) All points on lines lp and I4_;.

56

(b) A subset of the leftmost and the rightmost
points on lines 1,15, ...,l4_o.

We can compute points included in (b) in par-
allel for each line in O(1) time because points
on each line are stored in a double-ended queue.
Since obtained points are sorted in order of y co-
ordinates, we can compute the outmost convex
hull of the points using a cost optimal parallel
algorithm[2, 3] which computes a convex hull for
sorted points. We repeat the above computation,
after peering the outmost convex hull, until no
point remains. The number of convex hulls are
at most [g'l because the top and bottom lines
are removed by peering the outmost convex hull.
Therefore the number of repetition is also at most
4

We summarize the overall algorithm in the fol-
lowing.

Algorithm for computing CL(d)

Input: A set of points {ug,u1,...,un—1} on
horizontal lines {lo,{1,...,0l4-1}
Step 1: Set variables TOP = 0 and BOT =

d —1. (lrop and lpor denote the top and
bottom lines respectively.) Compute a set of
points on each line /; (0 < i < d—1), and
store them in a double-ended queue @; in
order of x coordinates.

Step 2: For each line [; (TOP < i < BOT),

compute the leftmost point ufeft and the

rightmost point u¢, ght-

Step 3: Let Ujess and Upigp: denote sets of points

TOP , TOP+1 BOT
{uie ft Ueft o Uy
TOP TOP+1
and {u”ght, right - mght} respectively.

Compute a left hull of Uy s, and a right hull
of Urignt, and store the obtained points on
each hull in CHiepy and CHpigns, respec-
tively. (The left hull of Ujs: consists of
points on a convex hull of Uy, which are
from ule%T to uﬁ?tp in clockwise order. The

right hull of Upgpt is defined similarly.)

Step 4: Remove points in Qrop, Qeor, CHeft
and CHy;gp as the outmost convex hull.

Step 5 Compute the top and bottom lines on
which there remains at least one point. Set

TOP and BOT to obtained top and bottom
lines respectively.

Step 6: Repeat Steps 2, 3, 4 and 5 until no point
remains.

We discuss complexities of the above parallel
algorithm on the EREW PRAM. We use at most
p processor (1 < p < d) in the algorithm except
for Step 1.

Step 1 takes O("—h;gﬂ + logn) using Cole’s
merge sort[4] and primitive operations, and Step
2 takes O(%) time obviously. We can compute the
left and right hulls in Step 3 using a known paral-
lel algorithm[2, 3] for computing a convex hull of
sorted points. The algorithm runs in O(g +log d)

time for each hull. Step 4 takes O(%) time to re-
move the points. (Points in Qrop, @BoT are au-
tomatically removed by changing TOP and BOT
in Step 5.) We can compute the top and bottom
lines in Step 5 in O(g + log d) time using a basic
parallel algorithm computing the maximum and
the minimum. As we described above, the num-
ber of the repetition of Step 6 is [%] Therefore
we can compute CL(d) in O(nlo% +logn + (% +
logd)x [4]) = O(%X%&2 1 £ 4 dlogd), and obtain
the following theorem.

Theorem 2 We solve CL(d) in O(%—" + 24
dlogd) time using p processors (1 < p < d)ﬂ on
the EREW PRAM. a

We show that the class of the problem changes
according to the number of lines d. First we
consider the case of d = (logn)* where k is a
positive constant. The complexity is O(%ﬂ +
(logn)*loglogn) in the case.
processors in Step 1, the complexity becomes
O((logn)* loglogn). Consequently, we obtain the
following corollary.

Corollary 1 We solve CL((logn)¥), where k is
a positive constant, in O((logn)*loglogn) time
using n processors on the EREW PRAM, that is,
CL((logn)¥) is in NC. O

Next we consider the time complexity in case
of d = n® where 0 < ¢ < 1. The complexity is
O(%L" + “%E +nflogn) in the case. In addition
to this, we assume that € < % and p < d = nt.
Under the assumption, nl;’.—jgﬂ- > ”Tfe holds because

nlogn > n > n®, and "l;’_# > nflogn holds

If we use n

57

because 91—‘;& > n!=¢logn > nflogn. Therefore
we can obtain a cost optimal parallel algorithm
for CL(n¢).

Corollary 2 We solve CL(nf) with 0 < ¢ < %
in O(El—;g—") time using p processors (1 < p < nf)
on the EREW PRAM. 0

Finally we notice that Stepl runs in O(%) time
if all points on each line are known and sorted in
order of = coordinates. In this case, we can solve
CL(d) efficiently. We call the problem CLS(d)
(convez layers for sorted points on d lines). From
the above discussion, we can solve the CLS(d) se-
quentially and in parallel with the following com-
plexities. (Both complexities are optimal.)

Corollary 3 We can solve CLS(n¢) with 0 <
€ < 1 in O(n) time sequentially, and in O(%)
time using p processors (1 < p < nf) on the

EREW PRAM. O

4 Lexicographically first maxi-
mal 3 sums

4.1 Definitions

We first define the maximal 3 sums problem as
follows.

Definition 4 (Maximal 3 sums) Let I be a
set of n distinct integers. The mazimal 3 sums
is a problem to compute the set of sequences of
8 integers M3S = {(ao,bo,co), (a1,b1,c1), ...,
(@m—1,bm—1,¢cm—1)}, which satisfies the following
three conditions.

1. The set S =

{aOa bOa Co, ay, b17 Cly,...,0m-~1, bm—la Cﬂ'n—l} 18
a subset of I.

2. For each (a;,bi,¢;) (0<i<m—1), a;+b+
C; = 0

3. There is no sequence of three integers
(a',¥,c) which satisfies a/,b/,cd € I — S and
ad+b+d=0.]

Note that solution of the maximal 3 sums
is not unique. For example, let I =
{-10,-9,-2,0,9,10,11,12} be an input for the

maximal 3
sums. Then both of {(-10,-2,12),(-9,0,9)},
{(-10,0,10), (-9, —2,11))} are solutions for the
problem.

The lexicographically first maximal 3 sums
problem is a modified maximal 3 sums problem
so as to have the unique solution. Let A =
(ao, Ay, .. am_l) and B = (b(), bl, ceey bm—l) be
two sequences of m numbers. We call that A is
lexicographically less than B if ag < by, or there
exists an integer i (1 < i < m — 1) such that
aj=bjforalj (0<j<i—1)anda; <b. We
call that A is the lexicographically first among a
set of sequences if A is'less than all of the other
sequences in the set.

Definition 5 (Lexicographically first max-
imal 3 sums (LFM3S)) Let I be a set of n
distinct integers. ‘The lexicographically first maz-
imal 8 sums is a problem to compute the set of
sequences of 3 integers LEM3S = {(ap, bo, co),
(al, b1, Cl), ceey (am_l, bm_1, Cm—l)}; which satis-
fies the following two conditions.

1. The LFM3S is a solution of the mazimal 3
sums for I.

2. Let s; = {ajbi,¢i} (0 < i < m—1).

" Then, (ai, bi, c;) is the lezicographically first
sequence of 3 integers which satisfies a;+b;+
;=0 forI—(sopUs1U...Us;_1). O

We can compute LFM3S sequentially by the
following algorithm for a set of distinct integers
I

(1) Repeat the following substeps until no set of
3 integers is found in (1-1).

(1-1) Find a sequence of 3 integers (a, b, ¢) which
satisfies the following two conditions.

(a) a,b,care elements in I which satisfy a+
b+c=0.

(b) (a,b,c) is the lexicographically first se-
quence among all sequences which sat-
isfy (a).

(1-2) Output the sequence (a, b, ¢) as a solution,
and remove a, b, ¢ from I, whenever they ex-
ist.

58

In case of the
above example, {(—10,-2,12),(—9,0,9)} is the
unique solution of LFM3S for I.

4.2 P-completeness of LFM3S

We show reduction from the lexicographically first
mazimal independent set (LFMIS) problem to
LFM3S. The LFMIS is a well known P-complete
problem[10]. Let G = (V, E) be an input graph
for LFMIS. We assume that all vertices in V =
{vo,v1,...,vn_1} are totally ordered, that is, v; is
less than v; if i < j. We can compute LEMIS se-
quentially as follows. (V'S is an output of LEFMIS
for G.)

(1) Set VS = ¢.
(2) Repeat the following substeps until V = ¢.
(2-1) Compute the first vertex v; € V.

(2-2) Add v; to VS, and remove v; and its adja-
cent vertices from V, and also remove adja-
cent edges from E. O

In [10], Miyano proved the following lemma for
LFMIS.

Lemma 1 The LFMIS restricted to graphs with
degree at most 3 is P-complete. a

Using the above lemma, we prove the following
theorem.

Theorem 3 The problem LFMS3S is P-complete.

(Proof)

It is obvious that LFM3S is in P.

First we introduce a key set of integers for
LFMS3S. The set is as follows. B

Q = {QOa(Ib---,(JlQ}
— {—64,-61,-32,—31,-29, —15, —14,
—-13,-10,-8,23, 46,93}

We describe property of the above set (). Let
@ be the input for LFM3S. Then the solution of
LFMS3S is as follows. ’

{(—64,—29,93), (—32, —14, 46), (—15, -8, 23)}

Next, letting @ —{—64} be the input, the solution
becomes as follows.

{(-61

The most important difference between the above
two solutions is that three numbers, ¢y = —61,
g3 = —31 and g7 = —13, are not in the first solu-
tion but in the second solution.

We show precise reduction from LFMIS to
LFM3S using the above key set @ in the follow-
ing. Let G = (V, E) with V = {vg,v1,...,vn-1}
be an input graph with degree at most 3. First
we define a vertezx value VV (i) for each vertex v;.
The vertex value is a negative integer and defined

,—32,93), (—31,—15,46), (—13, —10, 23)}

as VV (i) = i — n. Thus vertices vg,v1,...,Un_1
have vertex values —n, —(n — 1),...,—1 respec-
tively. Using the key set @ = {qo,q1,.-.,¢i2} and

the vertex values, we define the following 4-tuples
for each vertex v; (0 <i<n—1)in V as inputs
for LFM3S.

1. Vertex
VT(i)=

tuple for v
[VV(4), 90, VV (i), 0]

2. Auxiliary tuples for v;:

(a) ATy(3) = [VV (i), q1,0,VV(5)]
(b) ATy(i) = [VV (i), q2, VV (5),0]
(c) AT3(i) = [VV(i), q3,0, VV(3)]
(d) AT4(i) = [VV (i), 4,0, VV (4)]
(e) ATs(i) = [VV (i), g5, VV (5),0]
(f) ATs(i) = [VV (i), 6,0, VV (3)]
(8) AT7(i) = [VV (i), q7,0, VV(3)]
(h) ATs(i) = [VV (i), g8, VV(3),0]
(i) ATy(i) = [VV (i), 9,0, VV (4)]
(i) ATyo(d) -
2+ [VV (i), q10, [VV (@], [VV(3)]]
(k) AT11(7) -

2+ VV(@i)l, qu, VV (@)L IVV (3]
(1) ATH(Z) =
2+ [VV(©), qa2, [VV ()], [VV(5)]]

3. Link tuples for v;: For each adjacent ver-

tex v; of v;, which satisfies ¢ < j, add one of
the following tuples.

(a) LT1(6,5) = [VV()] + [VV()l; g0l +
], VV @)L VYV @)

59

(b) LT5(i,5) = [IVV(@)| + [VV ()l gl +
lgs|; [VV &)1, [VV ()]

(©) LT3(i,5) = [IVV(@)| + [VV ()l lqol +
gz, [VV () IVV (@]

(In case that v; has only one adjacent ver-
tex v; which satisfies ¢« < j, add LT1(3,)
for v;. In case that v; has the two adjacent
vertices vj,,v;, which satisfies i < j; < jo,
add LT (4, j1) and LT5(i,j2). In case that v;
has the three adjacent vertices, add all three
tuples similarly.)

The above 4-tuples have the following special
feature. Let {VT'(i), AT1(7), AT5(3),. .., AT12(i),
LT1(i,s), LT5(i,¢), LT3(i,u), VT'(s), VT'(t), VT (u)}
be the input for LFM3S!. (We assume v;, v; and
Uy, are adjacent vertices which satisfy i < s <t <
u.) Then the solution of LFM3S is as follows.
(We call the solution TYPE A sums.)

{(VT(2), AT4(5), ATi2(3)),
(AT (i), ATg(i), AT11(4)),
(AT5(i), ATo(i), ATio(3)),
(AT1(3), VT(s), LT1(3, 5)),
(AT3(6), VT (), LT3, 1)),
(AT7(2), VT (u))}
Note that vertex tuples, VT(s), VT(t) and
VT(u), are in the sums. In other words, the above
vertex tuples are not in the remaining iriputs after
the computation.

Next, we consider the solution without VT'(7)
in the input. (We call the solution TYPE B
sums.) o

), LT5(i,u

{(ATy(3), AT(i), ATia(3)),
(AT3(3), AT5(1), AT11 (7)),
(ATy(4), ATs(i), ATio(d))}

In this case, the vertex tuples, VT'(s), VT'(t) and
VT (u), remain in the inputs.

We give the above 4-tuples for all vertices in V
of LFMIS, and compute LFM3S. Then the vertex
v; € V is in the solution of LFMIS if and only if

'The sum of tuples A = [ao,01,0a2,03] and B =
[,30, 0B, Ba, ,@3] is defined as A+ B = [ao + Bo, a1+ 1,00+
B2, a3 + B3], and A < B if A is lexicographically less than
B. We assume that the sum is zero if the sum of tuples is
[0,0,0,0].

there exists a sum of three 4-tuples (71,75, T3)
which satisfies 71 = VT(i) in the solution of
LFM3S.

In the following, we describe correctness of the
reduction briefly. Let [ap, a1, a2, a3] be one of in-
put tuples. The g is a vertex value, its absolute
values or the sum of the values, and ensures that
the sums of tuples are computed for each vertex
lexicographically; that is, the sums are computed
in order of the vertex values.- The a9 and a3
are vertex values, its absolute values or 0, and
ensures that no invalid sum is obtained. (The
invalid sum means the sum between tuples of dif-
ferent vertices except for link tuples.) Since the
o is one element of the key set @), only TYPE A
or TYPE B sums for each vertex are obtained in
computation of LFM3S.

It is easy to see that the above reduction is in
NC. Although we define that inputs of LFM3S
are integers, inputs of the above reduction are 4-
tuples. We can easily reduce each 4-tuple to an
integer without loss of the features. Let 29 < n <
29*1 and h = max{g,6}. Then we can reduce
each 4-tuple [ag, a1, a2, 3] to ag* 23+ 4+ (ay —
65) * 22(A+1) 4 vy % 2PH1 4 g,]

In addition to this, we consider P-completeness
of the following problem as generalization of
LFM3S.

Definition 6 Lexicographically first maxi-
mal set of 3 arguments (LFMS3A) Let E
be a totally ordered set of n distinct elements.
The lexzicographically first mazimal set of 8 ar-
guments is a problem to compute the set of se-
quences of 8 elements LEMS3A = {(ao, bo, co),
(a1,b1,¢1), -y (@Gm—1,bm—1,Cm—1)}, which sat-
isfies the following three conditions for a given
function f(z,y,z) whose wvalue is TRUE or
FALSE.

1. The set S =
{a'07 bO, Cp, a1, b17 Cly++ 3 Am—1, bm—l: Cm—l} 18
a subset of E.

2. Let e; = {ai,bi,ci} (0<i<m—1). Then,
(ai,bi,c;) is the lexicographically first set
of 8 elements which satisfies f(ai, bi,c;) =
TRUE for I —(egUeiU...Ue;j_1).

3. There is no set of three elements (a',V,)
which satisfies a',b/',cd € I — S and
f(d,b,dy=TRUE. O

60

Since LFMS3A is generalization of LFMSS,Iwe
can obtain the following corollary from Theorem
3.

Corollary 4 The problem LFMS3A is
P-complete. O

4.3 Cost optimal parallel algorithms

In this subsection, we propose two cost optimal
parallel algorithms for LFM3S and LFMS3A. The
first and second algorithms run in O(ﬂpE +nlogn)

and O(ﬂpi + nlogn) time using p processors, re-
spectively.

4.3.1 A parallel algorithm for LFM3S

In this subsection, we consider a parallel algo-
rithm for LFM3S on the CREW PRAM. We
can propose a sequential algorithm which solves
LFM3S in O(n?) by modifying an algorithm com-
puting the 3 sum problem|7]. (The 3 sum is a de-
cision problem which decides whether there exist
a,b,c € I satisfying a + b+ ¢ = 0.) The algo-
rithm is the known fastest sequential algorithm
for LEFM3S. Note that non-trivial lower bound of
LFMS3S is not known. However the 3 sum has no
o(n?) algorithm and has an ©(n?) lower bound
on a weak model of computation|6].

We propose a cost optimal parallel algorithm
for LEM3S in the following.

Algorithm for computing LFM3S
Input: A set of n integers I.

Step 1: Sort all elements in 1. (Let S =
(s0,81,.--,8n—1) be the sorted sequence.)

Step 2: Repeat the following substeps from i =
Otoi=n-—3.

(2-1) Create the following two sorted sequences
S" and S% from S.

S =
s, =

(3i+1a Si42y -4, Sn—l)

(_sn—l — 84, —=Sn—-2 — Sy ...y —Si41

(For b € 8" and ¢ € Sy which satisfy b = s,
and ¢ = —sp — s; respectively, b = c if and
only if s; + sg + s, =0.)

—_ 31.)

(2-2) Merge S’ and S% into a sorted sequence
S8 = (880,851, -, 552(n—i—l)—1)'

(2-3) Compute the smallest element ss; in SS
which satisfies ss; = ssj41.

(2-4) If the above ss; is obtained, compute sg4
and sy in S such that s, = ss; and s =
—8g — S;, respectively. (It is obvious that
sqg € 8’ and —sy — 5; € S}, since all elements
in S are distinct.) Delete s;, sg, sp from I,
and output (s;, g, S), whenever they exist.

We assume the number of processors p is re-
stricted to 1 < p < n. We can sort n elements in
O(%ﬂ + logn) time using Cole’s merge sort[4]
in Step 1. In Step 2, we can compute a substep
(2-1) in O(2) time easily. We can compute sub-
steps (2-3) and (2-4) in O(% + logn) time using
simple known algorithms and basic operations.
In a substep (2-2), we can merge two sorted se-
quence in O(% +loglogn) time using a fast merg-
ing algorithm[9]. Since repetition of Step 2 is n,
we obtain the following theorem.

Theorem 4 We solve LFM3S in O(Ig- +
nlogn) time using p processors (1 < p < n) on
the CREW PRAM.

[}

n
logn?

becomes O("Tf). Therefore the above algorithm

is cost optimal for 1 <p < bgn.

Incase of 1 < p < the time complexity

4.3.2 A parallel algorithm for LFMS3A
with an unresolvable function

We consider the case that a given function
f(z,y, z) of LEFMS3A is unresolvable, that is,

1. For given a,b,c, we can compute a value

f(a,b,¢) in O(1) time.

2. For a set E', we cannot resolve a,b,c € F’
which satisfy f(a,b,c) = TRUEF in practical
time.

In this case, the only way to solve LFMS3A is
to compute f(a,b,c) for all combinations (a, b, c)
where a,b,c € E. The computation obviously
requires Q(n3) time sequentially.

A parallel algorithm for computing LFMS3A
on the CREW PRAM is simple as follows.

61

Algorithm for computing LFMS3A with an
unresolvable function
Input: A set of n elements E.

Step 1: Sort all elements in E. (Let § =
(80,81, ---,5n—1) be the sorted sequence.)

Step 2: Repeat the following substeps from i =
Otoi=n-3.

(2-1) Compute all pairs (sg,sn) which satisfy
f(si,sq,8n) =TRUE (i<g<h<n-1).

(2-2) Compute the lexicographically first pair
(sg’,5n’) among the pairs obtained in (2-
1), delete s;, 84,5, from I, and output
(si; 847, Spr), whenever they exist.

We assume the number of processors is p (1 <
p < n?). Since Step 1 is the same as the first
algorithm, we consider complexity of Step 2. In a
substep (2-1), there are at most (Tl—léﬁ pairs,
and we can compute the pairs in O("Tf) time. We

can compute a substep (2-2) in O(%;ﬂ-log n) time
easily. Since repetition of Step 2 is O(n), we ob-
tain the following theorem.

Theorem 5 We solve IglF MS3A with an unre-
solvable function in O(%- + nlogn) time using p

processors (1 < p < n?) on the CREW PRAM.
O

The a,bo?ve algorithm is also cost optimal for
1<p<

logn*

5 Conclusions

In this paper, we proved that two problems,
CL(n¢) and LFM3S, are P-complete, and pro-
posed cost optimal algorithms for the prob-
lems. The results imply that some P-complete
problems are parallelizable within the reasonable
number of processors.

In the future research, we investigate other par-
allelizable P-complete problems. The result may
imply new classification of problems in P. An-
other future topic is proposition of fast paral-
lel algorithms which run in O(n€) time where
0 < € < 1 for P-complete problems. Only a
few P-complete problems are known to have such
algorithms[11].

References

[1]

2]

3]

4]

8]

B. Chazelle. On the convex layers of a pla-
nar set. IEEE Transactions on Information
Theory, IT-31(4):509-517, 1985.

D. Z. Chen. Efficient geometric algorithms
on the EREW PRAM. IEEF transactions on
parallel and distributed systems, 6(1):41-47,
1995.

W. Chen. Parallel Algorithm and Data
Structures for Geometric Problems. PhD
thesis, Osaka University,. 1993.

R. Cole. Parallel merge sort. SIAM Journal
of Computing, 17(4):770-785, 1988.

A. Dessmark, A. Lingas, and A. Mahesh-
wari. Multi-list ranking: complexity and
applications. In 10th Annual Symposium

on Theoretical Aspects OfComputer Science
(LNCS665), pages 306-316, 1993.

J. Erickson and R. Seidel. . Better lower
bounds on detecting affine and spherical de-
generacies. In 8/th Annual IEEE Symposium
on Foundations of Computer Science (FOCS
’93), pages 528-536, 1993.

A. Gajentaan and M. H. Overmars. On a
class of O(n?) problems in computational ge-

-ometry. Computational geometry, 5:165-185,

1995.

R. Greenlaw, H.J. Hoover, and W.L.
Ruzzo. Limits to Parallel Computation: P-
Completeness Theory.. Oxford university
press, 1995.

C. Kruskal. Searching, merging and sorting
in parallel co_mputation. IEEFE Transactions
on Computers, C-32(10):942-946, 1983.

S. Miyano. The lexicographically first max-
imal subgraph problems: P-completeness
and NC algorithms. Mathematical Systems
Theory, 22:47-73, 1989. ' ‘

J.S. Vitter and R.A. Simons. New .classes
for parallel complexity: A study of uni-
fication and other complete problems for
P. IEEE Transactions of Computers, C-
35(5):403-418, 1986.

62

[12] A. C. Yao. A lower bound to finding convex

hulls. Journal of the ACM, 28(4):780-787,
1981.

