<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>不規則外乱の影響を考慮した相転移現象のモデリング 函数解析学の応用としての情報数理の研究</td>
</tr>
<tr>
<td>Author(s)</td>
<td>石川 昌明 宮島 啓一</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1186: 194-204</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2001-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/64650</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On James and Schäffer constants for Banach spaces

岡山県立大・情報工 高橋泰嗣 (Yasuji Takahashi)
九州工大・工 加藤幹雄 (Mikio Kato)
山形大・工 高橋晃映 (Sin-Ei Takahashi)

We introduce James and Schäffer type constants for Banach spaces X, and investigate the relation between these constants and some geometrical properties of Banach spaces.

Let X be a Banach space with $\dim X \geqq 2$. Then, geometrical properties of X are determined by its unit ball $B_X = \{ x \in X : \| x \| \leqq 1 \}$ or its unit sphere $S_X = \{ x \in X : \| x \| = 1 \}$. The modulus of convexity of X is a function $\delta_X : [0, 2] \to [0, 1]$ defined by

$$\delta_X(\varepsilon) = \inf \{ 1 - \frac{\| x+y \|}{2} : x, y \in S_X, \| x-y \| = \varepsilon \}$$

In the above definition, it is well-known that S_X may be replaced by B_X. The space X is called uniformly convex (Clarkson [1]) if $\delta_X(\varepsilon) > 0$ for all $0 < \varepsilon < 2$, and called uniform non-square (James [5]) if $\delta_X(\varepsilon) > 0$ for some $0 < \varepsilon < 2$.

James and Schäffer constants:

James constant of X is defined by

$$J(X) = \sup \{ \min (\| x+y \|, \| x-y \|) : x, y \in S_X \}$$

and Schäffer constant of X is defined by

$$S(X) = \inf \{ \max (\| x+y \|, \| x-y \|) : x, y \in S_X \}.$$

Known Facts (cf. [3], [4], [7]):

1. In the definition of $J(X)$, S_X may be replaced by B_X.
2. $J(X)S(X) = 2$
3. $X : \text{unif. non-square} \Leftrightarrow J(X) < 2 \Leftrightarrow S(X) > 1$
4. Let $1 \leqq p \leqq \infty$, $1/p+1/p' = 1$, $t = \min \{ p, p' \}$ and $s = \max \{ p, p' \}$. Then, $J(L_p) = 2^{1/t}$ and $S(L_p) = 2^{1/s}$.
5. $\sqrt{2} \leqq J(X) \leqq 2$ and $1 \leqq S(X) \leqq \sqrt{2}$ for any Banach space X.
6. If X is a Hilbert space, then $J(X) = \sqrt{2}$, but the converse is not true.
(7) There is a Banach space X such that \(J(X) \neq J(X^*) \) \((S(X) \neq S(X^*))\), where \(X^* \) is a dual space of \(X \).

(8) \(2J(X) - 2 \leq J(X^*) \leq J(X)/2 + 1 \) for any Banach space \(X \).

New constants of James and Schäffer type:

We denote by \(M_t(a,b) \) the power means of order \(t \) of the positive real numbers \(a \) and \(b \), that is,

\[
M_t(a,b) = \left(\frac{a^t + b^t}{2} \right)^{1/t} \quad (t \neq 0) \quad \text{and} \quad M_0(a,b) = \sqrt{ab}.
\]

Remark. (1) \(M_t(a,b) \) is defined for \(a, b \geq 0 \) \((M_t(a,b) = 0 \text{ if } t < 0, \ ab = 0)\).

(2) If \(t \to -\infty \) \((t \to +\infty)\), then \(M_t(a,b) \to \min\{a,b\} \) \((M_t(a,b) \to \max\{a,b\})\).

James type constants:

\[
J_t(X) = \sup \{ M_t(\|x+y\|, \|x-y\|) : x,y \in S_X \}, \quad -\infty < t < +\infty
\]

Schäffer type constants:

\[
S_t(X) = \inf \{ M_t(\|x+y\|, \|x-y\|) : x,y \in S_X \}, \quad -\infty < t < +\infty
\]

Remark. In the definition of \(J_t(X) \), \(S_X \) may be replaced by \(B_X \).

Proposition 1. (1) \(\sqrt{2} \leq J(X) \leq J_t(X) \leq 2 \) for all \(t \in (-\infty, +\infty) \), and if \(t \geq 2 \), then \(J_t(X) \geq 2^{1-1/t} \).

(2) \(J_t(X) \) is non-decreasing on \((-\infty, +\infty)\), \(J_t(X) \to 2 \) if \(t \to +\infty \), and \(J_t(X) \to J(X) \) if \(t \to -\infty \).

(3) \(S_t(X) = 0 \) if \(t \leq 0 \), \(S_t(X) = 2^{1-1/t} \) if \(0 < t \leq 1 \), \(S_t(X) \leq 2^{1-1/t} \) for all \(t < \infty \), and \(1 \leq S_t(X) \leq S(X) \leq \sqrt{2} \) for all \(t \in (1, +\infty) \).

(4) \(S_t(X) \) is non-decreasing on \((-\infty, +\infty)\), \(S_t(X) \to 1 \) if \(t \to 1+0 \), and \(S_t(X) \to S(X) \) if \(t \to +\infty \).

Theorem 2. The following assertions are equivalent:

(1) \(X \) is uniformly non-square.

(2) \(J_t(X) < 2 \) for all \(t \) \((\text{some } t)\).

(3) \(J(X) < J_t(X) \) for some \(t \).

(4) There exists \(t_0 \) such that \(J_t(X) \) is strictly increasing on \([t_0, +\infty)\).

(5) \(S_t(X) > 1 \) for all \(t > 1 \) \((\text{some } t>1)\).

(6) \(S(X) > S_t(X) \) for some \(t > 1 \).
Let \(1 \leq p \leq 2 \) and \(1/p + 1/p' = 1 \). We say that the \((p,p')\)-Clarkson inequality holds in a Banach space \(X \) if for any \(x, y \in X \), the inequality

\[
(\text{CI}_p) \quad (\|x + y\|^{p'} + \|x - y\|^{p'})^{1/p'} \leq 2^{1/p'} (\|x\|^{p'} + \|y\|^{p'})^{1/p'}
\]

holds.

Remark. Let \(1 \leq p \leq 2 \).

1. (CI\(_p\)) holds in \(L_p \) and \(L_{p'} \) (Clarkson [1]).

2. (CI\(_p\)) holds in \(X \) if and only if it holds in \(X^* \); if (CI\(_p\)) holds in \(X \), then (CI\(_t\)) holds in \(X \) for any \(t \in [1,p] \); and if (CI\(_p\)) holds in \(X \), then (CI\(_t\)) holds in \(L_t(X) \), where \(1 \leq r \leq \infty \) and \(t = \min\{p,r,r'\} \) (Takahashi and Kato [9]).

A Banach space \(Y \) is said to be finitely representable (f.r.) in a Banach space \(X \) if for any \(\lambda > 1 \) and for any finite dimensional subspace \(F \) of \(Y \) there is a finite dimensional subspace \(E \) of \(X \) with \(\dim E = \dim F \) such that the Banach-Mazur distance \(d(E,F) \leq \lambda \).

Proposition 3. If \(Y \) is f.r. in \(X \), then \(J_t(Y) \leq J_t(X) \) and \(S_t(Y) \geq S_t(X) \) for any \(t \).

Theorem 4. Let \(1 < p \leq 2 \) and suppose that the \((p,p')\)-Clarkson inequality holds in \(X \).

1. \(J_t(X) = 2^{1-1/t} \) for \(t \geq p' \), and \(S_t(X) = 2^{1-1/t} \) for \(0 < t \leq p \).

2. If \(\mathcal{E}_p \) (or \(\mathcal{E}_{p'} \)) is finitely representable (f.r.) in \(X \), then \(J_t(X) = 2^{1/p} \) for \(t \leq p' \), and \(S_t(X) = 2^{1/p'} \) for \(t \geq p \).

Corollary 1. (1) \(J_t(H) = \sqrt{2} \) if \(t \leq 2 \), \(J_t(H) = 2^{1-1/t} \) if \(t \geq 2 \), \(S_t(X) = 2^{1-1/t} \) if \(0 < t \leq 2 \), and \(S_t(X) = \sqrt{2} \) if \(t \geq 2 \), where \(H \) is a Hilbert space.

2. \(J_t(L_p) = 2^{1/r} \) if \(t \leq r' \), \(J_t(L_p) = 2^{1-1/t} \) if \(t \geq r' \), \(S_t(L_p) = 2^{1-1/t} \) if \(0 < t \leq r \), and \(S_t(L_p) = 2^{1/r} \) if \(t \geq r \), where \(r = \min\{p,p'\} \).

3. If \(X = L_p(L_q) \), and \(r = \min\{p,p',q,q'\} \). Then \(J_t(X) = 2^{1/r} \) if \(t \leq r' \), \(J_t(X) = 2^{1-1/t} \) if \(t > r' \), \(S_t(X) = 2^{1-1/t} \), and \(S_t(X) = 2^{1/r'} \) if \(t \geq r \).
Corollary 2. Let \(X = L_p(L_q) \), \(1 < p, q < \infty \). Then, \(J(X) = 2^{1/r} \) and \(S(X) = 2^{1/r'} \), where \(r = \min\{p, p', q, q'\} \).

Remark. As already mentioned, for any Banach space \(X \), it holds \(J(X) S(X) = 2 \), \(J_t(X) \to J(X) \) if \(t \to -\infty \), and \(S_t(X) \to S(X) \) if \(t \to +\infty \). By Corollary 1, we know that for various Banach spaces \(X \), \(J_t(X) S_t(X) = 2 \), where \(1 < t < \infty \) and \(1/t + 1/t' = 1 \). Note that for any \(t \) \((1 < t < \infty) \), there is a Banach space \(X \) such that \(J_t(X) S_t(X) \neq 2 \).

Now we give a characterization of a Hilbert space. As mentioned before, if \(X \) is a Hilbert space, then \(J(X) = \sqrt{2} \); but the converse is not true.

Theorem 5. A Banach space \(X \) is isometric to a Hilbert space if and only if \(J_2(X) = \sqrt{2} \).

Remark. Let \(C_{NJ}(X) \) denote the von Neumann-Jordan constant of \(X \) (Clarkson [2]). Then it is easy to see that \(\sqrt{2} \leq J_2(X) \leq \sqrt{2} C_{NJ}(X) \) for any Banach space \(X \). Hence, Theorem 5 generalizes a result of Jordan and von Neumann [6], which asserts that \(X \) is a Hilbert space if and only if \(C_{NJ}(X) = 1 \).

Proposition 6. Let \(X \) be a Banach space. If there is \(t \in [2, \infty) \) such that \(J_t(X) = 2^{1-1/t} \), then \(X \) is uniformly convex.

Remark. For any Banach space \(X \), we have \(J_t(X) \geq 2^{1-1/t} \) for all \(t \geq 2 \) (see, Proposition 1). It can be shown that for any \(\varepsilon > 0 \), there is a Banach space \(X \) which is not uniformly convex such that \(J_t(X) < 2^{1-1/t} + \varepsilon \).

Theorem 7. (1) For any Banach space \(X \), \(J_1(X) = J_1(X^*) \).

(2) For any \(t < 1 \), there is a Banach space \(X \) such that \(J_t(X) \neq J_t(X^*) \).

Corollary 3. \(X \) : uniformly non-square \(\Leftrightarrow X^* \) : uniformly non-square
References

