
Verification of logic circuits using Mizar and its application to

an adder circuit on a radix‐ 2^{k} SD number.

長野県情報技術試験場 清水 英孝 (Hidetaka SHIMIZU)

信州大学工学部 中村 八束 (Yatsuka NAKAMURA)

信州大学工学部 藤沢 義範 (Yoshinori FUJISAWA)

信州大学工学部 不破 泰 (Yasushi FUWA)

1. Introd uction

To answer the request of higher performance from electric equipment,

logic circuit is becoming more complicated and more large‐scaled. This

makes it more difficult to verify correctness of a designed circuit.

Heretofore, to verify a logical circuit, output for every possible state

and input should be confirmed by simulation. However, when the scale of

a circuit increases, states of circuit increases exponentially, accordingly

(Example, when a circuit has 100 return wires, it has 2 state s.). So it is

impossible or very difficult to comp lete such a simulation for large‐scaled

circuit s .

As a new way to verify correctness of logical circuit, we express

logical circuit with mathematical description (called mathematical

model). The correctness of the circuits is assured when correctness of the

数理解析研究所講究録
第1186巻 2001年 177-188

177

Verification of logic circuits using Mizar and its application to

an adder circuit on a radix-2kSD number.

1. l ntrod uction

長野県情報技術試験場清水英孝(HidetakaSHIMIZU)

信州大学工学部 中村八束(YatsukaNAKAMURA)

信州大学工学部

信州大学工学部

藤沢義範(YoshinoriFUJISAWA)

不破泰(YasushiFUWA)

To answer the request of higher performance from electric equipment,

logic circuit is becoming more complicated and more large-scaled. This

makes it more difficult to verify correctness of a designed circuit.

Heretofore, to verify a logical circuit, output for every possible state

and input should be confirmed by simulation. However, when the scale of

a circuit increases, states of circuit increases exponentially, accordingly

(Example, when a circuit has 100 return wires, it has 2100 states.). So it is

impossible or very difficult to complete such a simulation for large-scaled

circuits.

As a new way to. verify correctness of logical circuit, we express

logical circuit with mathematical description (called mathematical

model). The correctness of the circuits i:s assured when correctness of the

circuitts mathematical model is verified by a proof checker system.

A proof checker system has been used to verify correctness of proof in

mathematics. It can be applied to verifying correctness of a designed

circuit with the method we suggest.

In this p aper, after introducing the p roof checker system Mizar which

is used to verify correctness of proof (Section 2), we give some definitions

as a prep aration for mathematics descrip tions of a logical circuit (Section

3). Then, we explain how a logical circuit is described by these definitions,

and how its correctness is verified by the system (Section 4). At last, as

an example, we apply the method in designing the adder circuit on a

radix‐2 ksD number.

2. Proof checker system Mizar

As an attempt to reconstruct mathematical vernacular, the Mizar

project started in 1973. [1]

And, it has become the most important activity in the project to

develop the database of mathematics since 1989. Now, more than 2,000

definitions and 20,000 theorems are included in the increasing database.

As a characteristic of Mizar, useful verified proof is accepted by

Mizar \dagger s library. Using Mizar, besides mathematical proof, a mathematical

model can be verified too.

Just as a. large‐scale circuit can be designed as a combination of

178

circuit's mathematical model is verified by a proof checker system.

A proof checker system has been used to verify correctness of proof in

mathematics. It can be applied to verifying correctness of a designed

circuit with the method we suggest.

In this paper, after iritroduci~g the proofchecker system Mizar which

is used to verify correctness of proof (Section 2), we give some definitions

as a preparation for mathematics descriptions of a logical circuit (Section

3). Then, we explain how a logical circuit is described by these definitions,

and how its correctness is verified by the system (Section 4). At last, as

an example, we apply the method in designing the adder circuit on a

radix-2kSD number.

2. Proof checker system Mizar

As an attempt to reconstruct mathematical vernacular, the Mizar

project started in 1973. CIJ

And, it has become the most important activity in the project to

develop the database of mathematics since 1989. Now, more than 2,000

definitions and 20,000 theorems are included in the increasing database.

As a characteristic of Mizar, useful verified proof is accepted by

Mizar's library. Using Mizar, besides mathematical proof, a mathematical

model can be verified too.

Just as a. large-scale circuit can be designed as a combination of

smaller circuits which function has been verified, the correctness of a

model can be showed when the model is a combination of smaller models

which has been accepted by the library.

3. Preparation for mathematical description of a logical circuit

We give a relation between basic concepts of logical circuits and

mathematics as follows:

(1) We think inp ut and outp ut signals as sets. The logic of a signal line

has 2 state s, 0 and 1. 0 is define d as the emp ty set \emptyset , and 1 is defined as

a non‐empty set.

It is described as follows at Mizar:

definition let a be set;

redefine attr a is empty;

antonym $a;

en d ;

(2) We consider the expre ssion of every p ossible states formed by inp ut

and output signals. It is described like this:

$sO iff $AND2 (NOTI q2,NOTlq1)

(3) We define a circuit as a Boolean function of sets defined above.

For example, NOT circuit writes follows:

func NOTI a -> set equals

 \emptyset if$a

otherwise { \phi : not contradiction};

en d ;

179

smaller circuits which function has been verified, the correctness of a

model can be showed when the model is a combination of smaller models

which has been accepted by the library.

3. Preparation for mathematical de.scription of a logical circuit

We give a relation between basic concepts of logical circuits and

mathematics as follows:

(1) We think input and output signals as sets. The logic of a signal line

has 2 states, 0 and LO is defined as the empty set ¢, and 1 is defined as

a non-empty set.

It is described as follows at Mizar:

definition let a be set;

redefine attr a is empty;

antonym $a;

end;

(2) We consider the expression of every possible states formed by input

and output signals. It is described like this:

$s0 iff $AND2 (NOTl q2,NOT1 ql)

(3) We define a circuit as a Boolean function of sets defined above.

For example, NOT circuit writes follows:

func NOTl a -> set equals
</J if $a

otherwise { </J : not contradiction};

end;

4. A new method of logic cirCUit^{1}s verification using Mizar system

Here, we introduce how the new method works with a simple

example.

Consider a 3bit up counter circuit. The correctness of the circuit can

be guaranteed with Mizar at the following steps.

(1) Describing the input and output as sets.

(2) Defining every possible state of input and output as following with

the set of step 1. (Fig. 1)

$sO=$AND3(NOTI q3 , NOTI q2 , NOTI q1);

$sl=$AND3(NOTI q3 , NOTI q2 , q1);

$s2,$s3,$s4,$s5,$s6,$s7 is similar to $sO,$sl.

(3) Expressing the behavior of 3bit uP counter circuit with Boolean

expressions as follows: (Fig.2)

$nql=$AND2(NOTI q1,R)

$nq2=$AND2 (X OR2 (q1,q2),R))

$nq3 ={\}AND2(OR2(AND2(q3,NoTlql),AND2(ql, XOR2(q2,q3))),R)
. .\cdot

Here, $ql,$q2,$q3,R are circuit inputs and $nql,$nq2,$nq3 are

outp uts .

(4) Ve r_{\wedge}ifying the cor.rec.tness of. circuit by confirming its Boolean
 i

expressions† tautology using Mizar system.

($nsl iff $AND2(s0,R)) & ($ns2 iff $AND2(s1,R)) & ($ns3 iff $AND2(s2,R))&

($ns4 iff $AND2(s3,R)) & ($ns5 iff $AND2(s4,R)) & ($ns6 iff $AND2(s5,R))&

($ns7 iff $AND2(s6,R)) & ($nsO iff $OR2(s7,NOT1 R));

Here, $s0, \cdots ,$s7 means current states and $ns0, \cdots , $ns7 means next

states of current states.

180

4. A new method of logic circuit's verification using Mizar system

Here, we introduce how the new method works with a simple

example.

Consider a 3bit up counter circuit. The correctness of the circuit can

be guaranteed with Mizar a:t the following steps.

(1) Describing the input and output as sets.

(2) Defining every possible state of input and output as following with

the set of step 1. (Fig. I)

$s0=$AND3(NOT1 q3, NOTl. q2, NOTl ql);

$sl=$AND3(NOT1 q3, NOTl q2, ql);

$s2,$s3,$s4,$s5,$s6,$s7 is similar to $s0,$s1.

(3). Expressing the behavior of 3bit up counter circuit with Boolean

expressions as follows: (Fig.2)

$nq1=$AND2(NOT1 ql,R)

$nq2=$AND2(XOR2(ql,q2),R))

$nq3=$AND2(0R2(AND2(q3,NOT1 ql),AND2(ql, XOR2(q2,q3))),R)

Here, $ql,$q2,$q3,R are circuit inputs and $nql,$nq2,$nq3 are

outputs.

(4) Verifying the correctness of circuit by confirming its Boolean

expressions'tautology using Mizar system.

($nsl iff $AND2(s0,R)) & ($ns2 iff.$AND2(sl,R)) & ($nsJ iff $AND2(s2,R))&

($ns4 iff $AND2(s3,R)) & ($ns5 iff $AND2(s4,R)) & ($ns6 iff $AND2(s5,R))&

($ns7 iff $AND2(s6,R)) & ($ns0 iff $0R2(s7,NOT1 R));

Here, $s0,…，＄s7 means current states and $ns0,・・・, $ns7 means next

states of current states.

($nsl iff $AND2 (sO, R)) means the next state will be $n s1 , if and only if

the curre nt state.is $sO.and R is †† 1
 \dagger\dagger

.

Behavior of a 3bit up counter circuit
Have 4 input_{S}(R,q3,q2,q1) and 3out_{P^{u}}tS(nq3,nq2,nq1)

States change as follows:
 000arrow 001arrow 010arrow 011arrow 100arrow 101arrow 110arrow 1].1arrow
000arrow

return to the initial state(OOO) by the reset input

Signal defmitions

Fig.1 Definitions of 3bit up counter.

Definitions and proof to correctness of

a 3bit up counter

Needs to proof these def ini tions

 s\{_{q]}^{q3}q2\ovalbox{\tt\small REJECT} Rnnqnq2\}q13nS ({\}n({\}n({\}nS3(s_{n_{S}}(s_{ns}1s_{4}s52iffiffiffiffiff{\}AND2(s1^{\cdot}.,
R)s_{AN}D2({\}A{\}AND2(ss_{A}ND2(SND2(S2.Rs_{4}o3,R)RR))g))8))))\S 8g
($ns6 iff $AND2(s5, R))8

Def 1\sim niti ons of a 3bit up counter ($ns7 iff $AND2(s6.R))&
($nsO iff $OR2 (s7 . NOTI R));

($nql i ff $AND2 (NOTI q1 . R))&
($nq2 i ff $AND2 (XOR2 (q1 . q2) . R))&
($nq3 iff $AND2(OR2(AND2(q3. NOTI q1),

AND2 (q1 , XOR2 (q2 . q3))), R))

Fig. 2 Definitions (cont.) and proof of correctness of 3bit up counter.

181

($nsl iff $AND2(s0,R)) means the next state will be $.nsl, if and only if

the current state is $s0 and R is "l".

Behavior of a 3bit up counter circuit
Have 4 inputs(R，q3,q2,ql) and 3outputs(nq3,nq2,nql)

States change as follows:

000→001→010→011→100→101→110→111→000→

return to the initial state(OOO) by the reset input

Signal definitions

s{〗二 CO3ub;：三 []]}ns
R

Input signal definitions
000→ $s0=$AN03(NOT1 q3, NOTl q2,NOT1 ql)
OJtput signal definitions
001→ $ns 1 =$AN03(NOT1 nq3, NOTl nq2, nq 1)

Fig. l Definitions of 3bit up counter.

Definitions and proof to correctness of

a 3bit up counter

R

3

2

1

q

q

q

｛

s
 s

n
 ｝

祁

位

ql

n

n

n

Definitions of a 3bit up counter

Needs to proof these definitions

($ns1 iff $AND2(s0. R))&
($ns2 i ff $AND2 (s 1. R)) &
($ns3 if f $AND2 (s2. R)) &
($ns4 if f $AND2 (s3. R)) &
($ns5 i ff $AND2 (s4. R)) &
($ns6 iff $AND2(s5. R))&
($ns7 iff $AND2(s6. R))&

($ns0 i ff $0R2 (s 7. NOTl R)) ;
($nq1 iff $AND2(NOT1 ql, R))&
($nq2 i ff $AND2 (XOR2 (ql. q2), R)) &
($nq3 i ff $AND2 (OR2 (AND2 (q3, NOTl ql),

AND2 (ql. XOR2 (q2, q3))). R))

Fig. 2 Definitions (cont.) and proof of correctness of 3bit up counter.

5. An application to a radix‐2 ksD number coded adder circuit

Here, we apply the new method to designing an adder circuit on a

radix‐2 kSD number.

In a radix‐2 kSD (signed‐digit) coded adder circuit, calculations can

be finished in a constant time no matter whether there is a ripple carry.

Here, we will verify the correctness of such a circuit of case k=2 .

A designed radix‐4SD number circuit

I U I

Fig.3 Signal layout of radix‐4SD number coded adder circuit

182

5. An application to a radix-2kSD number coded adder circuit

Here, we apply the new method to designing an adder circuit on a

radix-2kSD number.

In a radix-2kSD (signed-digit) coded adder circuit, calculations can

be finished in a constant time no matter whether there is a ripple carry.

Here, we will verify the correctness of such a circuit of case k=2.

A designed radix-4SD number circuit

and signal layouts
value x2 x1 xO

泣

"
X
O

拉

ylyo

｛

｛

x

y

q廿喝

-3 1 0 1
-2 1 1 0
-1 1 1 1

0 0 0 0
1 0 0 1

2 0 1 0

3 0 1 1
(y,s are similar)

nc1
value cl

0
0

c
c

n

1
0
1

1
0
0

1
0
1

Fig.3 Signal layout of radix-4SD number coded adder circuit

 OutDutS of PARTI which used radix‐4SD number

Fig.4 Definitions of radix‐4SD number coded adder circuit

The correctness of a 4‐SD number adder circuit is verified with the 4

steps described in former section.

First, input and output status can be defined as follows:

INPUT STATE:

($xm3 iff $AND3(x2,NOTlx1 , xO))&

($xm2 iff $AND3(x2 , xl,NOTI xO))&

($xml iff $AND3(x2 , x1 , xO))&

($xz iff $AND3(NOTI x2,NOT1 xl,NOTI xO))&

($xpl iff $AND3(NOTI x2,NOTlx1 , xO))&

($xp2 iff $AND3(NOTI x2 , xl,NOTI xO))&

($xp3 iff $AND3(NOTI x2 , x1 , xO))

Here, $xO,$xl,$x2 express the three inputs of PARTI (Fig.3),

$xm3,$xm2,$xm1,$xz,$xp1,$xP2,$xP3 are all possible input states. The

expression $xm3 iff $AND3(x2,NOT1 xl,xo) means that an input state is

called $xm3 if and only if inputs x2=1^{\dagger}\dagger\dagger t, x1=^{\mathfrak{j}}0\dagger|\dagger, x0=|\uparrow 1^{\dagger\uparrow} .

183

Outputs of PART 1 which used radix-4SD number

Value w2 wl wO ncl ncO
other

expression

6
5
4
3
2
1
0
1
2
3
4
5
6

-l-
―
―
―

2
1
0
1
2
1
0
1
2
1
0
1
2

―

―

―

―

―

+

＋

+

+

＋

+

+

+

+

+

+

+

＋

4
4
4
4
0
0
0
0
0
4
4
4
4

＿
＿
＿
一

1
1
1
1
0
0
0
0
0
1
1
1
1

1
1
1
1
0
0
0
0
0
0
0
0
0

0
1
0
1
0
1
0
1
0
1
0
1
0

1
1
0
0
1
1
0
0
1
1
0
0
1

1
1
0
0
1
1
0
0
0
1
0
0
0

3

2

1

3

2

3

―

―

―

+

＋

+

+

＋

+

0

4

4

4

4

0

―
―

Several kinds numerical

value expression is

possible so that figure

increasing number can

take out a mark in SD

number.

In this study, 齢

represent numerical

value by expression

surrounded by a square.

Fig.4 Definitions of radix-4SD number coded adder circuit

The correctness of a 4-SD number adder circuit is verified with the 4

steps described in former section.

First, input and output status can be defined as follows:

INPUT STATE:

($xm3 iff $AND3(

($xm2 iff $AND3(

($xml iff $AND3(

x2,NOT1 xl,

xl,NOTl xO))&

x2, xl, xO))&

($xz iff $AND3(NOT1 x2,NOT1 xl,NOTl xO))&

($xpl iff $AND3(NOT1 x2,NOT1 xl, xO))&

($xp2 iff $AND3(NOT1 x2, xl,NOTl xO))&

xO))&

x2,

($xp3 iff $AND3(NOT1 x2, xl, xO))

Here, $x0,$xl,$x2 express the

$xm3,$xm2,$xm 1,$xz,$xp 1,$xp2,$xp3

three

are all

inputs

possible

of PARTl

input

(Fig.3),

states. The

expression $xm3 iff $AND3(x2,NOT1 xl,xO) means that an input state is

called $xm3 if and only if inputs x2="1", xl="O", xO="l".

$ym3,$ym2,$ym1,$yz,$yp l,$yp2,$yp3 can be defined similarly.

OUTPUT STATE:

Output states can be defined in same way as follows.

($nz iff $AND5(NOTI ncl,NOTI ncO ,NOTI nw2,NOTl nwl,NOTI nwO))&

($npl iff $AND5(NOTI ncl,NOTI ncO ,NOTI nw2,NOTlnwl , nwO))&

($np2 iff $AND5(NOTI ncl,NOTI ncO ,NOTI nw2 , nwl,NOTI nwO))&

($np3 iff $AND5(NOTI ncl , ncO , nw2 , nwl , nwO))&

($np4 iff $AND5(NOTI ncl , nco,NoTlnw2,NOTl nwl,NOTI nwO))&

({\}n_{P^{5}}.i.\dot{f}f. {\}\grave{\grave{A}}N\dot{D}. 5 (NO T`.1n.C1-.. ’ nc0 , NOTI nw2 , NOTI nwl , nwO))&
($np6 iff $AND5(NOTI ncl , ncO,NOTlnw2 , nwl,NOTI nwO))&

Next, the behavior of PART I can be described as a Boole an function

as follows.

($ncO iff $OR8(AND4(NOTI x2,xl,NoTly2,yl),

 AND3(NoTlx2,NOTly2,OR2(AND2(xl,xo),AND2(yl,y0))) ,

 AND3\langle NoTlx2,NOTly2,OR2(AND2(Xl,yo),AND2(x0,yl))) ,

 AND3 (NoT1 xl,NOTI yl,OR2tAND4tx2,x0,NOTly2,NOTlyO),

 AND4(NOTlx2,NOTlxO,y2,y0))) ,

 AND5(x2,Xl,y2,yl,NAND2(X0,y0)),AND5(x2,Xl,y2,NOTlyl,yO) ,

 AND5(x2,NOTlxl,xO,y2,yl),AND6(X2,NOTlxl,xo,y2,NOTlyl,yO)))

$ncl,$nw2,$nw1,$nw0 can be described in same way.

Then, the relation between input status and output status is built.

The following expression is showed tautology by Mizar system. So the

correctness of PART I circuit is verified. (Fig. 5)

($nm6 iff $AND2(xm3,ym3)) &

($nm5 iff $OR2(AND2(xm3,ym2),AND2(xm2,ym3))) &

($nm4 iff $OR3(AND2(xm3,ym1),AND2(xm2,ym2),AND2(xm1,ym3))) &

($nm3 iff $OR4(AND2(xm3,yz),AND2(xm2,ym1),AND2(xm1,ym2),

 AND2(XZ,ym3))) &

($nm2 iff $OR5(AND2(xm3,yp1),AND2(xm2,yz),AND2(xm1,ym1),

 AND2(Xz,ym2),AND2tXpl,ym3))) &

($nml iff $OR6(AND2(xm3,yp2),AND2(xm2,yp1),AND2(xm1,yz),

 AND2(xz,yml),AND2(xpl,ym2),AND2(Xp2,ym3))) &

184

$ym3;$ym2,$yml,$yz,$ypl,$yp2,$yp3 can be defined similarly.

OUTPUT STATE:

Output states can be defined in same way as follows.

($nz iff $AND5(NOT1 ncl,NOTl ncO,NOTl nw2,NOT1 nwl,NOTl nwO))&

($ripl 1ff $AND5(NOT1 ncl,NOTl ncO,NOTl nw2,NOT1 nwl, nwO))&

($np2 iff $AND5(NOT1 ncl,NOTl ncO,NOTl nw2, nwl,NOTl nwO))&

($np3 iff $AND5(NOT1 ncl, ncO, nw2, nwl, nwO))&

($np4 iff$AND5(NOT1 ncl,

($np5 iff $AND5(NOT1 ncl,

($np6 iff $AND5(NOT1 ncl,

ncO,NOTl nw2,NOT1 nwl,NOTl nwO))&

ncO,NOTl nw2,NOT1 nwl, nwO))&

ncO,NOTl nw2, nwl,NOTl nwO))&

Next, the behavior of PARTl can be described as a Boolean function

as follows.

($nc0 iff $0R8(AND4(NOT1 x2,xl,NOT1 y2,yl),

AND3(NOT1 x2,NOT1 y2,0R2(AND2(xl,x0),AND2(yl,y0))),

AND3(NOT1 x2,NOT1 y2,0R2(AND2(xl,y0),AND2(x0,yl))),

AND3(NOT1 xl,NOTl yl,OR2(AND4(x2,x0,NOT1 y2,NOT1 yO),

AND4(NOT1 x2,NOT1 x0,y2,y0))),

AND5(x2,xl,y2,yl,NAND2(x0,y0)),AND5(x2,xl,y2,NOT1 yl,yO),

AND5(x2,NOT1 xl,x0,y2,yl),AND6(x2,NOT1 xl,x0,y2,NOT1 yl,yO)))

$ncl,$nw2,$nwl,$nw0 can be described in same way.

Then, the relation between input status and output status is built.

The following expression is showed tautology by Mizar system. So the

correctness of PARTl circuit is verified. (Fig.5)

($nm6 iff $AND2(xm3,ym3)) &

($nm5 iff $0R2(AND2(xm3,ym2),AND2(xm2,ym3))) &

($nm4 iff $0R3(AND2(xm3,yml),AND2(xm2,ym2),AND2(xml,ym3))) &

($nm3 iff $0R4(AND2(xm3,yz),AND2(xm2,ym l),AND2(xml,ym2),

AND2(xz,ym3))) &

($nm.2 iff $0R5(AND2(xm3,ypl),AND2(x・m2,yz),AND2(xml,yml),

AND2(xz,ym2),AND2(xpl,ym3))) &

($nml iff $0R6(AND2(xm3,yp2),AND2(xm2,ypl),A.ND2(xml,yz),

AND2(xz,ym l),AND2(xpl,ym2),AND2(xp2,ym3))) &

($nz iff $OR7(AND2(xm3,yp3),AND2(xm2,yp2),AND2(xm1,yp 1),

 AND2(XZ,yZ),AND2(XP^{1,1A}ym),ND2(xP2,ym2),AND2(xP^{3,m}y3)1) &

 \langle $npl iff SOR6 (AND2 (xm2,yp3),AND2 (xml,yp2),AND2(xz,ypl),

 AND2(xp.1,yz),AND2\langle Xp2,yml),AND2(Xp3,ym2))\rangle &

($np2 iff {\}oR5(AND2lXml,yp3),AND2(xZ,yp2),AND2(x_{P^{1}},yP1) ,

 AND2(xp2,yZ),AND2(xP3,yml))) &

($np3 iff $OR4(AND2(xz, yP^{3}), ANDz(xP^{1,yP}2),AND2(xp2,yp1) ,

 AND2(x_{P^{3}},yZ))) &

($np4 iff $OR3(AND2(xp1,yp3),AND2(xp2,yp2),AND2(xp3,yp1))) &

($np5 iff $OR2(AND2(xp2,yp3),AND2(xp3,yp2))) &

($np6 iff $AND2(xp3,yp3))

Here, for example, the expression ($nm5 iff $OR2(AND2(xm3,ym2),

AND2 (xm2,ym3))) means a state i..s call..ed $nm5 (- 5), ..\cdot. if\prime ande' . onIy if the
input state ($xm3(x =- 3) and $ym2(y =\cdot 2)) or ($xm2(x =- 2) and $ym3(y =- 3)).

Other expressions are similar.

The correctness of PART2 can be verified in same way. (Fig.6)

Thus, the behavior of the whole circuit can be expressed by the

following expressions.

($xm2 iff $AND3(x2 , xl,NOTI xO))&

($xml iff $AND3(x2 , x1 , xO))&

($xz iff $AND3(NOTI x2,NOT1 xl,NOTI xO))&

($xpl iff $AND3(NOTI x2,NOTlx1 , xO))&

($xp2 iff $AND3(NOTI x2 , xl,NOTI xO))&

($cm iff $AND2(c1 , cO))&

($cz iff $AND2(NOTI cl,NOTI cO))&

($cp iff $AND2(NOTI c1 , cO))&

($nm3 iff $AND3(ns2,NOTlnsl , nsO))&

($nm2 iff $AND3(ns2 , nsl,NOTI nsO))&

($nml iff $AND3(ns2 , nsl , nsO))&

($nz iff $AND3(NOTI ns2,NOTl nsl,NOTI nsO))&

($npl iff $AND3(NOTI ns2,NOTlnsl , nsO))&

185

($nz iff $0R7(AND2(xm3,yp3),AND2.(xm2,yp2),AND2(xml,ypl),

AND2(xz,yz),AND2(xpl,yml),AND2(xp2,ym2),AND2(xp3,ym3))) &

($npl iff $0R6(AND2(xm2,yp3),AND2(xml,yp2),AND2(xz,ypl),

AND2 (xp.1,yz),AND2 (xp2,ym 1),AND2(xp3,ym2))) &

($np2 iff $0R5(AND2(xml,yp3),AND2(xz,yp2),AND,2(xpl,ypl),

AND2(xp2,yz),AND2(xp3,yml))) &

($np3 iff $0R4(AND2(xz,yp3),AND2(xpl,yp2),AND2(xp2,ypl),

AND2(xp3,yz))) &

($np4 iff$0R3(AND2(xpl,yp3),AND2(xp2,yp2),AND2(xp3,ypl))) &

($np5 iff $0R2(AND2(xp2,yp3),AND2(xp3,yp2))) &

($np6 iff $AND2(xp3,yp3))

Here, for example, the expression ($nm5 iff $0R2(AND2(xm3,ym2),

AND2(xm2,ym3))) means a state is called $nm5(:5) if and only if the

input state ($xm3(x=-3) and $ym2(y=-2)) or ($xm2(x=-2) and $ym3(y=-3)).

Other expressions are similar.

The correctness of PART2 can be verified in same way. (Fig.6)

Thus, the behavior of the whole circuit can be expressed by the

following expressions.

($xm2 iff $AND3(

($xml iff $AND3(

9

9

2

2

x

x

xl,NOTl xO))&

xl, xO))&

($xz iff $AND3(NOT1 x2,NOT1 xl,NOTl xO))&

($xpl iff $AND3(NOT1 x2,NOT1 xl, xO))&

($xp2 iff $AND3(NOT1 x2, xl,NOTl xO))&

($cm iff $AND2(cl, cO))&

($cz iff $AND2(NOT1 cl,NOTl cO))&

($cp iff $AND2(NOT1 cl, cO))&

($nm3 iff $AND3(

($nm2 iff $AND3(

($nml iff $AND3(

ns2,NOT1 nsl, nsO))&

ns2,

ns2,

nsl,NOTl nsO))&

nsl, nsO))&

($nz iff $AND3(NOT1 ns2,NOT1 nsl,NOTl nsO))&

($npl iff $AND3(NOT1 ns2,NOT1 nsl, nsO))&

($np2 iff $AND3(NOTI ns2 , nsl,NOTI nsO))&

($np3 iff $AND3(NOTI ns2 , nsl , nsO))&

($nsO iff $OR4(AND4(NOTI x2,NOT\iota xl,NOTI xO,co), AND3\langle x1,NOTlxO,co_{)} ,

 AND5 (NoTlx2,NOTlxl,xO,NoTl cl,NOTI cO),

AND5 (x2,x1,xo , NO T I c1, NOTi cO))) &

($nsl iff $OR5(AND5(NOTI x2,NOT1 xl,NOTI xO,cl,Co),

 AND5(NoTlx2,NOTlxl,xO,NoTlcl,co),AND3(xl,NOTlxo,NoTlc1) ,

 AND5 (X2,X1,x0,NOT1 cl,NOTI cO),AND5(x2,x1,x0,c1,c0))) &

($ns2 iff $OR7(AND2(c1,NOT1 cO), AND4 (NOTlx2,NOT1 xl,NOTI xO,cl),

 AND3(NoTlx2,xl,x0),AND3(X2,xl,NOTlxo_{)},AND2(x2,NOTlx1) ,

 AND3 (x2,NOT1 cl,NOTI cO), AND2(X2,cl)))

($nm3 iff {\}AND2(Xm2,c\grave{m})) &

($nm2 iff $OR2(AND2(xm2,cz),AND2(xm1,cm))) &

($nml iff $OR3(AND2(xm2,cp),AND2(Xml,cZ),AND2(xZ ,cm))) &

($nz iff $OR3(AND2(xm1,cp),AND2(xz,cz),AND2(xp1,cm))) &

($npl iff $OR3(AND2(xz, cp), AND2(x_{P}1,cz),AND2(x_{P}2,Cm))) &

($np2 iff $OR2(AND2(xp1,cp),AND2txp2,cz))) &

($np3 iff $AND2(xp2,cp))

The tautology can be showed because part 1 and part 2 have been

verified. So the correctness of radix‐4SD adder circuit is verified.

186

($np2 iff $AND3(NOT1 ns2,

($np3 iff $AND3(NOT1 ns2,

nsl,NOTl nsO))&

nsl, nsO))&

($ns0 iff $0R4(AND4(NOT1 x2,NOT1 xl,NOTl xO,cO), AND3(xl,NOT1 xO,cO),

ANDS(NOTl x2,NOT1 xl,xO,NOTl cl,NOTl cO),

AND5(x2,xl,x0,NOT1 cl,NOTl cO)))&

($nsl iff $0R5(AND5(NOT1 x2,NOT1 xl,NOTl xO,cl,cO),

ANDS(NOTI x2,NOT1 xl,xO,NOTl cl,c0),AND3(xl,NOT1 x0,NOT1 cl),

AND5(x2,xl,xO,NOT 1 c 1,NOTl c0),AND5(x2,xl,xO;c 1,cO)))&

($ns2,iff $0R7(AND2(cl,NOT1 c0),AND4(NOT1 x2,NOT1 xl,NOTl xO,cl),

AND3(NOT1 x2,xl,x0),AND3(x2lxl,NOT1 x0),AND2(x2,NOT1 xl),

AND3(x2,NOT1 cl,NOTl c0),AND2(x2,cl)))

($nm3 iff$AND2(xm2,cm)) &

($nm2 iff $0R2(AND2(xm2,cz),AND2(xml,cm))) &

($nml iff $0R3(AND2(xm2,cp),AND2(xml,cz),AND2(xz,cm))) &

f$nz iff $0R3(AND2(xml,cp),AND2(xz,cz),AND2(xpl,cm))) &

($npl iff $0R3(AND2(xz,cp),AND2(xpl,cz),AND2(xp2,cm))) &

($np2 iff $0R2(AND2(xpl,cp),AND2(xp2,cz)))&

($np3 iff $AND2(xp2,cp))

The tautology can be showed because part 1 and part 2 have been

verified. So the correctness of radix-4SD adder circuit is verified.

wz =\sim xz^{-}Tr_{A^{-}}(XlA\cdot Dy1r-_{t^{X\cup}} Aunl”

 +x2^{*}x1*\wp r_{-y1}*g0 NAND yO)

 +\prime s2^{r}\sim xl r y2^{*} yl r (xO NAND yO)
 +x2^{s}\sim_{X}1\wedge 1^{*}y\sim yO+xl^{*}-_{Zo*} y2 \bigwedge_{Y^{1}}

 +\wedge z1^{*_{X0}r}\prime v1tyo* (x2 XORy2)
 +x2^{*}xo^{*}y2^{r}yO^{*} (xl XNORyl)

 w1= (xl XNOR y1)^{*}(xO^{*}yO) +(x1 XOR y1)^{P} (xO NAND yO)

 wO=xOXORyo

Fig. 5 The circuit verified of correctness by Mizar system (PART I)

 s2=c1*- t\omega--_{W2-w}*1*_{-Wo*}C1

 +-w2^{\star}W1^{\star}wO+w2^{*}w1^{\star}-wO

 +x2^{*}-xl+x2^{*}\neg;1\star-cO+_{X}2^{\#}C1

 sl=-w2^{*}-_{W1-_{WO^{*}}}\neq c1*cO

 +-w2^{*}-wl*o^{*}w-C1*_{C}o

 +w1^{*}-WO\star\wedge i1

 +w2^{*}w1\star_{W0^{*}1}C\star_{CO}

 +x2*X1^{*}Xo*-_{C1-c}\star 0

 sO=-_{W}2^{*}-W1*_{-WO^{*}CO}+x1*_{-xO^{\star_{C}}o}

 +-x2^{*}-X1*xo*-C1^{\star}-_{Co}

 +x2^{*}X1^{k}x0^{*}-c1\star\triangleleft io

Fig.6 The circuit verified of correctness by Mizar system (PART2)

187

x2
xl
xO

y2
yl
yO

ncl = x2＊---xl*-xO + y2＊--yl＊呻

+ ---:x:2＊"'X 1*---:x:O *y2＊が＋x2合 ---xl*-y2＊--yl＊呻

+ x2 *y2*（---xl十-'!fl) + x2 * y2 * (xl＊如＋yl＊-yO)

呻＝-x2*呼＊（xl*xO+yl *yO)
► ncl

l—• ncO ＋---:x:2*ナ (xl*yO+xO*yl)＋-x2*xl *--y2*yl
+ ---xl＊-yl * (x2 *xO＊マ＊呻＋心＊---:x:O* y2 * yO)

► w2 +x2 *xl*y2*yl*(xONANDyO)
► wl —• "o + x2 *xl *y2*--yl*yO +x2＊---xl *x0*y2*yl
+ x2＊-xl *xO*y2＊--yl *yO

w2=-x2＊マが (xlXO Ryl) * (x O XORyO)

+ x2 *xl去で2＊-'!fl屯 ONANDyO)

+ "'Xが～xl*y2 *yl合 (xONANDyO)

+ x2*-xl*yl*-yO+xl彙 "'XO*y2＊-'!fl

＋---xl*xO食 -'!fl*yO*(x2 XORy2)

+ x2 * xO*y2*yO*(x1XNORyl)

wl = (xlXNORyl) *(xO *yO) + (xlXORyl) *(xONANDyO)

wO= xOXORyO

Fig.5 The circuit verified of correctness by Mizar system (PARTl)

PART 2

s2 =cl*べo+~w2*～w1 *~wo*c1

+-w2 *wl * wO +w2 * wl * -wO

+x2 * -xl + x2 *-cl* -co+ x2 * cl

s2 sl = -w2 * -wl * -wO * cl * cO

s1
s0

+ -w2 * -wl * wO * -cl * cO

+wl *-wO＊-cl

+ w2 * wl * wO * cl * cO

+ x2 * xl * xO * -cl * -cO

s0 =-w2 * -wl * -wO * cO + xl * -xO * cO

+-x2 * -xl * xO *-cl* -cO

+x2 * xl * xO *-cl* -cO

Fig.6 The circuit verified of correctness by Mizar system (PART2)

6. Conclusion

We showed it is possible to verify correctness of logical circuit’s

mathematical model using proof checker Mizar.

This can be considered as a new approach to verifying correctness of

logical circuit.

The circuit we proved has been accept by the library of Mizar, and it

can be used to prove larger circuits.

When the library is substant.ially, in future, verification of logical

circuits in practice can be expected. v_{er}if`\dot{i}Cati_{0}n- of cryptogram circuit can

be realized in same way.

References

[1] Mizar Project: http://miZar.org/ProjeCt/

[2] Nakamura: ”Logic Gates and Logical Equivalence of Adders”,

 \iota_{Volume}11,Jour\dot{n}al of Formalized Mathematics 1999

 \lfloor 3r]Yang,WaSaki,Fuwa, Nakamura: ”Correctness of Binary Counter

Circuits”, Volume 11, Journal of Formalized Mathematics 1999

188

6. Conclusion

We showed it is possible to verify correctness of logical circuit's

mathematical model using proof checker Mizar.

This can be considered as a new approach to verifying correctness of

logical circuit.

The circuit we proved has been accept by the library of Mizar, and it

can be used to prove larger circuits.

When the library is substantially in future, verification of logical

circuits in practice can be expected. Verif.ication of cryptogram circuit can

be realized in same way.

References

[1] Mizar Project: http:/ /mizar.org/project/

[2] N3:kamura: "Logic Gates and Logical Equivalence of Adders",

Volume 11,Jour~al of Formalized Mathematics 1999

[3]Yang,Wasaki,Fuwa,Nakamura: "Correctness of Binary Counter

Circuits", Volume 11,Journal of Formalized Mathematics 1999

