
Correctness of adder algorithm using high‐radix signed‐digit

number system and its adaptation to RSA cryptogram

信州大学工学部 藤澤義範 (Yoshinori Fujisawa)
信州大学工学部 不破泰 (Yasushi Fuwa)
信州大学工学部 中村八束 (Yatsuka Nakamura)

ABSTRACT

In this paper, we propose a new high‐speed processing method for encoding and

decoding the RSA cryptogram which is a kind of public‐key cryptogram. This

cryptogram is not only used for encrypting data, but also for such purposes as

authentication. However, the encoding and decoding processes take a long time

because they require a great deal of calculations. As a result, this C1\backslash \cdot P^{tram}vog is

not suited for practical use. In order to make a high‐speed piocessing Inethod,

we in\uparrow loduCe the following ideas: 1. To reduce the numbel of sulnlnation

operations, we increase the number of coding bits used to replesent a digit.

2. We propose a high‐speed addition operation for handling the case in which

each digit has a large number of bits. 3. We guarantee the value of modulo

operations by determining the possible range and create parallel subtraction

circuits as a result. By applying these concepts, we are able to reduce processing

times to approximately 1/3\sim 1/4 of the time of previous methods.

1 Introduction transactions is disrupted by these crimes. The

cryptosystem is one of the means to cope with
Recently, the development of computer tech‐

these crimes.

nology is progressing very quickly and the po‐
There are public‐key and secret‐key cryptograms

larization of the Internet is spreading in general.
in a cryptosystem. The public‐key cryptograms

Various cash transactions using the Internet have
have become a matter of great concern compared

begun. On the other hand, computer crimes of
with secret‐key cryptograms because of an au‐

illegal access, spoof and so on have been increas‐
thentication can be performed, kinds of private

ing for a few years. The popularization of cash
keys are not required, and the transfer of the pri‐

数理解析研究所講究録
第1186巻 2001年 164-176

164

Correctness of adder algorithm using high-radix signed-digit

numb~r system and its adaptation to RSA. cryptogram

信州大学工学部藤澤義範 (YoshinoriFujisawa)
信HI大学工学部不破泰 (YasushiFuwa)
信州大学工学部中村八束 (YatsukaNakamura)

ABSTRACT

In this paper, we propose a new high-speed processing method for encoding and

decoding the RSA cryptogram which is a kind of public-key cryptogram. This

cryptogram is not only used for encrypting data, but also for such purposes as

authentication. However, the encoding and decoding processes take a long time

because they require a great deal of calculations. As a result, this cryptogram is

not suited for practical use. In order to make a high-speed processing method,

we introduce the following ideas: 1. To reduce the number of summation

operations, we increase the number of coding bits used to represent a digit.

2. We propose a high-speed addition operation for handling the case in which

each digit has a large number of bits. 3. We guarantee the value of modulo

operations by determining the possible range and create parallel subtraction

circuits as a result. By applying these concepts, we are able to reduce processing

times to approximately 1/3 ~ 1/4 of the time of previous methods.

1 Introduction

Recently, the development of computer tech-

nology is progressing very quickly and the po-

larization of the Internet is spreading in general.

Various cash transactions using the Internet have

begun. On the other hand, computer crimes of

illegal access, spoof and so on have been increas-

ing for a few years. The popularization of cash

transactions is disrupted by these crimes. The

cryptosystem is one of the means to cope with

these crimes.

There are public-key and secret-key cryptograms

in a cryptosystem. The public-key cryptograms

have become a matter of great concern compared

with secret-key cryptograms because of an au-

thentication can be performed, kinds of private

keys are not required, and the transfer of the pri-

vate key is unnecessary. However, in a public‐key sidered on the basis of three ideas as follows:

cryptogram, the encryption and decryption take
1. To reduce the number of summation opera‐

a long time because they require a great deal of
tions, we increase the number of coding bits

calculations and this cryptogram is not suited for
used to represent a digit.

practical use. On the other hand, the number of

2. We propose a high‐speed addition process‐coding bits used to represent an encryption and

ing method in the case that the number ofdecryption key has a tendency to increase when

coding bits used to represent each digit isimproving crypto‐strength. As a result, the prob‐

large.lem of increasing encryption time is taken seri‐

ously. 3. We guarantee the value of remainders to

In a public‐key cr_{\}^{r}P}t_{0}glam , when both en‐ be within a constant range. Using this re‐

crvption and decr;]) ti_{01}1- are executed it is nec‐ sult. we can realize parallel subtraction pro‐

 essal.\backslash to calculate po\backslash \backslash \cdot erS and reInaiIl(leIs with cesses.

]_{\dot{\mathfrak{c}}11}b^{C}' nuI11b_{G}1` S . T11ei_{\Gamma} calculation can be real‐

NVe can achieve higher speeds of encryption
ized b\backslash .’ addition and subtra(tion repetitions. So.

and decryption processing than in previous works
reducing the number of repetitions is significant

with these ideas.

in improving the speed of processing time. Un‐
In this paper, we explain our target public‐key

til now, many scholars researched speed improve‐
cryptogram in Section 2 and previous processing

ment methods for public‐key cr} P^{t}ograms[2] . We
methods in Section 3. Next, in Section 4, we pro‐

can obtain some good results. Reserchers have
pose the new high‐speed encryption and decryp‐

developed some hardware for encryption and de‐
tion processing methods. Finally, we evaluate our

cryption processes using these results. However,
proposal against previous methods.

a feasible processing speed has not yet been at‐

tained. It is necessary to create a faster imple‐ 2 Outline of RSA Cryptosys‐
tem

mentation for public‐key cryptograms to be used

more popularly. There are various public‐key cryptograms. Among

In this paper, we propose a new method of
these, especially, the RSAcryptosyStem[3], [6] ,

high‐speed encryption and decryption algorithm [7] invented by Rivest, Shamir and Adleman in

for public‐key cryptogram. This method is con‐ 1977 is considered as the most powerful. In this

165

vate key is unnecessary. However, in a public-key

cryptogram, the encryption and decryption take

a long time because they require a great deal of

calculations and this cryptogram is not suited for

practical use. On the other hand, the number of

coding bits used to represent an encryption and

decryption key has a tendency to increase when

improving crypto-strength. As a result, the prob-

lem of incre邸 ingencryption time is taken seri-

ously.

In a public-key cryptogram, when both en-

cr:q>tion and decryption aw executed it is nee-

essary to calculate powers and remainders with

large numbers. Their calculation can be 1.（0al-

ized by addition and subtraction repetitions. So,

reducing the number of repetitions is significant

in imprm・ing the speed of processing time. Un-

ti! now, many scholars researched speed imprm・e-

ment methods for public-key cryptograms[2]. We

can obtain some good results. Reserchers have

developed some hardware for encryption and de-

cryption processes using these results. However,

a feasible processing speed has not yet been at-

tained. It is necessary to create a faster imple-

mentation for public-key cryptograms to be used

more popularly.

In this paper, we propose a new method of

high-speed encryption and decryption algorithm

for public-key cryptogram. This method is con-

sidered on the basis of three ideas as follows:

1. To reduce the number of summation opera-

tions, we increase the number of coding bits

used to represent a digit.

2. We propose a high-speed addition process-

ing method in the case that the number of

coding bits used to represent each digit is

large.

3. ¥Ve guarantee the value of remainders to

be within a constant range. Using this re-

suit, we can realize parallel subtraction pro-

cesses.

¥Ye can achiew higher speeds of encryption

and decryption processing than in previous works

with these ideas.

In this paper, we explain our target public-key

cryptogram in Section 2 and previous processing

methods in Section 3. Next, in Section 4, we pro-

pose the new high-speed encryption and decryp-

tion processing methods. Finally, we evaluate our

proposal against previous methods.

2 Outline of RSA Cryptosys-

tern

There are various public-key cryptograms. Among

these, especially, the RSA cryptosystem[3], [6],

[7] invented by Rivest, Shamir and Adleman in

1977 is considered as the most powerful. In this

cryptosystem, the encryption key is a pair (e, F) is more than 200 digits in decimal representation.

and the decryption key is a pair (d, F) . The com‐ On the other hand, the complexity of calculation

ponent e is called a public key and d is called a for encryption and decryption is also increased

private key. for a larger F , so the processing speed becomes

Let the plain text be M and the cipher text slower.

be C . Then the RSA encryption and decryption In an RSA cryptosystem, the algorithm of en‐

algorithms are given by cryption and decryption uses the same algorithm

as Eqs.(1) and (2). In this paper, we propose
Encryption: C=M^{e} mod F (1)

the high‐speed processing algorithm for encryp‐
Decryption: M=C^{d} mod F (2)

tion. However, the algorithm can also be used for

where the range of \Lambda I and C is between 0 and decryption.

F‐l. In Eqs. (1) and (2). kevs e, d and F are

3 Previous Processing Method
 deternli_{\mathfrak{U}e}d as follows:

1. Choose two large prime numbers p and q .
In tbis section. we introduce the nlost1) O\backslash \backslash -

 e\iota ful processing nlethod[2] among previously de‐
2. Calculate F=p\cross q .

veloped methods. Assume that the encryption

3. Calculate L=LCM((p-1), (q-1)) .
key e is represented by a radix‐4 number of m

4. Choose e that satisfies the following two digits (e_{m-1}\cdots e_{0})_{4}(e_{i}\in\{0,1,2,3\}) such that

conditions, GCD(L, e)=1 and (1<e< e= \sum_{i=0}^{m-1}ei4^{i} . Then Eq.(l) can be calculated

 L) . by the following expression.

5. Calculate d which satisfies the following con‐ M^{e} mod F = M[\sum_{i\overline{0}}^{m1}=e_{i}4^{i}] mod F

dition, e\cross d mod L=1 . = (M^{e_{0}}\cross M^{4e_{1}}\cross

The security of an RSA cryptosystem depends ...\cross M^{4^{m-1}e_{m-1}}) mod F

on t\dot{h}e complexity of calculation in factorizing F
 = ((M^{e_{0}} mod F) \cross

into p and q . Consequenty, the value of F is in‐
 ...\cross (M^{4^{m-1}e}m-1 mod F)) mod F

creased for improving the safety. The inventors

The value of Eq.(l) can be obtained by the
of the RSA cryptosystem recommend selecting

following algorithm.
 p and q as having more than 100 digits in deci‐

mal representation. Therefore, the factorized F Algorithm 3.1

166

cryptosystem, the encryption key is a pair (e, F)

and the decryption key is a pair (d, F). The com-

ponent e is called a public key and d is called a

private key.

Let the plain text be M and the cipher text

be C. Then the RSA encryption and decryption

algorithms are given by

Encryption : C = Me mod F

Decryption : NI =び modF

is more than 200 digits in decimal representation.

On the other hand, the complexity of calculation

for encryption and decryption is also increased

for a larger F, so the processing speed becomes

slower.

In an RSA cryptosystem, the algorithm of en-

cryption and decryption uses the same algorithm

)

、
1
,

1

2

,

_

し

ヽ

ー

、

where the range of M and C is between O and

F-1. In Eqs. (1) and (2), keys e,d and Fare

determined as follows:

1. Choose two large prime numbers p and q.

2. Calculate F = p x q.

3. Calculate L = LCM((p-1), (q -1)).

4. Choose e that satisfies the following two

conditions, GCD(L,e) = 1 and (1 < e <

L).

5. Calculated which satisfies the following con-

dition, e x d mod L = l.

The security of an RS A cryptosystem depends

on the complexity of calculation in factorizing F

into p and q. Consequenty, the value of F is in-

creased for improving the safety. The inventors

of the RSA cryptosystem recommend selecting

p and q as having more than 100 digits in deci-

mal representation. Therefore, the factorized F

as Eqs.(1) and (2). In this paper, we propose

the high-speed processing algorithm for encryp-

tion. However, the algorithm can also be used for

decryption.

3 Previous Processing Method

In this section, we intro<luce th(、mostpow-

erful processing method[2] among previously de-

veloped methods. Assume that the encryption

key e is represented by a radix-4 number of m

digits (em-1 ・ ・ ・eo)4 (e; E {O, 1,2,3}) such that

e= 区;:~1 e;4i. Then Eq.(l) can be calculated

by the following expression.

Me mod F M図;:~1 e;4i] mod F

(Meo X]v[4e1 X

... X M4m-lem-l) mod F

= ((Meo mod F) X

•• • X (M4m-lい modF)) mod F

The value of Eq.(1) can be obtained by the

following algorithm.

Algorithm 3.1

Step 1 . C arrow 1 However, increased processing time is a problem

because of carry and borrow propagation. There‐Step 2 : i arrow m-1

fore, a radix‐4 signed‐digit (SD) number system,
Step 3 : Q $‐ C

in which propagation of carry and borrow does
 P arrow Q\cross C mod F

not occur, is used in the previous method.
 Q arrow P

A radix‐4 SD number system[1] is a represen‐
 P arrow Q\cross C mod F

tation method of numbers proposed by A. Avizie‐
 C arrow P

 nis . In a radix‐4 SD number representation, signs
Step 4 : If e_{i} \neq 0, then

of each digit are in symmetry. For instance, an
 Q arrow M^{e_{i}} mod F

integer X is represented by radix‐4 SD number of
 P arrow Q\cross C mod F

 n digits as follows:
 C arrow P

 X = x_{n-1}4^{n-1}+x_{n-2}4^{n-}2++\cdots X_{1}41+x040
Step 5 : If i, \neq 0 , then iarrow i-1 ,

go to Step3.
 = \sum_{i=0}^{n-1}xi4^{i} (x_{?}\cdot\in\{\overline{3},\overline{2}, \overline{1}01,2,3\},\overline{x}=-
x)

Step 6 : If C < 0 , then Carrow C+F . Here. X is between-4n+1 and 4^{n}-1 . Then,

the calculation algorithm of Eq.(3) is shown in

In this algorithm, the calculation of the fol‐
Algorithm 3.2 in a radix‐4 SD number represen‐

lowing expression needs a long processing time:
tation.

 P=QxC mod F (3) Here, Q and C are integers between -F and

 F . It is assumed that these are represented by a
Reducing the number of calculations of Eq.(3)

radix‐4 SD number of n digits. It is also assumed
has a meaning for improving the speed of Algo‐

that F is represented by a radix‐4 number of n

rithm 3.1. In Step 4 of this algorithm, M^{e_{i}} mod
digits.

 F is calculated. But, assume that M^{e} : mod F(e_{i}\in

 \{0,1,2,3\}) is calculated in advance. Here, it is Algorithm 3.2

not necessary to calculate M^{0} mod F and M^{1} mod Step 1 : P arrow 0

 F because M is lower than F‐l. J arrow n

 Eq.(3) contains multiplication and remainder Step 2 : J arrow J-1

calculations with a large number. These calcu‐ Step 3 : G arrow Q\cross c_{J} mod F

lations are realized by addition and subtraction. Step 4 : R arrow 4P+G

167

Step 1

Step 2

Step 3

Step 4 : If e; =p 0, then

Step 5 ff

C ← 1

← m-1

Q ← C

P ← Q x Cmod F

Q ← P

P ← Q x CmodF

C ← P

Q ← Me, mod F

P ← Q x C mod F

C ← P

-I= 0, then i←i -1,

go to Step3.

Step 6 : If C < 0, then C←C+F.

However, increased processing time is a problem

because of carry and borrow propagation. There-

fore, a radix-4 signed-digit (SD) number system,

in which propagation of carry and borrow does

not occur, is used in the previous method.

A radix-4 SD number system(l] is a represen-

tation method of numbers proposed by A. Avizie-

nis. In a radix-4 SD number representation, signs

of each digit are in symmetry. For instance, an

integer X is represented by radix-4 SD number of

n digits as follows:

x

Xn-l 4n-l + Xn-24n-2十．．．十 x141+ xo4°

n-l

区x141 に E{3, 2, I, 0, 1, 2, 3}，元＝一x)

i=O

In this algorithm, the calculation of the fol-

lowing expression needs a long processing time:

P = Q x Cmod F (3)

Reducing the number of calculations of Eq.(3)

has a meaning for improving the speed of Algo-

rithm 3.1. In Step 4 of this algorithm, Me, mod

Fis calculated. But, assume that Me, mod F(e; E

{O, 1, 2, 3}) is calculated in advance. Here, it is

not necessary to calculate J,,,1° mod F and M1 mod

F because M is lower than F-1.

Eq.(3) contains multiplication and remainder

calculations with a large number. These calcu-

lations are realized by addition and subtraction.

Here, Xis between _4n + 1 and 4n -1. Then,

the calculation algorithm of Eq.(3) is shown in

Algorithm 3.2 in a radix-4 SD number represen-

tation.

Here, Q and C are integers between -F and

F. It is assumed that these are represented by a

radix-4 SD number of n digits. It is also assumed

that F is represented by a radix-4 number of n

digits.

Algorithm 3.2

Step 1 : p ←

゜J ← n

Step 2 J ← J -1

Step 3 G ← Q x CJ mod F

Step 4 R ← 4P+G

Step 5 . P arrow R mod F is negative, then add 2F to R) in Step 1. In Step

Step 6 : If \dot{J} = 0 , then stop 2, the result is obtained to subtract F from R (if

otherwise, go to Step 2. R is negative, then add F to R). This algorithm

is repeated until the value is between-F+1 and

In this algorithm, Q\cross c_{J} mod F is calculated F-1 . Also, an addition (or a subtraction) is done

in Step 3. But, we can calculate Qxc_{J} mod between 0 and 3 times. This is because the result

 F(c_{J}\in\{-3, -2, -1, o, 1,2,3\}) in advance. How‐ (obtained by Step 4 in Algorithm 3.2) is between

ever, it is not necessary to calculate Q\cross\pm 1 mod F ‐5F and 5F .

and Q\cross O mod F. R mod F in Step 5 can be cal‐ 4 New processing method
culated with the following algorithm. Here, it is

Eq.(l) contains calculations of powers and re‐assumed that 2F is calculated in advance.

mainders with large numbers. These calculations

Algorithm 3.3
can be realized by algorithms explained in Sec‐

Step 1 : If |R| < F , then stop
tion 3. However, the value of e . F requires moIe

 S arrow SIGN (R)
than 1,000 bits in an RS‐4 c\iota\gamma_{\sim}\cdot pt_{O}System . So,

 R arrow R-2F\cross S

the problem is processing time. Because it is as‐

Ste.p. 2 : If |R| < F , then stop sumed that Eq.(l) is calculated using Algorithm
 S arrow SIGN (R)

3.3, the number of additions is more than 1.5 mil‐

 R arrow R-F\cross S
lion times. In this section, let us consider a new

Return to Step 2. processing method to further reduce the number

In this algorithm, the function SIGN (X) dif‐ of addition operation. This method is considered

based on the following ideas.ferentiates positive and negative signs of integer

 x and is defined as follows: 1. To reduce the number of repetitions in Al‐

gorithm 3.1, let us consider using a higher
Deflnition 3.1 For all integers x

SIGN (x)=\{
radix SD number than a radix‐4 or radix‐8

 -1
, x<0

1 , x\geq 0 SD number. We adopt a general radix-2^{k}

Using the fact that the result is guaranteed SD number for the new algorithm.

to be between -F+1 and F-1 , the value of
2. We design an algorithm that decreases the

 R mod F is obtained to subtract 2F from R (if R
number of additions using a radi_{X-}2^{k} SD

168

Step 5

Step 6

P ← RmodF

If J = 0, then stop

is negative, then add 2F to R) in Step l. In Step

2, the result is obtained to subtract F from R (if

otherwise, go to Step 2. R is negative, then add F to R). This algorithm

is repeated until the value is between -F + 1 and

In this algorithm, Q x CJ mod F is calculated

in Step 3. But, we can calculate Q x CJ mod

F(CJ E {-3, -2, -1, 0, 1, 2, 3}) in advance. How-

ever, it is not necessary to calculate Q x士lmodF

皿 dQ x O mod F. R mod Fin Step 5 can be cal-

culated with the following algorithm. Here, it is

assumed that 2F is calculated in advance.

Algorithm 3.3

Step 1 : If IRI < F, then stop

S ← SIGN(R)

R ← R-2F x S

Step 2 If IRI < F, then stop

S ← SIGN(R)

R ← R-FxS

Return to Step 2.

In this algorithm, the function SIGN(x) dif-

ferentiates positive and negative signs of integer

x and is defined as follows:

Definition 3.1 For all integers x

SIGN(x) = { -i 0

0

v
>
-

x
x

9

9

Using the fact that the result is guaranteed

to be between -F + l and F -l, the value of

R mod F is obtained to subtract 2F from R (if R

F-1. Also, an addition (or a subtraction) is done

between O and 3 times. This is because the result

(obtained by Step 4 in Algorithm 3.2) is between

-5F and 5F.

4 New processing method

Eq.(l) contains calculations of powers and re-

mainders with large numbers. These calculations

can be realized by algorithms explained in Sec-

tion 3. However, the Yalue of e, F requires more

than 1,000 bits in an RSA cryptosystem. So,

the problem is processing time. Because it is as-

sumed that Eq.(1) is calculated using Algorithm

3.3, the number of additions is more than 1.5 mil-

lion times. In this section, let us consider a new

processing method to fur-ther reduce the number

of addition operation. This method is considered

based on the following ideas.

1. To reduce the number of repetitions in Al-

gorithm 3.1, let us consider using a higher

radix SD number than a radix-4 or radix-8

SD number. We adopt a general radix-2k

SD number for the new algorithm.

2. We design an algorithm that decreases the

number of additions using a radixが SD

number. Definition 4.1 For all integers k

3. Using 2, the number of repetitions becomes set k- SD= {integer e:‐2 +1\leq e\leq 2^{k}- 1 }

larger in Algorithm 3.3 becase the range for A number represented as a radi_{X-}2^{k} SD num‐

value of R is extended. Therefore, we have ber of n digits is a finite sequence in which each

to reconsider Algorithm 3.3. digit of the sequence is an element of k‐SD. As‐

4.1 General additi_{0}n of radix-2^{k} SD sume that x is represented by a radi_{X-}2^{k} SD num‐
numbers

ber of n digits. Then we show the number of the

Until now, there were many proposals for al‐ i^{th} digit of x as x_{i} (x_{i}\in k‐SD).

gorithms to be used in addition (or subtraction) We defined a function called SDDec (X) which

circuits using not only radix‐4 SD numbers but translates the number represented by a radi_{X-}2^{k}

also radix‐8 SD numbers. Addition using an SD number of n digits to an integer as follows:

number system has the property that cairy prop‐
Definition 4.2 For all integers x such that radix‐

agation of e\dot{e}lc\iota 1 digit is al\backslash va} S constant in [)oth
 2^{\Lambda}SD number of ndig\uparrow tS

iadix‐4 and radix‐8 SD number cases. Therefoie,

there have been no IepoIt_{S} on speed improvement SDDec (_{X})= \sum_{i=1}^{n}(2k)^{i-1}xx_{i}
addition circuits using a high radlx SD nunlber Conversely, we defined a function called DecSD

system. (y,k) which translates integers y into a radi_{X-}2^{k}

However, increasing the number of coding bits number of n digits as follows:

used to represent a digit has a meaning for reduc‐ Definition 4.3 For all integers y

ing the number of addition repetitions. We desig‐
 DecSD(y, k)_{i}=(ymod (2^{k})^{i})\div(2^{k})^{i-1}

nate the number of coding bits used‐to re_{P}reSent a

Assume that x and y are represented by radix‐digit by k . Also, the correctness of addition using
 2^{k} SD numbers of n digits. Let us consider addi‐

a radi_{X-}2^{k} SD number system needs to be clarify.

tion of x and y . Data and carry occur from x_{i}+y_{i} .There is a discussion about the correctness of ad‐

We defined functions to obtain the data and carry,dition using radi_{X-}2^{k} SD numbers in our pa_{P}er[4] .

respectively, called SD_{-}Add_{-c(x}arryi+y_{i}) andHere, we explain our paper briefly.

SDAdd‐Data (x_{i}+y_{i}, k) as follows:
To represent a radix‐2k SD number, we con‐

sidered the following set: Definition 4.4 For all integers z such that z=

 x_{i}+y_{i}

169

number.

3. Using 2, the number of repetitions becomes

larger in Algorithm 3.3 becase the range for

value of R is extended. Therefore, we have

to reconsider Algorithm 3.3.

4.1 General addition ofradix-2k SD

numbers

Until now, there were many proposals for al-

gorithms to be used in addition (or subtraction)

circuits using not only radix-4 SD numbers but

also radix-8 SD numbers. Addition using an SD

number system has the property that carry prop-

agation of each digit is always constant in both

radix--! and raclix-8 SD number cases. Therefore,

there have been no reports on speed imprm・ement

addition circuits using a high radix SD number

system.

However, increasing the number of coding bits

used to represent a digit has a meaning for reduc-

ing the number of addition repetitions. We desig-

nate the number of coding bits used to represent a

digit by k. Also, the correctness of addition using

a radix-2k SD number system needs to be clarify.

There is a discussion about the correctness of ad-

dition using radix-2k SD numbers in our paper[4].

Here, we explain our paper briefly.

To represent a radix-2k SD number, we con-

sidered the following set:

Definition 4.1 For all integers k

set k-SD = { integer e:-2旦1'.Se'.S 2k-1 }

A number represented as a radix-2k SD num-

ber of n digits is a finite sequence in which each

digit of the sequence is an element of k-SD. As-

sume that xis represented by a radix-2k SD num-

ber of n digits. Then we show the number of the

ith digit of x as Xi (x; E k-SD).

We defined a function called SDDec(x) which

translates the number represented by a radix-2k

number of n digits to an integer as follows:

Definition 4.2 For all integers x such that rad訟—

2''SD number of n digits

n

SDDec(x) = L(2k)i-I xx,
9=1

Conversely, we defined a function called DecSD

(y,k) which translates integers y into a radix-2k

number of n digits as follows:

Definition 4.3 For all integers y

DecSD(y, k); = (y mod (2k)i)--:-(2k)i-l

Assume that x and y are represented by radix-

沙 SDnumbers of n, digits. Let us consider addi-

tion of x and y. Data and_carry occur from凸十Yi・

We defined functions to obtain the data and carry,

respectively, called SD_Add_Carry（叩十 Yi)and

SD_A_dd_Data(xi + Yi, k) as follows:

Definition 4.4 For all integers z such that z =

Xi + y,

 SD_{-}Add_{-}c_{a}\gamma ry(z)=\{
1 , z>2

 -1 , z<-2

 0 , otherwiSe

Definition 4.5 For all integers z such that z=

 x_{i}+y_{i}

 SDAdd_{-}Data(Z, k)=z-sD_{-}Add-c_{arr}y(z)\cross 2^{k}

The following theorem can be easily deduced.

Theorem 4.1 If k\geq 2 , then -2^{k}+2\leq SD_{-}

 ----X,\ovalbox{\tt\small REJECT}_{I}-,
1

 \ovalbox{\tt\small REJECT}_{c_{n}}^{+}c_{n}c_{rI}C^{\prime'}-\ovalbox{\tt\small
REJECT}'/++-\prime d_{n}/::\prime ノ^{}/\nearrows_{\hslash}S-\prime-- SS++-
{\underline{\iota}}yny{H}--_{\mu}y/\prime//d/\underline{\underline{\underline{
/}}}-------+++dc/y-
Add‐Data (x_{i}+y_{i}, k)\leq 2^{k}-2 Figure 1: n digit addition based on a radi_{X-}2^{k}SD

number.

We defined the function called Add (x, y, k) us‐
 +DecSD(y, k)))+(2^{k})^{n}

ing Defintion4.4, 4.5 as follows:
 \cross SD_{--4}(1d-c_{a}rry(DecSD(x, k)n)

Definition 4.6 For all natural numbers k and +D_{C^{\lrcorner}c}SD(y.k)n)

 x,y which are represented by a radix‐2A SDn\tau m\uparrow-

4.2 Reducing the number of repe‐
ber of n digits titions for Eqs.(1) and (3)

Add (x, y, k)_{i} = SD_{-}4dd-Data(x_{i}+y_{i}, k) There is a discussion about the correctness of

algorithms 3.1,3.2 using radix‐2k SD numbers in +sD_{-}Add_{-Cry}ar(X_{i-}1+y_{i-1})

out pa_{P}er[5] . Here, we explain out paper briefly.
The value of Add (x, y, k)_{i} is an element of k‐

Assume that the encryption key e is repre‐
 SD . Then, there is no a carry propagation. This

sented by a radi_{X-}2^{k} SD number (e_{m-1}\cdots eo)SD

is proved by Theorem 4.1. In view of this result,
such that e= \sum_{i=0}^{m-1}ei(2^{k})^{i} . Then Eq.(l) can be

the additon time is constant as shown in Fig. 1:
calculated by the following definition and theo‐

In this figure, d_{i} is SD_{-}Add_{-D(}atax_{i}+y_{i},k), c_{i}
 rem .

is SD_{-}Add_{-Ca}rry(x_{i}+y_{i}) and s_{i} is Add (x, y, k)_{i} .

Definition 4.7 For all T_{i} such that T_{i}=M^{e_{i}}We proved the following theorem to guarantee the

 mod F
correctness of this addition.

Theorem 4.2 For all x, y such that x, y are rep‐ Pow(M, e, F, k)0 = T_{m-1}

resented by a radi_{X-}2^{k}SD number of n digits Pow(M, e, F, k)_{i+}1 = (((P_{0}w(M, e, F, k)i)^{2}k

mod F) \cross T_{m-i-1} mod F
 x+y = (sDDeC(DecSD(x, k)

170

SDAdd_Carry(z) ＝ { -i

゜

,z > 2
， z < -2
,otherwise

Definition 4.5 For all integers z such that z =

叩十 Yi

SD..AddJJata(z, k) = z-SD_Add_Carry(z) x 2k

The following theorem can be easily deduced.

Theorem 4.1 If k ~ 2, then -'
-2k + 2 < SD_

AddJJata（叩＋ Yi,k)'.S 2k -2

We defined the function called Add(x, y, k) us-

ing Defintion4.4, 4.5 as follows:

Definition 4.6 For all natural numbers k and

叩/which are r-e1n.esented by a radix-2" SD nnm-

ber of n digits

Add(x, y, k); = SD_4dd_Data(x; + y;, k)

+SD_,4.dd_Carry(xi-1 + Yi-1)

The value of Add(x, y, k); is an element of k-

SD. Then, there is no a carry propagation. This

is proved by Theorem 4.1. In view of this result,

the additon time is constant as shown in Fig. 1:

In this figure, d; is SD_Add_Data(x; + y;,k), c,

is SD_Add_Carry(x; + y;) and s; is Add(x, y, k)か

We proved the following theorem to guarantee the

correctness of this addition.

Theorem 4.2 For all x, y such that x, y are rep-

resented by a mdix-2k SD number of n digits

＋

ーロ
Figure 1: n digit addition based on a radix-2k SD

number.

+DecSD(y,k))) + (2kt

xSD_.--1.dd_Carry(DecSD(x, k)n)

+DecSD(.IJ，k)n)

4.2 Reducing the number of repe-

titians for Eqs.(1) and (3)

There is a discussion about the correctness of

algorithms 3.1,3.2 using radix-2/..'SD numbers in

out paper(5]. Here, we explain out paper briefly.

Assume that the encryption key e is repre-

sented by a radix-2k SD number (em-1 ・ ・ ・ eo)sD

such that e = I:;':計e;(2庁． ThenEq.(1) can be

calculated by the following definition and theo-

rem.

Definition 4. 7 For all T; such that T; = Me,

modF

Pow(M,e,F,k)。=Tm-l

Pow(M, e, F, k);十1 = (((Pow(M,e,F,k)，）快

x + y = (SDDec(DecSD(x, k)
mod F) x Tm-i-1 mod F

The following theorem can be deduced. represented by a radix‐2 SD number (c_{m-1}\cdots e_{0})SD

Theorem 4.3 Pow(M, e, F, k)_{m-}1=M^{e} mod F such that C= \sum_{j0}^{m1}=Cj(2^{k})i .

Eq.(l) is calculated by following algorithm and
Definition 4.8 For all U_{j} such that U_{j}=(Qx

its correctness is guranteed by definition 4.7 and c_{j})mod F

tlleorem 4.3. Mul(Q, c, F, k)0 = U_{m-1}

Algorithm 4.1 Mul(Q, c, F, k)_{j+1} = ((2^{k}\cross Mul(Q, C, F, k)_{j})

 +U_{m-j-1} mod F

Step 1 : C arrow 1

The following theorem can be deduced.
Step 2 : i arrow m-1

Step 3 : j arrow k Theorem 4.4 Mul(Q, c, F, k)_{m}-1=(Q\cross C) mod

Step 4 : Q arrow C F

 P arrow Q\cross C mod F
 Eq.(3) is calculated by following algorithm and

 C arrow P its correctness is guranteed by definition 4.8 and

 j arrow j-1 theorem 4.4.

Step 5 : If j \neq 0 , then go to Step 4.
Algorithm 4.2

Step 6 : If e^{i} \neq 0, then

 Q arrow M^{e_{i}} mod F Step 1 : P arrow 0

 J arrow n
 P arrow QxC mod F

 G arrow 1
 C arrow P

Step 7 : If i \neq 0, then iarrow i-1 Step 2 : J arrow J-1

Step 3 : G arrow Q\cross c_{J} mod F

go to Step 3.
Step 4 : R arrow 2^{k}P+G

Step 8 : If C < 0, then Carrow C+F .
Step 5 : P arrow R mod F

Step 6 : If J = 0, then stop.
In Algorithm 4.1, M^{e_{i}} mod F is calculated in

Otherwise, go to Step 2.
Step 6. But, it is assumed that M^{2} mod F\sim

 M^{2^{k}-1} mod F is calculated in advance. In Algorithm 4.2, it is assumed that Q\cross c_{J} mod

Then Eq.(3) can be calculated by the follow‐ F(c_{J}=-2^{k}+1\sim 2^{k}-1) is calculated in ad‐

ing definition and theorem. Assume that the C is vance.

171

The following theorem can be deduced.

Theorem 4.3 Pow(M,e,F,k)m-l =訪 modF

Eq.(l) is calculated by following algorithm and

its correctness is guranteed by definition 4.7 and

theorem 4.3.

Algorithm 4.1

Step 1 : C ← 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7 lf

← m-1

K

C

↑
↑

j

Q

P ← Q x C mod F

C ← P

j ← j-1

If j ＃ 0, then go to Step 4-

If e' ＃ 0, then

Q ← Me, modF

p ← Q x Cmod F

C ← p

-=p 0, then i← i -1

go to Step 3.

Step 8 : If C < 0, then C←C+F.

In Algorithm 4.1, M''mod Fis calculated in

Step 6. But, it is assumed that M2 mod F ~

M2 k -1 mod F is calculated in advance.

represented by a radixが SDnumber (cm-1 ・ ・ ・ eo)sD

such that C =四ばCj(2ザ．

Definition 4.8 For all Uj such that Uj = (Q x

Cj) modF

Mul(Q,c,F,k)。=Um-1

Mul(Q,c,F,k)i+1 = ((2k x Mul(Q,c,F,k)j)

+ Um-j-1 mod F

The following theorem can be deduced.

Theorem 4.4 Mul(Q,c,F,k)m-1 = (QxC) mod

F

Eq.(3) is calculated by following algorithm and

its correctness is guranteed by definition 4.8 and

theorem 4.4.

Algorithm 4.2

Step 1 :

Step 2

Step 4

Step 5

Step 6

P ← 0

J ← n

G ← 1

J ← J-1

Step 3 : G ← Q x CJ mod F

R ← 2牙＋G

P ← RmodF

If J = 0, then stop.

Otherwise, go to Step 2.

Then Eq.(3) can be calculated by the follow-

ing definition and theorem. Assume that the C is

In Algorithm 4.2, it is assumed that Q x CJ mod

F (CJ=ーザ＋ 1~ 2k -1) is calculated in ad-

v皿 ce.

The number of repetitions can be reduced in on the number of digits and the number of cod‐

Algorithm 4.1, 4.2 if the value of k is increased ing bits in a radi_{X-}2^{k} SD number representation.

because the number of repetitions m depends on Then, it can be assumed that the total process‐

radix number 2^{k} . If the value of k is increases, ing time is the same as one processing time for

then the value of m is decreases. obtaining the value of R mod F .

4.3 Introduction of parallel processes 5 Evaluation
to calculate R mod F

In this section, we evaluate our proposed pro‐The range of values for R becomes wide in Step

4 of Algorithm 4.2. Therefore, it is a problem cessing method. As a method of evaluating the

processing time, we compare the number of ad‐that the number of repetitions increases for ob‐

ditions (and subtraction considered as the sametaining the value of R mod F in Algorithm 3.3.

process) in a previous algorithm with the pro‐To solve this problem, we introduce a new calcu‐

lation method of R mod F . posed algorithm. We compare the cases of cod‐

The value of R is within the range of (- 2^{k}+1)F ing bit lengths of keys being 512, 1024 and 2048

and (2^{k}+1)F in Algorithm 4.2. 2^{i}F(i=1,2\cdots , k) bits. Also, the number of additions depends on

the value of k in the proposed algorithms. So, wecan be calculated in advance becauSe\cdot the value of

 F is fixed. So, R mod F can be calculated by discuss the optimum bit lengths for k . We con‐

sider that the number of additions is one time in
following circuit.

the case of parallel addition processing. Also, we

use the worst value of the key because the number

of additions depends on the coding bit pattern of

the key used.

5.1 The number of additions in the

previous algorithm

We obtain the number of calculations of Eq.(3)

in Algorithm 3.1. It is assumed that bit lengths

Figure 2: Block diagram for the calculation cir‐ of e are L bits. Then the number of repetitions m

cuit of R mod F .

is represented by [L/2]([M] is the number raised

The addition processing time does not depend to unit fractions lower than zero of M). In one

172

The number of repetitions can be reduced in

Algorithm 4.1, 4.2 if the value of k is increased

because the number of repetitions m depends on

radix number 2k. If the value of k is increases,

then the value of m is decreases.

on the number of digits and the number of cod-

ing bits in a radix-2k SD number representation.

Then, it can be assumed that the total process-

ing time is the same as one processing time for

obtaining the value of R mod F.

4.3 Introduction of parallel processes 5 Evaluation
to calculate R mod F

The range of values for R becomes wide in Step

4 of Algorithm 4.2. Therefore, it is a problem

that the number of repetitions increases for ob-

taining the value of R mod F in Algorithm 3.3.

To solve this problem, we introduce a new calcu-

lation method of R mod F.

The value of R is within the range of (-2且l)F

and (2丘l)Fin Algorithm 4.2. 2; F (i = 1, 2 ・ ・ ・, k)

can be calculated in advance because-the value of

F is fixed. So, R mod F can be calculated by

following circuit.

Selection
Circuit

RmodF

Figure 2: Block diagram for the calculation cir-
cuit of R mod F.

The addition processing time does not depend

In this section, we evaluate our proposed pro-

cessing method. As a method of evaluating the

processing time, we compare the number of ad-

ditions (and subtraction considered as the same

process) in a previous algorithm with the pro-

posed algorithm. We compare the cases of cod-

ing bit lengths of keys being 512, 1024 and 2048

bits. Also, the number of additions depends on

the value of k in the proposed algorithms. So, we

discuss the optimum bit lengths for k. We con-

sider that the number of additions is one time in

the case of parallel addition processing. Also, we

use the worst value of the key because the number

of additions depends on the coding bit pattern of

the key used.

5.1 The number of additions in the

previous algorithm

We obtain the number of calculations of Eq.(3)

in Algorithm 3.1. It is assumed that bit lengths

of e are L bits. Then the number of repetitions m

is represented by [L/2] ([M] is the number raised

to unit fractions lower than zero of M). In one

repetition, Eq.(3) is calculated 2 times in Step In Algorithm 3.2, it is assumed that Q, C and

3 and 1 ti.me in Step 4 of Algorithm...3.1 . As a F are L bits constantly. Then the number of

result, Eq.(3) is calculated 3 times every time. digits is n for each [L/2] . So, 4P+G in Step 4

Also, it is necessary to calculate Eqs.(4), (5) in and R mod F in Step 5 are calculated [L/2] times

advance before executing this algorithm. These for each calculation. R mod F can be calculated

are calculated with the following expression: by Algorithm 3.3. In this algorithm, the num‐

ber of additions is between 0 and 3. After all,
 M^{2} mod F = MxM mod F (4)

to calculate Eq.(3) , addition must be executed
 \mathbb{J}I^{3} mod F = M\cross (\mathbb{J}I^{2} mod F) mod F(5)

 8+[L/2]\sim 8+[L/2]\cross 4 times. 2F is used in

Eqs.(4), (5) can be calculated in the same way Algorithm 3.3. But, this is not a serious problem

as Eq.(3) . As a result, the number of Eq.(3) is a because 2F can be calculated by only one addi‐

total L/2\cross 3+2 tilIles. tion.

 Ec_{1}.(3) is realized bv Algorithm 3.2. In this To conclude, in the cases of calculating Eq.(l),

algoIithm, the following calculation is done in ad‐ we can obtain the number of additions by the

vance. following expression in the previous Algoritbms

3.1, 3.2 and 3.3. In these algorithms, the number
 Q\cross(\pm 2) mod F = ((\pm Q)+(\pm Q))

of coding bits used to represent a digit is 2 bits.
mod F (6)

 ([L/2]\cross 3+2)\cross(8+[L/2])+1\sim
 Q\cross(\pm 3) mod F = ((Qx(\pm 2) mod F)

 ([L/2]\cross 3+2)x(8+[L/2]+\cross 4)+1 (8)
 +(\pm Q)) mod F (7)

5.2 The number of additions in the

In Eq.(6), Q+Q is calculated and if Q+Q is new algorithms

smaller than F , then it is the result. If Q+Q is Assume that e is L bits. Then the number

bigger than F , then Q+Q-F is calculated and of repetitions of Eq.(3) is [L/k] in Algorithm 4.1.

obtained as the result of Eq.(6) . In the cases of In one repetition, Eq.(3) is calculated k times in

negative numbers, we can obtain the result in the Step 4 and 1 time in Step 6. It is necessary to cal‐

same way. The result of Eq.(7) can be obtained culate the values of M^{2} mod F, M^{3} mod F, \ldots)

using the result of Eq.(6) in the same way. As f\downarrow f^{2^{k}-1} mod F in advance before execution of Al‐

a result, the number of addition repetitions is 8 gorithm 4.1. These expressions can be calculated

times. 2^{k}-1 times in the same way as Eq.(3) . As a re‐

173

repetition, Eq.(3) is calculated 2 times in Step

3 and 1 time in Step 4 of Algorithm 3.1. As a

result, Eq.(3) is calculated 3 times every time.

Also, it is necessary to calculate Eqs.(4), (5) in

advance before executing this algorithm. These

are calculated with the following expression:

炉 modF

1113 mod F

M x MmodF (4)

1¥1 x (1¥12 mod F) mod F(5)

Eqs.(4), (5) can be calculated in the same way

as Eq.(3). As a result, the number of Eq.(3) is a

total L/2 x 3 + 2 times.

Eq.(3) is realizPd by Algorithm 3.2. In this

algorithm, the follmYing calculation is done in ad-

vance.

Qx（土2)mod F （（土Q)＋（士Q))

mod F (6)

Qx（士3)mod F ((Q X （士2)mod F)

＋ （士Q))mod F (7)

In Eq.(6), Q + Q is calculated and if Q + Q is

smaller than F, then it is the result. If Q + Q is

bigger than F, then Q + Q -Fis calculated and

obtained as the result of Eq.(6). In the cases of

negative numbers, we can obtain the result in the

same way. The result of Eq.(7) can be obtained

using the result of Eq.(6) in the same way. As

a result, the number of addition repetitions is 8

times.

In Algorithm 3.2, it is assumed that Q, C and

F are L bits constantly. Then the number of

digits is n for each [L/2]. So, 4P + G in Step 4

and R mod Fin Step 5 are calculated [L/2] times

for each calculation. R mod F can be calculated

by Algorithm 3.3. In this algorithm, the num-

ber of additions is between O and 3. After all,

to calculate Eq.(3), addition must be executed

8 + [L/2] ~ 8 + [L/2] x 4 times. 2F is used in

Algorithm 3.3. But, this is not a serious problem

because 2F can be calculated by only one addi-

tion.

To conclude, in the cases of calculating Eq.(l),

we can obtain the number of additions by the

following expression in the preYious Algorithms

3.1, 3.2 and 3.3. In these algorithms, the number

of coding bits used to represent a digit is 2 bits.

([L/2] x 3 + 2) x (8 + [L/2]) + 1 ~

([L/2] X 3 + 2) X (8 + [L/2] + x4) + 1 (8)

5.2 The number of additions in the

new algorithms

Assume that e is L bits. Then ・ the number

of repetitions of Eq.(3) is [L/k] in Algorithm 4.1.

In one repetition, Eq.(3) is calculated k times in

Step 4 and 1 time in Step 6. It is necessary to cal-

culate the values of M2 mod F, M3 mod F,…，

M炒—1 mod F in advance before execution of Al-

gorithm 4.1. These expressions can be calculated

2k -1 times in the same way as Eq.(3). As a re-

sult, Eq.(3) is calculated a total [L/k]\cross(k+1)+

 2^{k}-1 times.

 Eq.(3) can be calculated using Algorithm 4.2.

5.3 Comparison of the number of
additions of the proposed algo‐
rithm with the previous algo‐
rithm

In this algorithm, Q\cross c_{J} mod F(c_{J}=-2^{k}+ Fig. 3, 4 and 5 based on Eqs.(8) and (9) show

 1\sim 2^{k}-1 , where, c_{J}=-1,0,1 is removed) is the change in the number of additions for various

calculated before execution. In the cases of c_{J}= key lengths. Here, the number of additions using

 2\sim 2^{k}-1 , the number of addition repetitions is the new algorithm is indicated with a solid line

 2^{k}-2 times. Assume that Q, C and F are L bits
and the number using the previous algorithm is

constantly in Algorithm 4.2. Then the number indicated with a broken line. In Algorithm 3.3,

of digits n is represented by [L/k] . So, 2^{k}P+G the number of additions is not constant. Then

in Step 4 and R mod F in Step 5 are calculated it is assumed that tbe aveiage number of addi‐

 [L/k] times for each calculation. tions is 1.5 tin1(^{1}` s in A\iota_{go1}if1_{1}Il13.3 . A dot 011

 R mod F can be realized bv a parallel process‐ tlle broken li\iota lc is its IltIIll)cl
 \cdot

. In the ne\backslash \backslash \cdot algo‐

ing circuit that we propose in Section 4.3. In this

circuit, processing time is equivalent to one addi‐

tion processing time. After all, to calculate Eq.(3)

addition is executed 2^{k}-2+2[L/k] times. Also,

it is necessary to calculate -2F\sim-2^{k}F in ad‐

vance before using the parallel processing circuit

in Section 4.3. These results can be obtained by 0 \eta \theta 0 l 0

The number ofcodmg blt of a digit (bits)

addition processing of 2^{k}-2 times before Eqs.(1)

and (2) are calculated. In the case of Eqs.(1) and Figure 3: Change in the number of additions with
a 512 bit key length.

(2), we can obtain the number of additions by the

following expression. Here, the number of coding rithm, k=4\sim 6 is the most suitable value as

bits used to represent a digit is k bits. seen from these diagrams. As a result, the num‐

 ([L/k] x (k+1)+2^{k}-1)
ber of additions becomes 1/3\sim 1/4 the number

of previous algorithms. If Eqs.(1) and (2) are cal‐
 \cross(2^{k}-2+2[L/k])+(2^{k}-2)(9)

culated using the most suitable value of the key,

then the calculation speed is higher than the pre‐

174

suit, Eq.(3) is calculated a total [L/k] x (k + 1) +

2k -1 times.

Eq.(3) can be calculated using Algorithm 4.2.

In this algorithm, Q x CJ mod F (cJ = -2k +

1 ~ 2k -1, where, CJ = -1, 0, 1・, 1 is removed) is

calculated before execution. In the cases of CJ =

2 ~ 2k -1, the number of addition repetitions is

2k -2 times. Assume that Q, C and F are L bits

constantly in Algorithm 4.2. Then the number

of digits n is represented by [L/k]. So, 2ザ＋ G

in Step 4 and R mod F in Step 5 are calculated

[L/k] times for each calculation.

R mod F can be realized by a parallc、Iprocess-

ing circuit that we propose in Section 4.3. In this

circuit, processing time is equivalent to one addi-

tion processing time. After all, to calculate Eq.(3)

addition is executed 2k -2 + 2[£/k] times. Also,

it is necessary to calculate -2F ~ -2k F in ad-

vance before using the parallel processing circuit

in Section 4.3. These results can be obtained by

addition processing of 2k -2 times before Eqs.(1)

and (2) are calculated. In the case of Eqs.(1) and

(2), W€ can obtain the number of additions by the

following expression. Here, the number of coding

bits used to represent a digit is k bits.

([L/k] X (k + 1) + 2k -1)

x(2k -2 + 2[L/k]) + (2k -2) (9)

5.3 Comparison of the number of
additions of the proposed algo-
rithm with the previous algo-
rithm

Fig. 3, 4 and 5 based on Eqs.(8) and (9) show

the change in the number of additions for various

key lengths. Here, the number of additions using

the new algorithm is indicated with a solid line

and the number using the previous algorithm is

indicated with a broken line. In Algorithm 3.3,

the number of additions is not constant. Then

it is assumed that the ayerage number of addi-

tions is 1.5 times in Algorithm 3.3. A dot on

the brok('ll Jin(、isits mlllll)（]I' In thl'ne,Y algo-

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

8

6

4

2

~

(S•E-1)suo"!PP•

J
O

>•qEnu

0
4
1
,

―New
algorithm

..．．． PreV90US

aIgorithm

3 4 5 6 7 8

Th, oomb.,,. ofcodiog bit ofa digit (bits)

Figure 3: Change in the number of additions with
a 512 bit key length.

rithm, k = 4 ~ 6 is the most suitable value as

seen from these diagrams. As a result, the num-

ber of additions becomes 1/3 ~ 1/4 the number

of previous algorithms. If Eqs.(1) and (2) are cal-

culated using the most suitable value of the key,

then the calculation speed is higher than the pre-

includes our ideas and proved that the new pro‐

cessing method outperforms the previous method.

In our future work, we will make the LSI for our

proposed algorithm.

References

[1] A.Avizienis, “Signed‐digit number refresen‐ \ell \theta r 0 ’ 0

The number ofcodmg bit ofa dtgit (bits)

tations for fast parallel arithmetic”, IRE

Figure 4: Change in the number of additions with Trans.Elect.Comput., EC‐10, pp.389‐400,

a 1024 bit key length.
1961.

[2] M. Kameyame, S. Wei, T , Higuchi, “De‐

sign of an RSA Encryption Processor Based

on Signed‐Digit Multivalued Arithmetic Cir‐

 cuits^{1\prime} , Trans.(D), I.E.I.C.E., Japan,Vol.J71‐

 D , No.12, pp.2659‐2668, 1988.

‘ Thenumb\pi 00stfCodmg bit 0\zeta_{ld}igoit(\prime bi\iota s)0 [3] Yoshinori Fujisawa, Yasushi Fuwa, Hide‐

taka Shimizu, “Public‐Key Cryptography

Figure 5: Change in the number of additions with and Pepin’s Test for the Primality of Fer‐
a 2028 bit key length.

mat Numbers”, Formalized Mathematics,

vious method.
Vol.7(2), pp.317‐321, 1998.

6 Conclusion
[4] Yoshinori Fujisawa, Yasushi Fuwa, “Defini‐

tions of Radi_{X^{-}}2^{k} Signed‐Digit number andIn this paper, we described the correctness of

addition and its propeties based on a radi_{X-}2^{k} its adder algorithm”, Mechanized Mathe‐

matics and Its Applications, Vol.1 (1), pp. 11‐
SD number system. Also, we guarantee the value

20, 2000.
of remainders by determining the possible range

and propose parallel subtraction circuits to han‐ [5] Yasushi Fuwa, Yoshinori Fujisawa, “High‐

dle them. We propose a new processing method speed algorithms for RSA cryptograms”,

for an RSA public key cryptogram system which Formalized Mathematics, Vol.2, 2000.

175

3500000
;
じ

且3000000
こ
閲

目2500000

急
し
• 2000000

t゚
Ei
~ 1500000

目
ょ：~ 1000000
←

500000

゜ 3 4 5 6 7 8

The number of coding bit of• digit (bits)

Figure 4: Change in the number of additions with
a 1024 bit key length.

m

u

m

Ma-9999ヽ
9
9
,
9
,
＇
,1,999999,
＇,．

4

ニニ―

(
s
o
m
!
l
)
'
"
°
'
H
P
P
"
」

0

」

o
q
w
n
u
a
4
J
,

— New
,lgocithm

・・・・・・ Pmioos
,Igo「ithm

2345678
The numb町 ofcodiog bit of a di郎 (bits)

— N四
a)godthm

•····•· Pmio"'
a)godthm

Figure 5: Change in the number of additions with
a 2028 bit key length.

vious method.

6

Conclusion

In this paper, we described the correctness of

addition and its propeties based on a radix-2k

SD number system. Also, we guarantee the value

of remainders by determining the possible range

and propose parallel subtraction circuits to han-

dle them. We propose a new processing method

for an RS A public key cryptogram system which

includes our ideas and proved that the new pro-

cessing method outperforms the previous method.

In our future work, we will make the LSI for our

proposed algorithm.

References

[1] A.Avizienis, "Signed-digit number refresen-

tations for fast parallel arithmetic", IRE

Trans.Elect.Comput.,

1961.

taka Shimizu,

EC-10, pp.389-400,

[2] M. Kameyame, S. Wei, T, Higuchi, "De-

sign of an RSA Encryption Processor Based

on Signed-Digit l¥Iultivalued Arithmetic Cir-

cuits", Trans.(D), I.E.I.C.E., Japan,Vol.J71-

D, No.12, pp.2659-2668, 1988.

(3] Yoshinori Fujisawa, Yasushi Fuwa, Hide-

"Public-Key Cryptography

and Pepin's Test for the Primality of Fer-

mat Numbers", Formalized Mathematics,

Vol.7(2), pp.317-321, 1998.

[4] Yoshinori Fujisawa, Yasushi Fuwa, "Defini-

tions of Radix-2k Signed-Digit number and

its adder algorithm", Mechanized Mathe-

matics and Its Applications, Vol.1(1), pp.11-

20, 2000.

(5] Yasushi Fuwa, Yoshinori Fujisawa, "High-

speed algorithms for RSA cryptograms",

Formalized Mathematics, Vol.2, 2000.

[6] K.Matsui, “Cryptographic Algorithm”,

Morikita Publishing Co., Ltd., Japan, 1987.

[7] S.Ikeno, K.Koyama, “Modern Cryptosystem

(Gendai angouriron)”, I.E.I.C.E., Japan,

1995.

176

[6] K.Matsui, "Cryptographic Algorithm",

Morikita Publishing Co., Ltd., Japan, 1987.

[7] S.Ikeno, K.Koyama, "Modern Cryptosystem

(Gendai angouriron)", I.E.I.C.E., Japan,

1995.

