<table>
<thead>
<tr>
<th>Title</th>
<th>Quantum Logical Gate Based on Fock Space (Topics in Information Sciences and Applied Functional Analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Freudenberg, Wolfgang; Ohya, Masanori; Watanabe, Noboru</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1186: 119-124</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2001-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/64658</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Nonstandard Representations of Unbounded Self-Adjoint Operators

爱知学院大学教養部 山下秀康 (Hideyasu Yamashita)
名古屋大学情報文化學部 小澤正直 (Masanao Ozawa)

1. Introduction

In nonstandard analysis, standardizations of internal (or nonstandard) objects have been studied for constructing standard mathematical objects; e.g. an internal measure space is converted into a measure space in the standard sense, called Loeb space ([1][2][3][4]). The standardization of an internal Hilbert space \mathcal{H} is called the nonstandard hull of \mathcal{H}, written as $\hat{\mathcal{H}}$ (Henson and Moore [5]). Then the standardization of an internal operator A on \mathcal{H} with finite norm is naturally defined on \mathcal{H}, In this paper, the standardization of A shall be called the standard part of A, written as \hat{A}. A prominent work of Moore [6] was focused on the case where \mathcal{H} is hyperfinite-dimensional, and studied hyperfinite-dimensional extension of bounded operators on $\hat{\mathcal{H}}$. On the other hand, in the case where the norm of A is not finite, it is not straightforward to give an adequate definition of the standard part of A. Albeverio et al. [4] defined \hat{A} only when \mathcal{H} is hyperfinite-dimensional real Hilbert space and A is an internal positive symmetric operator on \mathcal{H}.

In this paper, we give a definition of \hat{A} for any internal complex Hilbert space \mathcal{H} and for any internal S-bonded self-adjoint operator A on \mathcal{H}, as well as a general consideration on \hat{A} so defined, which suggests the adequacy of the definition.

2. Preliminaries

We work in a \aleph_1-saturated nonstandard universe [7]. Note that every nonstandard universe constructed by a bounded ultrapower is \aleph_1-saturated.

Let $(V, \| \cdot \|)$ be an internal normed linear space. Define the subspaces $\mu(V, \| \cdot \|)$ and $\text{fin}(V, \| \cdot \|)$ of V by

$$\mu(V, \| \cdot \|) = \{ \xi \in V \mid \|\xi\| \approx 0 \}, \quad \text{fin}(V, \| \cdot \|) = \{ \xi \in V \mid \|\xi\| < \infty \}. \quad (1)$$

We often abbreviate them as $\mu(V)$ and $\text{fin}(V)$. Let $\hat{\xi} = \xi + \mu(V)$ and $\hat{V} = \text{fin}(V)/\mu(V)$, the quotient space. We can naturally define the usual norm $\| \cdot \|$ on \hat{V} by $\|\xi\| = \circ \|\xi\|$. A countably infinite sequence $\{\xi_i\}_{i \in \mathbb{N}}$, where $\xi_i \in \text{fin}(V, \| \cdot \|)$, approximately converges to $\xi \in V$ in the norm $\| \cdot \|$ if

$$\forall \epsilon \in \mathbb{R}^+ \exists n \in \mathbb{N} \forall k \in \mathbb{N} \quad [k > n \Rightarrow \|\xi - \xi_i\| < \epsilon]. \quad (2)$$
A sequence \(\{\xi_i\}_{i \in \mathbb{N}} \) approximately converges to \(\xi \in V \) if and only if \(\{\hat{\xi}_i\}_{i \in \mathbb{N}} \) converges to \(\hat{\xi} \in \hat{V} \). A sequence \(\{\xi_i\}_{i \in \mathbb{N}} \), where \(\xi_i \in \text{fin}(V, \| \cdot \|) \), is S-\(\| \cdot \| \)-Cauchy if
\[
\forall \epsilon \in \mathbb{R}^+ \, \exists n \in \mathbb{N} \, \forall k, l \in \mathbb{N} \, \left[k, l > n \Rightarrow \| \xi_k - \xi_l \| < \epsilon \right].
\] (3)
A sequence \(\{\xi_i\}_{i \in \mathbb{N}} \) is S-\(\| \cdot \| \)-Cauchy if and only if the sequence \(\{\hat{\xi}_i\}_{i \in \mathbb{N}} \) is Cauchy.

A subset \(X \subset \text{fin}(V, \| \cdot \|) \) is S-\(\| \cdot \| \)-complete if for any S-\(\| \cdot \| \)-Cauchy sequence \(\{\xi_i\}_{i \in \mathbb{N}} \), there exists \(\xi \in X \) such that \(\{\xi_i\} \) approximately converges to \(\xi \) in the norm \(\| \cdot \| \). The subset \(X \) is S-\(\| \cdot \| \)-complete if and only if \(\hat{X} \) is complete in \(\hat{V} \), where \(\hat{X} = \{\hat{\xi} | \xi \in X\} \).

The following results, called the hull completeness theorem, is a fundamental property of an internal normed space \((V, \| \cdot \|)\). See Hurd and Loeb [3] for detail.

Theorem 2.1. The subspace \(\text{fin}(V) \) is S-complete in \(\| \cdot \| \).

Corollary 2.2. (The Hull Completeness Theorem) \(\hat{V} \) is a Banach space.

Let \(\mathcal{H} \) be an internal Hilbert space, and \(T : \mathcal{H} \rightarrow \mathcal{H} \) an internal bounded linear operator such that the bound \(\|T\| \) is finite. The bounded operator \(\hat{T} : \mathcal{H} \rightarrow \hat{\mathcal{H}} \), called the standard part of \(T \), is defined by the relation \(\hat{T} \hat{x} = \hat{T} \hat{x} \) for any \(x \in \text{fin}(\mathcal{H}) \).

For further information on nonstandard real analysis, we refer to Stroyan and Luxemburg [3] and Hurd and Loeb [2].

3. Several definitions of standard parts

We give several equivalent definitions of the standard part of an internal bounded self-adjoint operator which is not S-bounded.

The following lemma, which is a basic property for self-adjointness, is used to give the first definition of standard parts (see [8]).

Lemma 3.1. Let \(A \) be a symmetric operator on a Hilbert space \(\mathcal{H} \). Then, \(A \) is self-adjoint if and only if \(\text{Rng}(A \pm i) = \mathcal{H} \).

Let \(\mathcal{H} \) be an internal Hilbert space, and \(A \) an internal bounded self-adjoint operator on \(\mathcal{H} \). Let \(\hat{\mathcal{K}} = \text{Ker}([(A + i)^{-1}]^{-} \hat{\mathcal{K}} \). Using the unitarity of \((A + i)(A - i)^{-1} \), we can easily check that \(\text{Ker}([(A - i)^{-1}]^{-} \hat{\mathcal{K}} \) is \(\hat{\mathcal{K}} \).

Proposition 3.2. There exists the unique (possibly unbounded) self-adjoint operator \(S \) on \(\hat{\mathcal{K}} \) satisfying
\[
(S + i)^{-1} = [(A + i)^{-1}]^{-} \hat{\mathcal{K}}.
\] (4)

Proof. We see \(\|(A + i)^{-1}\| < \infty \), and \([(A + i)^{-1}]^{-} \) is an bounded normal operator on \(\hat{\mathcal{H}} \). The operator \(T := [(A + i)^{-1}]^{-} \hat{\mathcal{K}} \) is a bijection from \(\hat{\mathcal{K}} \) to \([(A + i)^{-1}]^{-} \hat{\mathcal{K}} \). Hence the inverse \(T^{-1} \) from \([(A + i)^{-1}]^{-} \hat{\mathcal{K}} \) to \(\hat{\mathcal{K}} \) is defined. Clearly the operator \(S = T^{-1} - i \) satisfies the equation (4).

We will show that \(S \) is symmetric. Let \(x_1, x_2 \in \text{Dom}(S) \) (\(= [(A + i)^{-1}]^{-} \hat{\mathcal{K}} \)). Then, we can show that there exist \(\xi_i \in x_i \) such that \(A\xi_i \in Sx_i \) (\(i = 1, 2 \)) as follows. There
are $y_i \in \hat{\cal K}$ and $\eta_i \in \cal H$ such that $(S + i)^{-1}y_i = [(A + i)^{-1}]^\perp y_i = x_i$ and $\eta_i \in y_i$. Let
$\xi_i = (A + i)^{-1}\eta_i$. Then $\xi_i \in x_i$ and $(A + i)\xi_i = \eta_i \in y_i = (S + i)x_i$. Hence $A\xi_i \in Sx_i$. Thus,
$\langle x_1, Sx_2 \rangle = \langle \xi_1, A\xi_2 \rangle = \langle (A\xi_1, \xi_2) = \langle Sx_1, x_2 \rangle$. Therefore, S is symmetric.

To prove the self-adjointness, it is sufficient to show Rng$(S + i) = \text{Rng}(S - i) = \hat{\cal K}$ by Lemma 3.1. Clearly Rng$(S + i) = \text{Rng}(T^{-1}) = \hat{\cal K}$. Let $x \in \text{Dom}(S)$, $\xi \in x$ and $A\xi \in Sx$. Then we have

$$
\left(\frac{A - i}{A + i} \right)^\perp (S + i)x = \left(\frac{A - i}{A + i} (A + i)\xi \right)^\perp = (S - i)x.
$$

Thus, by the equation (4) with Ker$([A - i]^{-1})^\perp = \hat{\cal K}$, we have

$$
(S - i)^{-1} = [(A - i)\xi \in \hat{\cal K}.
$$

Therefore, we can show Rng$(S - i) = \hat{\cal K}$ in the similar way to the proof of Rng$(S + i) = \hat{\cal K}$. The uniqueness of S is clear. QED

Definition 3.3. Under the condition of Proposition 3.2, define the self-adjoint operator $\text{st}_1(A)$ on $\hat{\cal K}$ by $(\text{st}_1(A) + i)^{-1} = [(A + i)^{-1}]^\perp|\hat{\cal K}$.

The operator $\text{st}_1(A)$ is called the standard part of A. We see that $\text{st}_1(A) = \hat{A}$ when A is S-bounded.

Definition 3.4. Let A be an internal bounded operator on $\cal H$, an internal Hilbert space. Define fin$(A) \subseteq \cal H$ by

$$
\text{fin}(A) = \{ \xi \in \text{fin}\cal H | A\xi \in \text{fin}\cal H \}.
$$

Definition 3.5. Let A be an internal bounded self-adjoint operator on $\cal H$. Let $\hat{\cal K} = \text{fin}(A)^\perp = \{ \xi \in \text{fin}(A) \}$ be the closure of the subspace $\text{fin}(A)^\perp = \{ \xi \xi \in \text{fin}(A) \}$ of $\cal H$. Define the self-adjoint operator $\text{st}_2(A)$ on $\hat{\cal K}$ by

$$
\hat{e}^{it\text{st}_2(A)} = e^{it\hat{A}}|\hat{\cal K}, \quad t \in \mathbb{R}.
$$

We see that $\{e^{it\hat{A}}|\hat{\cal K}\}_{t \in \mathbb{R}}$ is one-parameter unitary group, since $\hat{\cal K}$ is invariant under $e^{it\hat{A}}$ for all $t \in \mathbb{R}$. We also see that it is strongly continuous as follows. Let $\xi \in \text{fin}(A)$. Then, we have $||(*d/dt)e^{it\hat{A}}\xi|| = ||ie^{it\hat{A}}A\xi|| < \infty$, where $*d/dt$ is the internal differentiation. This implies that $e^{it\hat{A}}\hat{\xi}$ is continuous with respect to $t \in \mathbb{R}$. Thus, $e^{it\hat{A}}$ is strongly continuous on $\text{fin}(A)^\perp$. Hence by Stone's theorem, $\text{st}_2(A)$ is uniquely defined.

If A is S-bounded, $\text{st}_2(A)$ coincides with \hat{A} defined in Section 2. This is seen from the following:

Proposition 3.6. Let A be an internal S-bounded self-adjoint operator. Then,

$$
e^{it\hat{A}} = e^{it\hat{A}}, \quad t \in \mathbb{R}.
$$

for all $t \in \mathbb{R}$.
Proof. For any infinitesimal $\epsilon \in \star \mathbb{R}_0^+$,
\[
\epsilon^{-1}(e^{i\epsilon A} - I) \approx iA,
\] (10)
holds, because
\[
\|\epsilon^{-1}(e^{i\epsilon A} - I) - iA\| = \|\epsilon^{-1}\sum_{\nu=2}^{\infty}(i\epsilon A)^\nu/\nu!\| \leq \epsilon^{-1}\sum_{\nu=2}^{\infty}(\|A\|)^\nu/\nu!
\]
\[
= \epsilon^{-1}(e^{\|A\|} - 1) - \|A\| \approx 0.
\]
Thus, by the permanence principle,
\[
\forall \delta \in \mathbb{R}_+, \exists \epsilon \in \mathbb{R}_+, |t| < \epsilon \Rightarrow \|t^{-1}(e^{itA} - I) - iA\| < \delta
\] (11)
Hence, we have
\[
\lim_{\epsilonarrow 0} \|\epsilon^{-1}(\overline{e^{i\epsilon A}} - \hat{I}) - i\hat{A}\| = 0
\] (12)
Thus we have $(d/dt)e^{i\epsilon A}|_{t=0} = i\hat{A}$, where d/dt is the usual differentiation. Because $(e^{i\epsilon A})_{\epsilon \in \mathbb{R}}$ is one-parameter unitary group, it follows that $e^{i\epsilon A} = e^{it\hat{A}}$. QED

Let $E(\cdot)$ be an internal projection-valued measure on $\star \mathbb{R}$, i.e., for each internal Borel set $\Omega \subseteq \star \mathbb{R}$, $E(\Omega)$ is an orthogonal projection on \mathcal{H} such that
1. $E(\phi) = 0$, $E(\star \mathbb{R}) = I$
2. If $\Omega = \bigcup_{n=1}^{\infty} \Omega_n \star$ with $\Omega_n \cap \Omega_m = \phi$ if $n \neq m$, then $E(\Omega) = s-lim_{N \arrow \infty} \sum_{n=1}^{N} E(\Omega_n)$
3. $E(\Omega_1)E(\Omega_2) = E(\Omega_1 \cap \Omega_2)$.

For $r \in \star \mathbb{R}$, let $\mathcal{H}_r = \text{Rng}(E(\cdot-r))$, the range of $E((-r, r))$. Let $D(E) = \bigcup_{r \in \mathbb{R}^+} \mathcal{H}_{r} \cap \text{fin}\mathcal{H}$. $D(E)$ is called the standardization domain of $E(\cdot)$. Clearly, $D(E)^{\perp\perp} = (\bigcup_{r \in \mathbb{R}^+} \mathcal{H}_{r})^{\perp\perp}$.

For $a \in \mathbb{R}$, define the orthogonal projection $\hat{E}_{st}(-\infty, a]$ by
\[
\hat{E}_{st}(-\infty, a] = \sup\{\hat{E}(-K, a + \epsilon]\hat{D}(E)^{\perp\perp}K, \epsilon \in \mathbb{R}^+\}
\] (13)
\[
= s-lim_{n \arrow \infty} \hat{E}(-n, a + \frac{1}{n}]\hat{D}(E)^{\perp\perp}.
\] (14)
Then we see
\[
s-lim_{a \arrow -\infty} \hat{E}_{st}(-\infty, a] = 0
\] (15)
\[
s-lim_{\epsilon \downarrow 0} \hat{E}_{st}(-\infty, a + \epsilon] = \hat{E}_{st}(-\infty, a]
\] (16)
\[
a < b \Rightarrow \hat{E}_{st}(-\infty, a] \leq \hat{E}_{st}(-\infty, b].
\] (17)
Hence, $\hat{E}_{st}(-\infty, \cdot]$ defines a projection-valued measure on \mathbb{R}.

Definition 3.7. For any internal bounded self-adjoint operator A, define the self-adjoint operator $\text{st}_3(A)$ on $\overline{D(E)}^{\perp\perp}$ by
\[
\text{st}_3(A) = \int \lambda d\hat{E}_{st}(\lambda).
\] (18)
Proposition 3.8. Let A be an internal bounded self-adjoint operator, and $E(\cdot)$ the internal projection-valued measure associated with the spectral decomposition of A. Then

$$\hat{D}(E)^{\perp\perp} = \overline{\text{fin}(A)^{\perp\perp}}.$$ \hspace{1cm} (19)

Proof. $\hat{D}(E)^{\perp\perp} \subseteq \overline{\text{fin}(A)^{\perp\perp}}$ is clear. To prove $\hat{D}(E)^{\perp\perp} \supseteq \overline{\text{fin}(A)^{\perp\perp}}$, it is sufficient to show that for any $\hat{x} \in \text{fin}(A)^{\perp}$ there is a sequence $\hat{x}_n \in \hat{D}(E)$ ($n \in \mathbb{N}$) such that $\hat{x}_n \to \hat{x}$. Let $x_n = E(-n, n)x$ ($n \in \mathbb{N}$). Notice that $\|A(x - x_n)\| \geq n\|x - x_n\|$. Suppose $\|x - x_n\| > \epsilon$ for all $n \in \mathbb{N}$. By the permanence principle, there is $N \in \mathbb{N}$ such that $\|A(x - x_n)\| \geq N\|x - x_N\| > N\epsilon \sim \infty$. This contradicts $\|A(x - x_N)\| \leq \|Ax\| < \infty$. \hspace{1cm} \textit{QED}

Theorem 3.9. Let A be an internal bounded self-adjoint operator. Then,

$$\text{st}_2(A) = \int \lambda \text{d}\hat{E}_{\text{st}}(\lambda),$$ \hspace{1cm} (20)

and hence $\text{st}_2(A) = \text{st}_3(A)$.

Proof. It is sufficient to show

$$\langle \hat{x}, \exp(it\text{st}_2(A))\hat{x} \rangle = \int e^{it\lambda} \langle \hat{x}, \hat{E}_{\text{st}}(\lambda)\hat{x} \rangle$$ \hspace{1cm} (21)

for all $\hat{x} \in \text{fin}(A)^{\perp\perp}$. Define the internal Borel measure μ by $\mu(d\lambda) = \langle x, E(d\lambda)x \rangle$. Let L_{μ} denote the Loeb measure of μ, and $L'\mu$ the Borel measure on \mathbb{R} defined by $L'\mu(\Omega) = L_{\mu}(\text{st}^{-1}[\Omega])$. We can check that $L'\mu$ is well-defined (i.e., $\text{st}^{-1}[\Omega]$ is L_{μ}-measurable for any Borel set $\Omega \subseteq \mathbb{R}$). We also see that L_{μ} is supported by $\text{fin}^*\mathbb{R}$, since $L_{\mu}([*\mathbb{R} \setminus \text{fin}^*\mathbb{R}]) \leq \circ\langle x, E([-n, n])x \rangle = \circ\|1 - \hat{E}(-n, n)\| \leq (1/n^2)^\circ\|Ax\|^2$ for all $n \in \mathbb{N}$. Therefore

$$\langle \hat{x}, \exp(it\text{st}_2(A))\hat{x} \rangle = \langle \hat{x}, e^{itA}\hat{x} \rangle = \circ\langle x, e^{itA}x \rangle = \circ\int_{\mathbb{R}} e^{it\lambda} d\mu(\lambda) = \int_{\mathbb{R}} e^{it\lambda} dL_{\mu}(\lambda) = \int_{\mathbb{R}} e^{it\lambda} dL'(\lambda).$$

On the other hand, for $a, b \in \mathbb{R}$ with $a < b$,

$$L'\mu(a, b) = L_{\mu}(\bigcup_{\epsilon \in \mathbb{R}^+} (a + \epsilon, b - \epsilon)) = \lim_{\epsilon \downarrow 0} \circ\langle x, E(a + \epsilon, b - \epsilon)x \rangle = \lim_{\epsilon \downarrow 0} \langle \hat{x}, \hat{E}(a + \epsilon, b - \epsilon)\hat{x} \rangle = \langle \hat{x}, s\text{-lim}_{\epsilon \downarrow 0} \hat{E}(a + \epsilon, b - \epsilon)\hat{x} \rangle = \langle \hat{x}, \hat{E}_{\text{st}}(a, b)\hat{x} \rangle.$$

Hence, $L'\mu(\Omega) = \langle \hat{x}, \hat{E}_{\text{st}}(\Omega)\hat{x} \rangle$ for any Borel set $\Omega \subseteq \mathbb{R}$. \hspace{1cm} \textit{QED}
Let $C \in \mathbb{R}$ be a positive constant, and h be an internal Borel function from $^*\mathbb{R}$ to $^*\mathbb{C}$ satisfying the following properties:

$$h(x) \approx h(y) \text{ iff } x \approx y \text{ for all } x, y \text{ with } |x|, |y| < \infty,$$

$$|h(x)| < C \text{ for all } x \in \mathbb{R}.$$

Define the function $\hat{h} : \mathbb{R} \to \mathbb{C}$ by

$$\hat{h}(x) = \circ h(x),$$

for $x \in \mathbb{R}$. We see that \hat{h} is injective and continuous. Let A be an internal bounded self-adjoint operator. Notice that $h(A)$ is an S-bounded internal normal operator.

Theorem 3.10. There exists the unique self-adjoint operator B on $\text{fin}(A)^{_{\perp \perp}}$ such that

$$\hat{h}(B) = h\overline{(A)}|\text{fin}(A)^{_{\perp \perp}}. \quad (22)$$

Moreover, B equals to $\text{st}_3(A)$.

Proof. By the argument similar to the proof of Theorem 3.9, we can show

$$\langle \hat{x}, \overline{h(A)}\hat{x} \rangle = \int_{\mathbb{R}} \hat{h}(\lambda) dL'\mu(\lambda)$$

$$= \int_{\mathbb{R}} \hat{h}(\lambda) \langle \hat{x}, d\hat{E}_\lambda(\lambda)\hat{x} \rangle$$

for any $\hat{x} \in \text{fin}(A)^{_{\perp \perp}}$. Thus,

$$h\overline{(A)}|\text{fin}(A)^{_{\perp \perp}} = \int_{\mathbb{R}} \hat{h}(\lambda) d\hat{E}_\lambda(\lambda).$$

Because \hat{h} is injective, the unique self-adjoint operator B satisfying (22) is $\text{st}_3(A) = \int_{\mathbb{R}} \lambda d\hat{E}_\lambda(\lambda)$. \textit{QED}

Corollary 3.11. Definition 3.3, 3.5 and 3.7 are equivalent, that is, $\text{st}_1(A) = \text{st}_2(A) = \text{st}_3(A)$.

Proof. Let $h(x) = 1/(x + i)$. \textit{QED}

In section 2, \hat{A} is defined only when A is an internal S-bounded self-adjoint operator. Now we can extend the definition so as to include the case where A is an internal bounded self-adjoint operator which is not S-bounded; $\hat{A} := \text{st}_1(A) = \text{st}_2(A) = \text{st}_3(A)$.

Definition 3.12. Let A be an internal linear operator on an internal Hilbert space \mathcal{H}. Let D be an (external) subspace of $\text{fin}\mathcal{H}$. A is standardizable on D if $D \subset \text{fin}(A)$ and if for any $x, y \in D$, $x \approx y$ implies $Ax \approx Ay$. In this case, define the operator \hat{A}_D with domain $\hat{D} = \{\hat{x} | x \in D\}$, called the standard part of A on D, by

$$\hat{A}_D\hat{x} = \overline{Ax}, \quad x \in D. \quad (23)$$
Clearly, A is standardizable on D if and only if $D \subset \text{fin}(A)$, and if $A\xi \approx 0$ for all $\xi \in D$ with $\xi \approx 0$.

Lemma 3.13. An internal bounded operator A is standardizable on $\text{fin}(A^*A)$.

Proof. First, we prove $\text{fin}(A^*A) \subset \text{fin}(A)$ as follows. Suppose that $\xi \in \text{fin}(A)$. Let $E(\cdot)$ be the internal spectral-valued mesure of the self-adjoint operator A^*A. Then, $\|A\xi\|^2 = \langle \xi, A^*A\xi \rangle = \langle \xi, E[0, 1]A^*A\xi \rangle + \langle \xi, (I - E[0, 1])A^*A\xi \rangle \leq \langle \xi, E[0, 1]A^*A\xi \rangle + \|A^*A\xi\|^2 < \infty$. Thus, $\xi \in \text{fin}(A)$. Second, suppose $x \approx 0$ and $\|A^*Ax\| < \infty$. Then, $\|Ax\|^2 = \langle x, A^*Ax \rangle < \|x\|\|A^*Ax\| \approx 0$. QED

Corollary 3.14. If $D \subseteq \text{fin}\mathcal{H}$ is invariant under A and A^*, A is standardizable on D.

The operator B in the above proof is called a hyperfinite extension of A [6]. We use the following lemma in the proof of Theorem 3.16.

Lemma 3.15. Let A be a symmetric operator with domain $D \subset \mathcal{H}$, a Hilbert space. Let $D_1 \subset D$ be a dense linear subset of \mathcal{H} and suppose that $A|D_1$ is essentially self-adjoint. Then, A is essentially self-adjoint and $A \approx A|D_1$.

Theorem 3.16. Let A be an internal self-adjoint operator on \mathcal{H}, and $E(\cdot)$ the projector-valued spectral measure of A. Then,

$$
\hat{A} = \overline{A_{D(E)}} = \overline{A_{\text{fin}(A^2)}}
$$

Proof. We can show that $\hat{A}_{D(E)}$ is essentially self-adjoint e.g. by Nelson’s analytic vector theorem. Hence, it has one and only one self-adjoint extension, its closure. Thus, it is sufficient to show that \hat{A} is an extension of $\hat{A}_{D(E)}$. If $E(-r, r)\xi = \xi$ ($r \in \mathbb{R}^+, \xi \in \mathcal{H}$), then $E_{st}(-s, s)\xi = \hat{\xi}$ ($s \in \mathbb{R}^+, s > r$). Thus, $\hat{A}_{D(E)} = \hat{A}\xi = \{\mathcal{F}^\lambda \hat{E}_{st}(\lambda)\} = \int_\lambda \mathcal{F}^\lambda \hat{E}_{st}(\lambda)\lambda = \mathcal{S}_t\mathcal{S}_t(A) = \hat{A}\xi$. Therefore $\hat{A} = \hat{A}_{D(E)}$. $\hat{A}_{D(E)} = \hat{A}_{\text{fin}(A^2)}$ follows from $D(E) \subseteq \text{fin}(A^2)$ and Lemma 3.15. QED

4. The domain of \hat{A}

Definition 4.1. For an internal bounded self-adjoint operator A on \mathcal{H}, define $D(A)$ by

$$
D(A) = \{\xi \in \text{fin}\mathcal{H} \mid \text{for all } t \in \mathbb{R}_0^+, e^{-t|A|A}\xi \approx A\xi \in \text{fin}\mathcal{H}\}.
$$

Clearly, $D(A)$ is a subspace of \mathcal{H}.

Proposition 4.2. An internal bounded self-adjoint operator A is standardizable on $D(A)$.

Proof. Let $\xi \in D(A)$ and $\|\xi\| \approx 0$. We can easily check $\|e^{-t|A|}A\| < \infty$ for all $t > 0$, $t \neq 0$. Hence, $^0\|A\xi\| \leq ^0\|e^{-t|A|}A\xi\| + ^0\|(1 - e^{-t|A|})A\xi\|$. By the S-boundedness of $e^{-t|A|}A$, the first term equals 0, and by the definition of $D(A)$, the second term equals 0. Thus we have $^0\|A\xi\| = 0$. QED

The following lemmas are easily shown.

Lemma 4.3. Let $f : \cdot \mapsto \cdot \mathbb{R}^+$ be internal and increasing. If $f(M) < \infty$ for some $M \sim \infty$, then

$$\lim_{n \to \infty} ^0f(n) < \infty.$$

Lemma 4.4. Under the same condition to Lemma 4.3, there is $K \sim \infty$ such that for all $L \sim \infty$,

$$f(K) \approx f(L) \text{ if } L \leq K.$$

Proposition 4.5. Let $\xi \in \text{fin}(\mathcal{H})$. For sufficiently large $t \approx 0$,

$$e^{-t|A|}\xi \in D(A).$$

(25)

Proof. Applying Lemma 4.4 to $f(n) = \|e^{-|A|/n}A\xi\|$, we find that for sufficiently small $K \sim \infty$ and $L \sim \infty$, $e^{-|A|/K}A\xi \approx e^{-|A|/L}A\xi$. Thus, for sufficiently large $s \approx 0$ and $t \approx 0$, $e^{-s|A|}A\xi \approx e^{-t|A|}A\xi$. Hence for all $x \approx 0$, $x > 0$,

$$e^{-t|A|}Ae^{-t|A|}\xi = e^{-x+t}|A|A\xi \approx Ae^{-t|A|}\xi.$$

Therefore, $e^{-t|A|}\xi \in D(A)$. QED

Theorem 4.6. Let $E(\cdot)$ be the spectral resolution of A and $E_K = E(-K, K)$ for $K \in \mathbb{R}^+$. For any $\xi \in \text{fin}(A)$,

$$\xi \in D(A) \text{ iff } A\xi \approx E_KA\xi \text{ for all } K \sim \infty.$$

(26)

Remark. The right-hand condition is equivalent to

$$\lim_{K \to \infty} \sup_{K \leq K} \|I - E_K\|A\xi\| = 0.$$

(27)

Proof. Suppose that $\xi \in \text{fin}(A)$ and $A(I - E_K)\xi \approx 0$ for all $K \sim \infty$. For any $t \approx 0$, there exists a $K \sim \infty$ such that $tK \approx 0$. Thus,

$$\|e^{-t|A|}A\xi - A\xi\|^2 \approx \|e^{-t|A|}E_KA\xi - E_KA\xi\|^2 \approx \|e^{-t|A|}E_KA\xi - E_KA\xi\|^2 \approx \int_{-K}^{K} e^{-t|A|}\lambda - \lambda dE(\lambda)\xi\|^2 \approx \int_{-K}^{K} |(e^{-t|A|} - 1)\lambda| dE(\lambda)\xi\|^2 \approx \sup_{|\lambda| < K} |e^{-t|A|} - 1|^2 \int_{-K}^{K} \lambda^2 dE(\lambda)\xi\|^2 \approx 0.$$
Hence $\xi \in D(A)$.

Conversely, suppose $\xi \in D(A) \subset \text{fin}(A)$. Applying Lemma 4.4 to $f(n) = \|E_n A \xi\|$, we see that for sufficiently small $K \sim \infty$ and $L \sim \infty$ ($L \leq K$),

$$\|E_L A \xi\| \approx \|E_K A \xi\|.$$

Thus, $(E_K - E_L) A \xi \approx 0$, since $\|E_L A \xi - E_K A \xi\|^2 = \|E_K A \xi\|^2 - \|E_L A \xi\|^2 \approx 0$. Let $t \in \mathbb{R}_0^+$ satisfy $tK \sim \infty$ so that

$$\|E_K A \xi - e^{-t|A|} A \xi\|$$

$$= \| \int_{-K}^{K} \lambda(1 - e^{-t|\lambda|})dE(\lambda)\xi - \int_{-\infty}^{K} e^{-t|\lambda|}dE(\lambda)\xi \|$$

$$\leq \| \int_{-K}^{K} \lambda(1 - e^{-t|\lambda|})dE(\lambda)\xi \| + e^{-tK}\|A\xi\|$$

$$\approx \| \int_{-K}^{K} \lambda(1 - e^{-t|\lambda|})dE(\lambda)\xi \|.$$

Let $L \sim \infty$ satisfy $tL \approx 0$, so that the above

$$\leq \| \int_{-L}^{L} \lambda(1 - e^{-t|\lambda|})dE(\lambda)\xi \| + \|E_K - E_L\|A\xi\|$$

$$\approx 0.$$

Thus, for sufficiently small $K \sim \infty$ and for any $t \approx 0$ such that $tK \sim \infty$,

$$E_K A \xi \approx e^{-t|A|} A \xi \approx A \xi.$$

Since $\|A \xi - E_K A \xi\| \geq \|A \xi - E_K' A \xi\| > 0$ if $K < K'$, we have $E_K A \xi \approx A \xi$ holds for any $K' \sim \infty$. QED

Proposition 4.7. Let $\xi \in \text{fin}(A)$. Then, $E_K \xi \in D(A)$ for sufficiently small $K \sim \infty$.

Proof. Applying Lemma 4.4 to $f(n) = \|E_n A \xi\|$, we find that for sufficiently small $K, L \sim \infty$, $E_K A \xi \approx E_L A \xi$. Thus, if $L \sim \infty$, $L \leq K$, then $\|(1 - E_L)E_K A \xi\| = \|(E_K - E_L)A \xi\| \approx 0$. If $L > K$, clearly $(1 - E_L)E_K A \xi = 0$. Hence for all $L \sim \infty$, $E_K A \xi \approx E_L E_K A \xi$. Thus $E_K \xi \in D(A)$ by Theorem 4.6. QED

Corollary 4.8. $[\text{fin}(A)]^\sim = [D(A)]^\sim$, i.e., if $\xi \in \text{fin}(A)$, then there is $\eta \in D(A)$ such that $\eta \approx \xi$.

Example We have seen that the following relations hold:

$$\text{fin}(A^2) \subset D(A) \subset \text{fin}(A) \subset \text{fin} \mathcal{H},$$

$$[\text{fin}(A^2)]^\sim \subset [D(A)]^\sim = [\text{fin}(A)]^\sim \subset \hat{\mathcal{H}},$$
An example of A such that $\text{fin}(A) \setminus D(A) \neq \emptyset$ is given as follows. Let ν be an infinite hypernatural number, and $\mathcal{H} = {}^*\mathbb{C}^\nu$, ν-dimensional internal Hilbert space. Define the internal self-adjoint operator A on \mathcal{H} by $A(x_1, x_2, ..., x_\nu) = (x_1, 2x_2, ..., \nu x_\nu)$. Let $\xi = (0, 0, ..., 0, \nu^{-1})$. Then we see $\xi \in \text{fin}(A) \setminus D(A)$ from Theorem 4.6.

We also find $D(A) \setminus \text{fin}(A^2) \neq \emptyset$; let $\eta = (1^{-2}, 2^{-2}, ..., \nu^{-2})$, then we easily see $\eta \in D(A) \setminus \text{fin}(A^2)$. Moreover we find $\tilde{\eta} \in [D(A)]^\wedge \setminus [\text{fin}(A^2)]^{-}$. In fact, if $\eta' \approx \eta$, then $\circ||A^2\eta'|| \geq \lim_{n \to \infty} n \circ||A^2E_n\eta'|| = \lim_{n \to \infty} \sqrt{n} = \infty$. Thus, we have $\tilde{\eta} \not\in [\text{fin}(A^2)]^{-}$ by Theorem 4.6.

Theorem 4.9. Let $\xi \in \text{fin}(A)$, then

$$\xi \in D(A) \iff \lim_{t \to 0, \#^{0}} \left(\frac{e^{-t|A|}-1}{t} \xi \right)^{-} = -|A|\xi.$$ \hfill (28)

Proof. Suppose that the right-hand side does not hold. In other words, suppose that

$$\exists \varepsilon \in \mathbb{R}^{+} \forall n \in \mathbb{N} \exists t \in {}^*\mathbb{R}, \ 0 < t < \frac{1}{n} \land \left\| \left(\frac{e^{-t|A|}-1}{t} + |A|I \xi \right) \right\| > \varepsilon. \hfill (29)$$

By permanence,

$$\exists \varepsilon \in \mathbb{R}^{+} \exists N \in {}^*\mathbb{N}_{\infty} \exists t \in {}^*\mathbb{R}, \ 0 < t < \frac{1}{n} \land \left\| \left(\frac{e^{-t|A|}-1}{t} + |A| \right) \xi \right\| > \varepsilon. \hfill (30)$$

That is, there is positive infinitesimal t such that $t^{-1}(e^{-t|A|} - 1)\xi \not\approx -|A|\xi$.

Thus, for some $\eta \in \text{fin}(\mathcal{H})$,

$$\Re\left(\eta, \frac{e^{-t|A|}-1}{t} \xi \right) \not\approx \Re(\eta, -|A|\xi).$$

Let $f(t) = \Re(\eta, e^{-t|A|} \xi)$. By the mean value theorem, for some $s \in {}^*\mathbb{R}$ with $0 < s < t$,

$$f'(s) = \frac{f(t) - f(0)}{t} = \Re\left(\eta, \frac{e^{-t|A|}-1}{t} \xi \right) \not\approx \Re(\eta, -|A|\xi).$$

Therefore, by the definition of $D(A)$, we have $\xi \in \text{fin}(A) \setminus D(A)$.

Conversely, suppose $\xi \in \text{fin}(A) \setminus D(A)$. Then, there is positive infinitesimal t_0 satisfying $e^{-t_0|A|}|A|\xi \not\approx |A|\xi$. Let $\eta = (|A| - e^{t_0|A|}|A|)\xi \in \text{fin}(\mathcal{H})$. Then this is equivalent to

$$\langle \eta, e^{-t_0|A|}|A|\xi \rangle \not\approx \langle \eta, |A|\xi \rangle. \hfill (31)$$

Let $f(x) = \langle \eta, e^{-|A|x} \xi \rangle$ ($x \in {}^*\mathbb{R}^{+}$). We see that f' is increasing and $-\infty < f' < 0$, and hence f is decreasing and $0 < f < \infty$. The relation (31) is equivalent to

$$f'(t_0) \not\approx f'(0), \hfill (32)$$
We have $f(x) \geq f'(t_0)(x - t_0) + f(t_0)$. Thus we have:

$$0 > \frac{f(x) - f(0)}{x} \geq \frac{f'(t_0)(x - t_0) + f(t_0) - f(0)}{x}.$$ \hspace{1cm} (33)

Let $F(x) = [f'(t_0)(x - t_0) + f(t_0) - f(0)]/x$, then for $c \in ^* \mathbb{R}^+$,

$$F(ct_0) = f'(t_0) \left(1 - \frac{1}{c} \right) + \frac{1}{c} \frac{f(t_0) - f(0)}{t_0}.$$ \hspace{1cm} (34)

By the mean value theorem and $-\infty < f'(x) < 0$, we have $|f(x) - f(0)/x| < \infty$. Hence $F(ct_0) \approx f'(t_0)$ for all $c \sim \infty$. Thus, by (32) and (33),

$$0 > \frac{f(ct_0) - f(0)}{ct_0} \geq F(ct_0) \geq f'(t_0),$$ \hspace{1cm} (35)

for all $c \sim \infty$. Thus there is $\epsilon \in \mathbb{R}^+$ such that for sufficiently large $x \approx 0$, $\frac{f(x) - f(0)}{x} - f'(0) > \epsilon$. By the permanence principle, for sufficiently small $x \in \mathbb{R}^+$, $\frac{f(x) - f(0)}{x} - f'(0) > \epsilon$. We can check the relations

$$\langle \eta, \left(\frac{e^{-x|A|} - 1}{x} \right) \xi \rangle = \frac{f(x) - f(0)}{x}, \quad \langle \eta, |A|\xi \rangle = -f'(0), \quad \frac{e^{-x|A|} - 1}{x} > -|A|,$$

for $x > 0$. Therefore, using the increasingness of $(e^{-x|A|^{-1}})/x, x$, we have

$$\lim_{x \downarrow 0, x \neq 0} \omega \langle \eta, \frac{e^{-x|A|} - 1}{x} \xi \rangle \neq \langle \eta, -|A|\xi \rangle.$$

QED

Theorem 4.10. Let A be an internal bounded self-adjoint operator. Then, $\hat{A} = \hat{A}_{D(A)}$.

Proof. By Theorem 3.16 and Lemma 3.15, it suffices to show that $\hat{A}_{D(A)}$ is a closed extension of $\hat{A}_{\text{fin}(A^2)}$. If $\xi \in \text{fin}(A^2)$, for any $K \sim \infty$, $\| (I - E_K)A \xi \| \leq \frac{1}{K} \| (I - E_K)A^2 \xi \| \leq \frac{1}{K} \| A^2 \xi \| \approx 0$. Hence $\xi \in D(A)$, and hence $\hat{A}_{D(A)}$ is an extension of $\hat{A}_{\text{fin}(A^2)}$.

To prove that $\hat{A}_{D(A)}$ is closed, it suffices to show that $\hat{D}(A) = [\hat{D}(A)]^c$ is complete in the norm $\| \cdot \|_A$ defined by $\| \xi \|_A = \| \xi \| + \| \hat{A} \xi \|$. Define the internal norm $\| \cdot \|_A$ on \mathcal{H} by $\| \xi \|_A = \| \xi \| + \| A \xi \|$. We can check $\| \xi \|_A = \omega \| \xi \|_A$ for $\xi \in D(A)$.

By Theorem 2.1, $\text{fin}(A)$ is S-$\| \cdot \|_A$-complete. Hence, if the sequence $\{ \xi_i \}_{i \in \mathbb{N}} \subset D(A)$ ($\subset \text{fin}(A)$) is S-$\| \cdot \|_A$-Cauchy, then there is $\xi \in \text{fin}(A)$ such that ξ_i approximately converges to ξ in the norm $\| \cdot \|_A$. This ξ is shown to be in $D(A)$ as follows. Regarding Theorem 4.6, and $\xi_i \in D(A)$ ($i < \infty$), this relation leads to $\omega \| (I - E_K)A \xi_i \| = \lim_{i \to \infty} \omega \| (I - E_K)A \xi_i \| = 0$, for any $K \sim \infty$. Therefore, from Theorem 4.6, we have $\xi \in D(A)$ and hence any Cauchy sequence in $\hat{D}(A)$ converges in $\hat{D}(A)$ in the norm $\| \cdot \|_A$. QED
Theorem 4.11. The domain \(D(A) \) is maximal. That is, if \(D(A) \subset S \subset \text{fin}(\mathcal{H}) \) and \(A \) is standardizable on \(S \), then \(S = D(A) \).

Proof. Suppose that \(D(A) \subset S \subset \text{fin}(\mathcal{H}) \) and that \(A \) is standardizable on \(S \). Let \(\eta \in S \). By Corollary 4.8 and \(\eta \in \text{fin}(A) \), there is \(\xi \in D(A) \) such that \(\xi \approx \eta \). By the definition of \(D(A) \) and the standardizability on \(S \), for all positive infinitesimal \(t \), \(e^{-t|A|A} \eta \approx e^{-t|A|} A \xi \approx A \xi \approx \eta \), since \(||e^{-t|A||}|| \leq 1 \). Thus, \(\eta \in D(A) \). QED

Proposition 4.12. Let \(A \) be an internal positive operator on \(\mathcal{H} \). Then, for any \(\eta \in \text{fin}(A^{\frac{1}{2}}) \),

\[
\inf_{\xi\approx\eta} \langle \xi, A\xi \rangle = \inf_{\alpha\sim\infty} \langle \eta, E_{\alpha}A\eta \rangle. \tag{36}
\]

Proof. Suppose \(\eta \approx \xi \). If \(\alpha < \infty \), \(\langle \eta, E_{\alpha}A\eta \rangle \approx \langle \xi, E_{\alpha}A\xi \rangle \leq \langle \xi, A\xi \rangle \), that is,

\[
\forall \varepsilon \in \mathbb{R}^{+}, \forall \alpha < \infty, \quad \langle \eta, E_{\alpha}A\eta \rangle \leq \langle \xi, A\xi \rangle + \varepsilon,
\]

Thus, by the permanence principle,

\[
\forall \varepsilon \in \mathbb{R}^{+}, \exists K \sim \infty, \forall \alpha \leq K, \quad \langle \eta, E_{\alpha}A\eta \rangle \leq \langle \xi, A\xi \rangle + \varepsilon.
\]

By saturation,

\[
\exists K \sim \infty, \forall \varepsilon \in \mathbb{R}^{+}, \forall \alpha \leq K, \quad \langle \eta, E_{\alpha}A\eta \rangle \leq \langle \xi, A\xi \rangle + \varepsilon.
\]

Hence we have

\[
\exists K \sim \infty, \quad \langle \eta, E_{K}A\eta \rangle \leq \langle \xi, A\xi \rangle.
\]

It follows that \(\inf_{\xi\approx\eta} \langle \xi, A\xi \rangle \geq \inf_{\alpha\sim\infty} \langle \eta, E_{\alpha}A\eta \rangle \).

On the other hand, we see that for all \(\alpha \sim \infty \), \(||\eta - E_{\alpha}\eta||^{2} \leq \alpha^{-1}||A^{\frac{1}{2}}(\eta - E_{\alpha}\eta)||^{2} \leq \alpha^{-1}||A^{\frac{1}{2}}\eta||^{2} \approx 0 \). Hence,

\[
\forall \alpha \sim \infty, \quad \inf_{\xi\approx\eta} \langle \xi, A\xi \rangle \leq \langle E_{\alpha}\eta, AE_{\alpha}\eta \rangle = \langle \eta, E_{\alpha}A\eta \rangle.
\]

Thus it follows that \(\inf_{\xi\approx\eta} \langle \xi, A\xi \rangle \leq \inf_{\alpha\sim\infty} \langle \eta, E_{\alpha}A\eta \rangle \). QED

Proposition 4.13. Let \(A \) be an internal positive operator and \(\eta \in \text{fin}(A) \). Then,

\[
\inf_{\xi\approx\eta} \langle \xi, A\xi \rangle = \langle \hat{\eta}, \hat{A}\hat{\eta} \rangle. \tag{37}
\]

Proof. From Proposition 4.12, we see \(\inf_{\xi\approx\eta} \langle \xi, A\xi \rangle = \inf_{\alpha\sim\infty} \langle \eta, E_{\alpha}A\eta \rangle \). By Theorem 4.10 and Proposition 4.7, for sufficiently small \(\alpha \sim \infty \), \(\langle \eta, E_{\alpha}A\eta \rangle = \langle E_{\alpha}\eta, AE_{\alpha}\eta \rangle = \langle \hat{E}_{\alpha}\eta, \hat{A}\hat{E}_{\alpha}\eta \rangle = \langle \hat{\eta}, \hat{A}\hat{\eta} \rangle \). QED

Definition 4.14. Let \(A \) be a internal bounded positive operator, and \(D \subset \text{fin}(A^{\frac{1}{2}}) \). The sesquilinear form \(\langle \cdot, A\cdot \rangle \) is standardizable on \(D \) if \(\langle \xi_{1}, A\eta_{1} \rangle \approx \langle \xi_{2}, A\eta_{2} \rangle \) for all \(\xi_{1}, \xi_{2}, \eta_{1}, \eta_{2} \in D \) with \(\xi_{1} \approx \xi_{2} \) and \(\eta_{1} \approx \eta_{2} \).
Proposition 4.15. Let D be a subspace of $\text{fin}(\mathcal{H})$ and $A \geq 0$. Then, $\langle \cdot, A \cdot \rangle$ is standardizable on D if and only if $A^{\frac{1}{2}}$ is standardizable on D.

Proof. Suppose that $A^{\frac{1}{2}}$ is standardizable on D. Then $A^{\frac{1}{2}}\xi \approx A^{\frac{1}{2}}\eta$ for any $\xi, \eta \in D$ with $\xi \approx \eta$. Thus, $\langle \xi, A\xi \rangle = \|A^{\frac{1}{2}}\xi\|^2 \approx \|A^{\frac{1}{2}}\eta\|^2 = \langle \eta, A\eta \rangle$. Conversely, suppose that $\langle \cdot, A \cdot \rangle$ is standardizable on D. Then for any $\xi, \eta \in D$ with $\xi \approx \eta$, $\|A^{\frac{1}{2}}\xi - A^{\frac{1}{2}}\eta\|^2 = \|A^{\frac{1}{2}}(\xi - \eta)\|^2 = \langle \xi - \eta, A(\xi - \eta) \rangle \approx 0$. QED

Corollary 4.16. The set $D(A^{\frac{1}{2}})$ is a maximal domain of $\langle \cdot, A \cdot \rangle$, and $^0\langle \xi, A\eta \rangle = \langle A^{\frac{1}{2}}\xi, A^{\frac{1}{2}}\eta \rangle$ for any $\xi, \eta \in D(A^{\frac{1}{2}})$.

References