<table>
<thead>
<tr>
<th>Title</th>
<th>APPROXIMATION OF COMMON FIXED POINTS FOR A FAMILY OF NON-LIPSCHITZIAN SELF-MAPPINGS (Nonlinear Analysis and Convex Analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kim, Tae Hwa</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2001), 1187: 165-175</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2001-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/64677</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
APPROXIMATION OF COMMON FIXED POINTS FOR
A FAMILY OF NON-LIPSCHITZIAN SELF-MAPPINGS

Tae Hwa Kim

Abstract. In the present paper, we first give some examples of self-mappings which are of strongly
asymptotically nonexpansive type, not strictly hemicontractive, but satisfy the property (H). It is
then shown that the modified Mann and Ishikawa iteration processes for a family \(\mathcal{G} = \{ T_n : n \in \mathbb{N} \} \)
of self-mappings \(T_n : K \to K \), defined by \(x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T_n x_n \) and \(x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T_n[(1 - \beta_n)x_n + \beta_n T_n x_n] \), respectively, converge strongly to the unique common fixed point of
such a family \(\mathcal{G} \) in general Banach spaces.

1. Preliminaries

Let \(X \) be a real Banach space and \(X^* \) the dual space of \(X \). Let \(U = \{ x \in X : \| x \| = 1 \} \) be
the unit sphere of \(X \). The norm of \(X \) is said to be Gâteaux differentiable (and \(X \) is said to be
smooth) if the limit

\[
\lim_{t \to 0} \frac{\| x + ty \| - \| x \|}{t}
\]

exists for each \(x \) and \(y \) in \(U \). It is said to be uniformly Gâteaux differentiable if for each \(y \in U \),
this limit is attained uniformly for \(x \in U \). The norm is said to be Fréchet differentiable if for
each \(x \in U \), the limit is obtained uniformly for \(y \in U \). Finally, the space \(X \) is said to have
a uniformly Fréchet differentiable norm (and \(X \) is said to be uniformly smooth) if the limit is
attained uniformly for \((x, y) \in U \times U \).

The normalized duality mapping \(J \) from \(X \) into the family of nonempty subset of \(X^* \) is
defined by

\[
J(x) = \{ f \in X^* : \| f \|^2 = \| x \|^2 = \langle x, f \rangle \},
\]

where \(\langle x, f \rangle \) denotes the value of \(f \) at \(x \). It is an immediate consequence of the Hahn-Banach
theorem that \(J(x) \) is nonempty for each \(x \in X \). Moreover, it is known that \(J \) is single valued
if and only if \(X \) is smooth, while if \(X \) is uniformly smooth, then the mapping \(J \) is uniformly continuous on bounded sets.

Let \(X \) be a real Banach space and let \(K \) be a nonempty subset of \(X \) (not necessarily convex)
and \(T : K \to K \) a self mapping of \(K \). There appear in the literature two definitions of an
asymptotically nonexpansive mapping. The weaker definition (cf. Kirk[19]) requires that

\[
\limsup_{n \to \infty} \sup_{y \in K} \left(\| T^n x - T^n y \| - \| x - y \| \right) \leq 0
\]

1991 Mathematics Subject Classification. 47H09, 47H10.

Key words and phrases. strongly asymptotically nonexpansive type, strictly pseudocontractive (or hemi-
contractive), the property (H), common fixed points.

* Supported by Korea Research Foundation Grant (KRF-99-015-DI0014).
for every \(x \in K \) and that \(T^N \) is continuous for some \(N \geq 1 \). The stronger definition (briefly called asymptotically nonexpansive as in [15]) requires each iterate \(T^n \) to be Lipschitzian with Lipschitz constants \(L_n \rightarrow 1 \) as \(n \rightarrow \infty \). For further generalization of an averaging iteration of Schu [25], Bruck et al. [4] introduced a definition somewhere between these two: \(T \) is asymptotically nonexpansive in the intermediate sense provided \(T \) is uniformly continuous and

\[
\limsup_{n \rightarrow \infty} \sup_{x, y \in K} (\|T^n x - T^n y\| - \|x - y\|) \leq 0.
\]

In this paper, we consider the self mapping of \(K \) satisfying only (1.1) without the assumption of uniform continuity of \(T \). Throughout we shall refer to such a mapping as strongly asymptotically nonexpansive type.

A mapping \(T : K \rightarrow X \) is said to be pseudo-contractive [26] if for all \(x, y \in K \) there exists \(j \in J(x - y) \) such that

\[
\langle Tx - Ty, j \rangle \leq \|x - y\|^2.
\]

In [18], Kato discovered the relationship between pseudocontractive mappings and accretive mappings, proving

Lemma 1.1 [18]. Let \(x, y \in X \). Then \(\|x\| \leq \|x + \alpha y\| \) for every \(\alpha > 0 \) if and only if there exists \(j \in J(x) \) such that \(\langle y, j \rangle \geq 0 \).

Applying Lemma 1.1, we know that a mapping \(T \) is pseudocontractive if and only if \((I - T) \) is accretive, i.e., the inequality

\[
\|x - y\| \leq \|x - y + r((I - T)x - (I - T)y)\|
\]

holds for all \(x, y \in K \) and all \(r \geq 0 \).

In the sequel, we need the following two lemmas for the proof of our main results. The first is actually Lemma 1 of Petryshyn [23] and the second is Lemma 2 of Liu [21]. For the first result, Asplund [1] also proved a general result for single-valued duality mappings, which can be used to derive this lemma and more recently this lemma was revisited by Haiyun-Yuting [16].

Lemma 1.2 [23]. For any \(x, y \in X \) and \(j \in J(x + y) \),

\[
\|x + y\|^2 \leq \|x\|^2 + 2\langle y, j \rangle.
\]

Lemma 1.3 [21]. Let \(\{a_n\} \), \(\{b_n\} \), and \(\{c_n\} \) be three nonnegative real sequences satisfying

\[
a_{n+1} \leq (1 - t_n)a_n + b_n + c_n \]

with \(\{t_n\} \subset [0, 1] \), \(\sum_{n=0}^{\infty} a_n = \infty \), \(b_n = o(t_n) \), and \(\sum_{n=0}^{\infty} c_n < \infty \). Then \(\lim_{n \rightarrow \infty} a_n = 0 \).

A mapping \(T : K \rightarrow X \) is said to be strictly pseudo-contractive [8], [26] (or strong pseudo-contractive [9]) if there exists \(t > 1 \) such that for all \(x, y \in K \) there exists \(j \in J(x - y) \) such that

\[
\text{Re}(Tx - Ty, j) \leq \frac{1}{t}\|x - y\|^2.
\]

Let \(F(T) \) denotes the set of all fixed points of \(T \), i.e., \(F(T) = \{x \in K : Tx = x\} \). If \(F(T) \neq \emptyset \), the mapping \(T : K \rightarrow X \) is said to be strictly hemicontractive [8] if there exists \(t > 1 \) such that for all \(x \in K \) and \(x^* \in F(T) \) there exists \(j \in J(x - x^*) \) such that

\[
\langle Tx - x^*, j \rangle \leq \frac{1}{t}\|x - x^*\|^2.
\]
Using Lemma 1.1, it is easy to check [8] that the strict hemicontractivity of T is equivalent to the following inequality

\[||x - x^*|| \leq ||(1 + r)(x - x^*) - rt(Tx - x^*)|| \]

holds for all $x \in K$, $x^* \in F(T)$ and $r > 0$.

For an example of a Lipschitzian self-mapping which is not strictly pseudocontractive but strictly hemicontractive, see [8].

Motivated by the definition of strict hemicontractivity, we can consider a mapping $T : K \to K$ satisfying the following property, i.e., there exists $t > 1$ such that for all $x \in K$ and $x^* \in F(T)(\neq \emptyset)$ there exists $j \in J(x - x^*)$ such that

\[\limsup_{n \to \infty} \langle T^n x - x^*, j \rangle \leq \frac{1}{t} ||x - x^*||^2. \]

(H)

Note that any mapping $T : K \to K$ which is both strictly hemicontractive and asymptotically nonexpansive satisfies the property (H). Indeed, since T is strictly hemicontractive and asymptotically nonexpansive, we have

\[\langle T^n x - x^*, j \rangle \leq \frac{1}{t} ||T^{n-1} x - x^*||^2 \leq \frac{1}{t} L_n^2 ||x - x^*||^2. \]

Taking lim sup on both sides, since $L_n \to 1$ as $n \to \infty$, T satisfies (H).

First we give two examples of the discontinuous self-mappings which are strongly asymptotically nonexpansive type, not strictly hemicontractive, but satisfies the above property (H).

Example 1.1. Let $X = \mathbb{R}$ with the usual norm $| \cdot |$ and let $K = [0,1]$. Let $a_n = \frac{1}{n}$ for each $n \in \mathbb{N}$. Then, construct a discontinuous mapping T as follows. On the each subinterval $[a_{n+1}, a_n]$, the graph of T consists of all rational numbers of the sides of the isosceles triangle with base $[a_{n+1}, a_n]$ and height a_{n+1} and zeros for irrational numbers in K. Thus, $T a_n = 0$ and, if x_n denotes the midpoint of $[a_{n+1}, a_n]$, then $Tx_n = a_{n+1}$. If we further define $T : K \to K$ is not continuous but clearly $F(T) = \{0\}$. Since $T^n x \to 0$ uniformly as $n \to \infty$, T is strongly asymptotically nonexpansive type. Obviously, T satisfies the property (H) but is not strictly hemicontractive.

Example 1.2. Let $K = [0,1] \subseteq \mathbb{R}$ and define $T x = \frac{1}{4}$ if $x = \frac{1}{4}$, 1, $T x = 1$ for $x \in [0, \frac{1}{2}] \setminus \{\frac{1}{4}\}$, and $T x = \frac{1}{2}$ for $x \in (\frac{1}{2}, 1]$. Note that for all $x \in K$, $T^n x = \frac{1}{4} \in F(T) = \{\frac{1}{4}\}$ for $n \geq 3$. Then $T : K \to K$ is a discontinuous mapping of strongly asymptotically nonexpansive type which is not nonexpansive. Obviously, T satisfies the property (H). However, T is not strictly hemicontractive.

Here we give an example of the discontinuous self-mapping with the property (H) which is strongly asymptotically nonexpansive type, not asymptotically nonexpansive.

Example 1.3. Let $K = [0,1] \subseteq \mathbb{R}$ and let φ be the Cantor ternary function. Define $T : K \to C$ by

\[T(x) = \begin{cases}
 x/2 & \text{if } 0 \leq x \leq 1/2, \\
 \varphi((1-x)/2) & \text{if } 1/2 < x \leq 1.
\end{cases} \]

Note that $T^n x \to 0$ uniformly on K. Therefore, T is a discontinuous mapping of strongly asymptotically nonexpansive type with the property (H). But it is not asymptotically nonexpansive because φ is not Lipschitzian continuous on $[0, \frac{1}{2}]$. Note that T is also strictly hemicontractive.
Recall that a mapping $T : K \to X$ is said to be strongly accretive [3] (or [29]) if there exists a positive number k such that for each $x, y \in K$ there is $j \in J(x - y)$ such that

$$\langle Tx - Ty, j \rangle \geq k \|x - y\|^2.$$

Using Lemma K again this is equivalent to

$$\|x - y\| \leq \|x - y + r\{(I - kI)x - (I - kI)y\}\|,$$

for all $r > 0$, where I denotes the identity mapping of X. Without loss of generality, we can assume $k \in (0, 1)$. Then it was known [2] that the similar connection between strict pseudocontractivity and strong accretivity is that a mapping $T : K \to K$ is strictly pseudocontractive if and only if $I - T$ is strongly accretive, i.e., the inequality

$$\|x - y\| \leq \|x - y + r\{(I - T - kI)x - (I - T - kI)y\}\|$$

holds for any $x, y \in K$ and $r > 0$, where $k = \frac{(t-1)}{t} \in (0, 1)$.

It is well known that if $T : K \to X$ is continuous and strictly pseudocontractive, then T has a unique fixed point (see Corollary 1 of Deimling [12]). Furthermore, if $T : X \to X$ is continuous and strongly accretive, then T is surjective, i.e., for a given $f \in X$, the equation $Tx = f$ has a unique solution.

Recently, the convergence problems of Ishikawa and Mann iteration sequences (cf. Ishikawa [17] and Mann [22]) have been studied extensively by many authors (see Chidume [5-8], Chidume and Osilike [9-11], Deng [13], Deng-Ding [14], Haiyun-Yuting [16], Liu [20], Liu [21], Reich [24] and Tan-Xu [27]) for strictly pseudocontractive (or strongly accretive) mappings.

Especially, Liu [20] proved, using the inequality (1.3), that the Mann iteration process converges strongly to the unique fixed point of a Lipschitzian and strictly pseudo-contractive mapping, which extends corresponding results of [5-8], [27] and [29] to the general Banach spaces as follows.

Theorem 1.1 [20]. Let K be a nonempty closed, convex and bounded subset of a Banach space X and let $T : K \to K$ be Lipschitzian and strictly pseudocontractive mapping. Then the sequence $\{x_n\}_{n=1}^\infty$ generated by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_nTx_n, \quad x_1 \in K,$$

with $\{\alpha_n\} \subset (0, 1]$ satisfying

$$\sum_{n=1}^\infty \alpha_n = \infty, \quad \alpha_n \to 0,$$

converges strongly to $q \in F(T)$ and $F(T)$ is a singleton set.

Subsequently, Haiyun-Yuting [16] proved by using Lemma 1.2 that the Ishikawa iteration process converges strongly to the unique fixed point of a continuous and strictly pseudocontractive map without Lipschitz assumption in a real uniformly smooth Banach space.

Theorem 1.2 [16]. Let K be a nonempty closed, convex and bounded subset of a real uniformly smooth Banach space X. Assume that $T : K \to K$ is a continuous strictly pseudocontractive mapping. Let $\{\alpha_n\}_{n=1}^\infty$ and $\{\beta_n\}_{n=1}^\infty$ be two real sequences satisfying

(i) $0 < \alpha_n, \beta_n < 1$ and $\alpha_n \to 0, \beta_n \to 0$ as $n \to \infty$;

(ii) $\sum_{n=1}^\infty \alpha_n = \infty$.
Then the Ishikawa iterative sequence \(\{x_n\}_{n=1}^{\infty} \) generated from an arbitrary \(x_1 \in K \) by
\[
\begin{align*}
x_{n+1} &= (1 - \alpha_n)x_n + \alpha_nTy_n, \\
y_n &= (1 - \beta_n)x_n + \beta_nTx_n
\end{align*}
\]
converges strongly to the unique fixed point of \(T \).

On the other hand, Chidume and Osilke [9] proved with the similar method of the proof as in [20] that the Ishikawa iteration process also converges strongly to the unique fixed point of a uniformly continuous and strictly pseudo-contractive mapping in a real Banach space.

Theorem 1.3 [9]. Let \(K \) be a nonempty closed, convex and bounded subset of a real Banach space \(X \). Suppose \(T : K \to K \) is a uniformly continuous and strictly pseudocontractive mapping. Then, the sequence \(\{x_n\}_{n=1}^{\infty} \) generated from an arbitrary \(x_1 \in K \) by
\[
\begin{align*}
x_{n+1} &= (1 - \alpha_n)x_n + \alpha_nTy_n, \\
y_n &= (1 - \beta_n)x_n + \beta_nTx_n
\end{align*}
\]
converges strongly to \(q \in F(T) \) and \(F(T) \) is a singleton set. Here, \(\{\alpha_n\} \) and \(\{\beta_n\} \) are real sequences in \([0,1] \) satisfying
\[
\sum_{n=1}^{\infty} \alpha_n = \infty, \quad \lim_{n \to \infty} \alpha_n = 0 = \lim_{n \to \infty} \beta_n.
\]

In 1995, Liu [21] introduced the Ishikawa iteration process with errors as follows:
\[
\begin{align*}
x_{n+1} &= (1 - \alpha_n)x_n + \alpha_nTy_n + u_n, \\
y_n &= (1 - \beta_n)x_n + \beta_nTx_n + v_n, \quad n \geq 1,
\end{align*}
\]
where \(\{\alpha_n\} \) and \(\{\beta_n\} \) are real sequences in \([0,1] \) such that (i) \(\sum_{n=1}^{\infty} \alpha_n = \infty, \lim_{n \to \infty} \alpha_n = 0 \), (ii) \(\{\beta_n\} \) is bounded, (iii) \(\{u_n\} \) and \(\{v_n\} \) are summable sequences in \(X \), and \(T \) is a Lipschitzian strongly accretive mapping in a uniformly smooth Banach space \(X \).

In 1998, Xu [28] introduced the Ishikawa iteration processes emphasizing the randomness of errors as follows:
\[
\begin{align*}
x_{n+1} &= \alpha_n x_n + \beta_nTy_n + \gamma_n u_n, \\
y_n &= \alpha_n x_n + \beta_nTx_n + \gamma_n v_n,
\end{align*}
\]
where \(\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\alpha_n'\}, \{\beta_n'\}, \{\gamma_n'\} \) are sequences in \([0,1] \) such that (i) \(\lim_{n \to \infty} \beta_n = 0 \), (ii) \(\sum_{n=0}^{\infty} \beta_n = 0 \), (i) \(\lim_{n \to \infty} \beta_n = \infty \), (ii) \(\lim_{n \to \infty} \gamma_n = 0 \), (iv) \(\sum_{n=0}^{\infty} \gamma_n < \infty \), (iv) \(\alpha_n + \beta_n + \gamma_n = 1 \), and \(\{u_n\}, \{v_n\} \) are bounded sequences in Banach space \(X \), and \(T \) is a strongly pseudocontractive mapping in uniformly smooth Banach space \(X \).

In these respects, it seems natural to ask whether the above theorems are still valid for a family \(\mathcal{F} = \{T_n : n \in \mathbb{N}\} \) of self-mappings \(T_n : K \to K \) which satisfies the property (H) type (as the definition replaced \(T^n \) in (H) by \(T_n \)). For our affirmative argument, consider the similar iteration process with errors of (1.5) as follows:
\[
\begin{align*}
x_{n+1} &= \alpha_n x_n + \beta_n Ty_n + \gamma_n u_n, \\
y_n &= \alpha_n' x_n + \beta_n'Ty_n + \gamma_n'v_n, \quad n \geq 1,
\end{align*}
\]
where \(\{u_n\} \) and \(\{v_n\} \) are two bounded sequence in \(K \); \(\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\alpha_n'\}, \{\beta_n'\}, \{\gamma_n'\} \) are real sequences in \([0,1] \) satisfying the conditions
\[
\alpha_n + \beta_n + \gamma_n = \alpha_n' + \beta_n' + \gamma_n' = 1,
\]
for all \(n \geq 1 \).
Lemma 1.4. Let K be a nonempty closed and convex subset of a Banach space X. Let two iterative sequences $\{x_n\}$ and $\{y_n\}$ be given as in (1.6) for a family $\mathcal{S} = \{T_n : n \in \mathbb{N}\}$ of self-mappings $T_n : K \to K$, $n \in \mathbb{N}$. Put $B := \{x_n : n \in \mathbb{N}\} \cup \{y_n : n \in \mathbb{N}\} (\subset K)$, $q \in F(\mathcal{S}) := \cap_{n \in \mathbb{N}} F(T_n)$ and

$$c_n := \max\{0, \sup_{x \in B}(\|T_n x - q\| - \|x - q\|)\}.$$

Then

$$||x_n - q|| \leq d + 2 \sum_{k=1}^{n-1} c_k, \quad ||y_n - q|| \leq d + 2 \sum_{k=1}^{n-1} c_k + c_n,$$

for $n \in \mathbb{N}$, where

$$d := \max\{\sup_{n \geq 1} \|u_n - q\|, \sup_{n \geq 1} \|v_n - q\|, \|x_1 - q\|\}.$$

Proof. The proof employs mathematical induction. Since $\|x_1 - q\| \leq d$ and

$$\|y_1 - q\| = \|\alpha_1' x_1 + \beta_1' T x_1 + \gamma_1' v_1 - q\| \leq \alpha_1' \|x_1 - q\| + \beta_1' \|T x_1 - q\| + \gamma_1' \|v_1 - q\| \leq \alpha_1' \|x_1 - q\| + \beta_1' (c_1 + \|x_1 - q\|) + \gamma_1' \|v_1 - q\| \leq (\alpha_1' + \beta_1' + \gamma_1') d + \beta_1' c_1 \leq d + c_1,$$

(1.7) holds for $n = 1$. Suppose (1.7) holds for $n = k$, i.e.,

$$\|x_k - q\| \leq d + 2 \sum_{j=1}^{k-1} c_j, \quad \|y_k - q\| \leq d + 2 \sum_{j=1}^{k-1} c_j + c_j.$$

Then, for $n = k + 1$, we have

$$\|x_{k+1} - q\| = \|\alpha_k x_k + \beta_k T_k y_k + \gamma_k u_k - q\| \leq \alpha_k \|x_k - q\| + \beta_k \|T_k y_k - q\| + \gamma_k \|u_k - q\| \leq \alpha_k \|x_k - q\| + \beta_k (c_k + \|y_k - q\|) + \gamma_k \|u_k - q\| \leq \alpha_k (d + 2 \sum_{j=1}^{k-1} c_j) + \beta_k c_k + \beta_k (d + 2 \sum_{j=1}^{k-1} c_j + c_k) + \gamma_k d = d + 2 (\alpha_k + \beta_k) \sum_{j=1}^{k-1} c_j + 2 \beta_k c_k \leq d + 2 \sum_{j=1}^{k} c_j.$$
APPROXIMATION OF COMMON FIXED POINTS

and

\[\|y_{k+1} - q\| = \|\alpha'_{k+1}x_{k+1} + \beta'_{k+1}T_{k+1}x_{k+1} + \gamma'_{k+1}v_{k+1} - q\| \]
\[\leq \alpha'_{k+1}\|x_{k+1} - q\| + \beta'_{k+1}\|T_{k+1}x_{k+1} - q\| + \gamma'_{k+1}\|v_{k+1} - q\| \]
\[\leq \alpha'_{k+1}\|x_{k+1} - q\| + \beta'_{k+1}(c_{k+1} + \|x_{k+1} - q\|) + \gamma'_{k+1}\|v_{k+1} - q\| \]
\[\leq (\alpha'_{k+1} + \beta'_{k+1})\|x_{k+1} - q\| + \beta'_{k+1}c_{k+1} + \gamma'_{k+1}d \]
\[\leq (\alpha'_{k+1} + \beta'_{k+1})(d + 2\sum_{j=1}^{k}c_{j}) + \beta'_{k+1}c_{k+1} + \gamma'_{k+1}d \]
\[\leq d + 2\sum_{j=1}^{k}c_{j} + c_{k+1}. \]

Therefore, by mathematical induction, (1.7) holds for all \(n \in \mathbb{N} \).

2. MAIN RESULTS

We first begin with an easy observation of the property (H) type. The first equivalent is

\[\lim_{n \to \infty} \inf_{T_{n}} \langle x - T_{n}x, j \rangle \geq \frac{(t - 1)}{t} \|x - x^{*}\|^{2}. \]

Let \(x \neq x^{*} \). For a fixed \(\epsilon \) with \(0 < \epsilon < \frac{(t - 1)}{t} \), it follows from the property \((H_{1}) \) that there exists \(n_{0} \in \mathbb{N} \) such that for all \(n \geq n_{0} \),

\[\langle x - T_{n}x, j \rangle \geq \frac{(t - 1)}{t} - \epsilon \|x - x^{*}\|^{2} = k_{\epsilon}\|x - x^{*}\|^{2}, \]

where \(k_{\epsilon} := \frac{(t - 1)}{t} - \epsilon \in (0, 1) \). This inequality is obviously equivalent to

\[\langle T_{n}x - x^{*}, j \rangle \leq (1 - k_{\epsilon})\|x - x^{*}\|^{2}, \quad \forall n \geq n_{0}. \]

For employing the method of the proof in [20], we need the following equivalent form of the property \((H_{2}) \) by virtue of Lemma 1.1:

\[\|x - x^{*}\| \leq \|x - x^{*} + r\{(I - T_{n} - k_{\epsilon}I)x - (I - T_{n} - k_{\epsilon}I)x^{*}\}\| \]

for all \(n \geq n_{0} \) and all \(r > 0 \).

Using the property \((H_{3}) \), Lemma 1.3 and 1.4, we are now ready to present the following

Theorem 2.1. Let \(K \) be a nonempty closed and convex subset of a Banach space \(X \). Suppose a family \(\mathcal{S} = \{T_{n} : n \in \mathbb{N}\} \) of self-mappings \(T_{n} : K \to K, n \in \mathbb{N} \) satisfies the property \((H) \) type. Suppose \(F(T) \neq \emptyset \) and put

\[c_{n} = \max\{0, \sup_{x,y \in K} (\|T_{n}x - T_{n}y\| - \|x - y\|)\}, \]

so that \(\sum_{n=1}^{\infty} c_{n} < \infty \). Then the modified Ishikawa iterative sequence \(\{x_{n}\}_{n=1}^{\infty} \) generated by (1.6) converges strongly to the unique common fixed point of \(\mathcal{S} \) in \(K \), where

\[\lim_{n \to \infty} \beta_{n} = \lim_{n \to \infty} \beta'_{n} = \lim_{n \to \infty} \gamma'_{n} = 0; \]
\[\begin{align*}
\sum_{n=1}^{\infty} \beta_n &= \infty \quad \text{and} \quad \sum_{n=1}^{\infty} \gamma_n < \infty.
\end{align*} \]

Proof. Since \(F(T) \neq \emptyset \), take \(q \in F(T) \). Lemma 1.4 immediately gives
\[\|x_{n+1} - q\| \leq M, \quad \|y_{n+1} - q\| \leq M, \]
for all \(n \in \mathbb{N} \), where \(M := d + 2 \sum_{n=1}^{\infty} c_n < \infty \). Lemma 1.2 and the property \((H3) \) yields
\[\|x_{n+1} - q\|^2 = \|\alpha_{n}(x_{n} - q) + \beta_{n}(T_{n}y_{n} - q) + \gamma_{n}(u_{n} - q)\|^2 \]
\[\leq \alpha_{n}^2 \|x_{n} - q\|^2 + 2\beta_{n}\langle T_{n}y_{n} - q, j_n \rangle + 2\gamma_{n}\langle u_{n} - q, j_n \rangle \]
\[\leq \alpha_{n}^2 \|x_{n} - q\|^2 + 2\beta_{n}\langle T_{n}x_{n+1} - q, j_n \rangle
+ 2\beta_{n}\langle T_{n}y_{n} - T_{n}x_{n+1}, j_n \rangle + 2\gamma_{n}\langle u_{n} - q, j_n \rangle \]
\[\leq \alpha_{n}^2 \|x_{n} - q\|^2 + 2\beta_{n}(1 - k_{\epsilon})\|x_{n+1} - q\|^2 + 2\beta_{n}d_n + 2\gamma_{n}M^2, \]
for \(j_n \in J(x_{n+1} - q) \) and for all \(n \geq n_0 \), where \(d_n := \langle T_{n}y_{n} - T_{n}x_{n+1} \rangle \). We first claim that \(j_n \to 0 \) as \(n \to \infty \). In fact, by the parameter conditions (i) and (ii) we get
\[\|y_n - x_{n+1}\| = \|(y_n - q) + (q - x_{n+1})\|
= \|\alpha'_n(x_n - q) + \beta'_n(T_n x_n - q) + \gamma'_n(v_n - q)
- \alpha_n(x_n - q) - \beta_n(T_n y_n - q) - \gamma_n(u_n - q)\| \]
\[\leq (|\beta'_n - \beta_n| + |\gamma'_n - \gamma_n|)\|x_n - q\| + \beta'_n\|T_n x_n - q\|
+ \gamma'_n\|v_n - q\| + \beta_n\|T_n y_n - q\| + \gamma_n\|u_n - q\| \]
\[\leq (\beta'_n + \beta_n + \gamma'_n + \gamma_n)\|x_n - q\| + \beta_n(c_n + \|x_n - q\|) + \gamma_n\|v_n - q\|
+ \beta_n(c_n + \|y_n - q\|) + \gamma_n\|u_n - q\| \]
\[\leq 2(\beta'_n + \beta_n + \gamma'_n + \gamma_n)M + c_n(\beta'_n + \beta_n) \to 0 \quad \text{as} \quad n \to \infty. \]
Therefore, since \(c_n \to 0 \) as \(n \to \infty \), we get
\[\|T_n y_n - T_n x_{n+1}\| \leq \|T_n y_n - T_n x_{n+1} - \|y_n - x_{n+1}\| + \|y_n - x_{n+1}\|
\leq c_n + \|y_n - x_{n+1}\|^2 \to 0 \quad \text{as} \quad n \to \infty. \]
Since \(\|j_n\| = \|x_{n+1} - q\| \leq M \), this gives
\[|d_n| = |\langle T_n y_n - T_n x_{n+1}, j_n \rangle|
\leq \|T_n y_n - T_n x_{n+1}\| \cdot \|j_n\| \to 0 \quad \text{as} \quad n \to \infty. \]
On the other hand, since \(\sum_{n=1}^{\infty} \beta_n = \infty \) and \(\beta_n \to 0 \) as \(n \to \infty \), we can choose \(n_1 \geq n_0 \) so that \(\beta_n > 0, 1 - 2\beta_n(1 - k_{\epsilon}) > 0 \), and \(2k_{\epsilon} - \beta_n > 0 \) for all \(n \geq n_1 \). Then, the above inequality (2.1) can be written as follows:
\[\|x_{n+1} - q\|^2 \]
\[\leq \frac{\alpha_{n}^2 \|x_{n} - q\|^2}{1 - 2\beta_{n}(1 - k_{\epsilon})} + \frac{2\beta_{n}d_n}{1 - 2\beta_{n}(1 - k_{\epsilon})} + \frac{2\gamma_{n}M^2}{1 - 2\beta_{n}(1 - k_{\epsilon})} \]
\[\leq \frac{(1 - \beta_n)^2 \|x_{n} - q\|^2}{1 - 2\beta_{n}(1 - k_{\epsilon})} + \frac{2\beta_{n}d_n}{1 - 2\beta_{n}(1 - k_{\epsilon})} + \frac{2\gamma_{n}M^2}{1 - 2\beta_{n}(1 - k_{\epsilon})} \]
APPROXIMATION OF COMMON FIXED POINTS

Since \(\frac{2k_{\epsilon}-\beta_{n}}{1-2\beta_{n}(1-k_{\epsilon})} \to 2k_{\epsilon} \) as \(n \to \infty \) and \(k_{\epsilon} \in (0,1) \), there exists a \(n_{2} \geq n_{1} \) such that

\[
\left| \frac{2k_{\epsilon}-\beta_{n}}{1-2\beta_{n}(1-k_{\epsilon})} - 2k_{\epsilon} \right| \leq k_{\epsilon}
\]

for all \(n \geq n_{2} \). This implies that \(k_{\epsilon} \leq \frac{2k_{\epsilon}-\beta_{n}}{1-2\beta_{n}(1-k_{\epsilon})} \), that is,

\[
\frac{(1-\beta_{n})^{2}}{1-2\beta_{n}(1-k_{\epsilon})} \leq (1-k_{\epsilon}\beta_{n})
\]

for all \(n \geq n_{2} \). The inequality (2.2) can be expressed as follows.

\[
\|x_{n+1}-q\|^{2} \leq (1-k_{\epsilon}\beta_{n})\|x_{n}-q\|^{2} + \frac{2\beta_{n}d_{n}}{1-2\beta_{n}(1-k_{\epsilon})} + \frac{2\gamma_{n}M^{2}}{1-2\beta_{n}(1-k_{\epsilon})}
\]

for all \(n \geq n_{2} \). Then it follows from Lemma 1.3 that the sequence \(\{x_{n}\} \) strongly converges to the unique fixed point \(q \) of \(T \). Finally, we prove that \(F(T) = \{q\} \), a singleton set. If \(p \in F(T) \), by using the property (H), we obtain

\[
\|p-q\|^{2} = \langle p-q,j \rangle = \limsup_{n \to \infty} \langle T_{n}p-q,j \rangle < \underline{1} \|p-q\|^{2},
\]

for \(j \in J(p-q) \). Since \(t > 1 \), we have \(q = p \). \(\square \)

Remark. In view of the examples 1.1 and 1.2, the above theorem is a new approach of the strong convergence problems of iterative sequences to the unique fixed point of discontinuous non-Lipschitzian self-mappings which are not strictly hemicontractive (hence, not strictly pseudocontractive).

Taking \(\beta_{n}' = \gamma_{n}' = 0 \) for all \(n \geq 1 \) in (1.6), as a direct consequence of Theorem 2.1, we have the following

Corollary 2.1. Let \(K \) be a nonempty closed convex subset of a Banach space \(X \). Suppose a family \(\mathcal{T} = \{T_{n} : n \in \mathbb{N}\} \) of self-mappings \(T_{n} : K \to K, n \in \mathbb{N} \) satisfies the property (H) type. Suppose \(F(T) \neq \emptyset \) and put

\[
c_n = \max\{0, \sup_{x,y \in K} (\|T_{n}x - T_{n}y\| - \|x - y\|)\},
\]

so that \(\sum_{n=1}^{\infty} c_{n} < \infty \). Then the modified Mann iterative sequence \(\{x_{n}\}_{n=1}^{\infty} \) with errors generated by

\[
x_{n+1} = (1-\alpha_{n})x_{n} + \alpha_{n}T_{n}x_{n}, \quad x_{1} \in K
\]

with \(\{\alpha_{n}\}_{n=1}^{\infty} \subseteq (0,1] \) satisfying

\[
\sum_{n=1}^{\infty} \beta_{n} = \infty, \quad \sum_{n=1}^{\infty} \gamma_{n} < \infty, \quad \text{and} \quad \lim_{n \to \infty} b_{n} = 0,
\]

strongly converges \(q \in F(T) \) and \(F(T) \) is a singleton set.

As a direct consequence of Theorem 2.1, we obtain the following
Theorem 2.2. Let K be a nonempty bounded closed convex subset of a Banach space X. Suppose a family $\mathcal{S} = \{T_n : n \in \mathbb{N}\}$ of Lipschitzian self-mappings $T_n : K \to K$, $n \in \mathbb{N}$ satisfies the property (H) type. Suppose $F(T) \neq \emptyset$ and $\sum_{n=1}^{\infty} (L_n - 1) < \infty$, where $L_n (\geq 1)$ is the Lipschitz constant of T_n. Then the modified Ishikawa iterative sequence $\{x_n\}_{n=1}^{\infty}$ with errors generated by (1.6) converges strongly to the unique fixed point of T in K, where

\begin{align*}
(i) \quad & \lim_{n \to \infty} \beta_n = \lim_{n \to \infty} \beta'_n = \lim_{n \to \infty} \gamma'_n = 0; \\
(ii) \quad & \sum_{n=1}^{\infty} \beta_n = \infty \quad \text{and} \quad \sum_{n=1}^{\infty} \gamma_n < \infty.
\end{align*}

Proof. Note that

$$c_n = \max\{0, \sup_{x, y \in K} (\|T_n x - T_n y\| - \|x - y\|)\} \leq (L_n - 1) \delta(K),$$

where $\delta(K)$ denotes the diameter of K. Note that all assumptions of Theorem 2.1 are fulfilled, \square

Taking $\beta'_n = \gamma'_n = 0$ for all $n \geq 1$ in (1.6), as a direct consequence of Theorem 2.2, we have the following

Corollary 2.2. Let K be a nonempty bounded closed convex subset of a Banach space X. Suppose a family $\mathcal{S} = \{T_n : n \in \mathbb{N}\}$ of Lipschitzian self-mappings $T_n : K \to K$, $n \in \mathbb{N}$ satisfies the property (H) type. Suppose $F(T) \neq \emptyset$ and $\sum_{n=1}^{\infty} (L_n - 1) < \infty$, where $L_n (\geq 1)$ is the Lipschitz constant of T_n. Then the modified Mann iterative sequence $\{x_n\}_{n=1}^{\infty}$ with errors generated by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T_n x_n, \quad x_1 \in K$$

with $\{\alpha_n\}_{n=1}^{\infty} \subset (0, 1]$ satisfying

$$\sum_{n=1}^{\infty} \beta_n = \infty, \quad \sum_{n=1}^{\infty} \gamma_n < \infty, \quad \text{and} \quad \lim_{n \to \infty} b_n = 0,$$

strongly converges $q \in F(T)$ and $F(T)$ is a singleton set.

Remark. Note that if each $T_n : K \to K$ is L_n-Lipschitzian with $\limsup_{n \to \infty} L_n < 1$, then $\mathcal{S} = \{T_n : n \in \mathbb{N}\}$ is of (H) type.

References

Division of Mathematical Sciences, Pukyong National University, Pusan 608-737, Korea

E-mail address: taehwa@dolphin.pku.ac.kr