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1. Introduction
In our previous papers ([4], [5]) we estimated correlation dimensions of quasi-

periodic orbits according to algebraic properties, rational (badly) approximable prop-
erties, of the irrational frequencies. We introduced a class of irrational numbers, quasi
Roth numbers, which contains the class of Roth numbers. These irrational numbers
are classified according to badness levels of approximable properties by rational num-
bers. On the contrary, Liouville numbers are well known as the irrational numbers
which have extremely good approximable properties by rational numbers. In [7] we
introduced a new class of irrational numbers which contains the class of Liouville
numbers and we called them $\alpha$-order Liouville numbers or quasi Liouville numbers,
specifying goodness levels of rational approximations by the order values. In this pa-
per we consider a class of irrational numbers, which have weaker goodness levels of
rational approximations than the $\alpha$-order Liouville numbers, and call them $\alpha$-order
weak Liouville numbers.

In [4] we estimated the correlation dimensions of discrete quasi-periodic orbits
from below, using the badness levels of rational approximations for the irrational
frequencies which are $\alpha$-order quasi Roth numbers. In this paper first we introduce
definitions of recurrent or periodically recurrent dimensions and we give the rela-
tions between correlation dimensions and recurrent dimensions. Then we estimate
lower and upper dimensions of quasi-periodic orbits of a nonlinear discrete dynami-
cal system by using the goodness levels of rational approximations for the irrational
frequencies which are $\alpha$-order Liouville or $\alpha$-order weak Liouville numbers.

Our plan of this paper is as follows: In section 2 we introduce definitions of
recurrent dimensions and give inequality relations with correlation dimensions. In
section 3 we estimate these dimensions, from below and upper, of quasi-periodic
orbits with frequencies given by quasi Roth or weak Liouville numbers.

2. Recurrent dimension
Let $T$ be a nonlinear operator on a Banach space $X$ . For an element $x\in X$ we

consider a discrete dynamical system given by

$x_{n}=T^{n}x$ , $n\in \mathrm{N}_{0}:=\mathrm{N}\cup\{0\}$

数理解析研究所講究録
1187巻 2001年 131-142 131



and its orbit is denoted by

$\Sigma_{x}=\{T^{n_{X}} : n\in \mathrm{N}_{0}\}$ .

For a small $\epsilon>0$ , define upper and lower first $\epsilon$-recurrent times by

$\overline{M}_{\epsilon}.=\sup_{n\in \mathrm{N}_{0}}\min\{m:\tau^{m+n}X\in V_{\epsilon}(\tau nx), m\in \mathrm{N}\}$,

$\underline{M}=\inf_{n\in \mathrm{N}0}\min\{m:\tau m+nX\in V_{\epsilon}(\tau^{n}x), m\in \mathrm{N}\}$ ,

respectively, where $V_{\epsilon}(z)=\{y\in X : ||y-z||<\epsilon\}$ . Then upper and lower recurrent
dimensions are defined as follows:

$\overline{D}_{r}(\Sigma_{x})=\lim\sup\underline{\log\overline{M}\epsilon}$ ,
$\epsilonarrow 0$ $-\log\epsilon$

$\underline{D}_{r}(\Sigma_{x})=\lim_{\epsilonarrow 0}\inf\frac{\log\underline{M}}{-\log\epsilon}$ .

$\mathrm{I}\mathrm{f}\overline{M}_{\epsilon}=\underline{M}$ and the limit exits as $\epsilonarrow 0$ , we denote $D_{r}(\Sigma_{x})=\overline{D}_{r}(\Sigma_{x})=\underline{D}_{r}(\Sigma_{x})$.
The recurrent properties are essential for almost periodic dynamical systems.

Next we define periodically recurrent dimensions of almost periodic orbits. Let the
operator $T$ be invertible and consider the almost periodic orbit $\tilde{\Sigma}_{x}=\{T^{m}x:m\in \mathrm{Z}\}$ :

For each $\epsilon>0$ there exists a number $\mathit{1}_{\epsilon}>0$ such that for every $m\in \mathrm{Z}$ there
exists an integer $\mu\in[m, m+l_{\epsilon}]\cap \mathrm{Z}$ with the property

$|\tau^{(\mu+n})-TxnX|\leq\epsilon$ for all $n\in \mathrm{Z}$ . (2.1)

Here the point $\mu$ is called an $\epsilon$-almost period and $\mathit{1}_{\epsilon}$ is called an inclusion length for
$\epsilon$-almost period.

By using the inclusion length we can define periodically recurrent dimensions as
follows:

$\overline{D}_{p}(\tilde{\Sigma}_{x})=\lim\sup\underline{\log\iota_{\mathrm{g}}}$ ,
$\epsilonarrow 0$ $-\log\epsilon$

$\underline{D}_{p}(\tilde{\Sigma}_{x})=\lim_{\epsilonarrow}\inf_{0}\frac{\log l_{\epsilon}}{-\log\epsilon}$ .

If the limit exists as $\epsilonarrow 0$ , we put $D_{p}(\tilde{\Sigma}_{x})=\overline{D}_{p}(\tilde{\Sigma}_{x})=\underline{D}p(\tilde{\Sigma}_{x})$ .
From the definitions it is obvious that

$D_{p}(\tilde{\Sigma}_{x})\geq D_{r}(\Sigma_{x})$ ,

since $l_{\epsilon}\geq M_{\epsilon}$ .
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Correlation dimensions are most popular and studied in various dynamical sys-
tems or in fractal geometry. Let $S=\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\}$ be an infinite sequence of
elements in $X$ and, for a small number $\epsilon>0$ , define

$N( \epsilon)=\lim_{narrow\infty}\frac{1}{n^{2}}\sum_{i,j=1}^{n}H(\epsilon-||x_{i}-x_{j}||)$

where $H(\cdot)$ is a Heaviside function:

$H(a)=\{$
1 if $a\geq 0$

$0$ if $a<0$ .

The upper and lower correlation dimension of $S,$ $\overline{D}_{C}(S),\underline{D}(cS)$ , are defined as follows:

$\overline{D}_{c}(S)$ $=$ $\lim_{\epsilon\downarrow}\sup_{0}\frac{\log N(\epsilon)}{\log\epsilon}$ ,

$\underline{D}_{c}(S)$ $=$ $\lim_{\epsilon\downarrow 0}\inf\frac{\log N(\epsilon)}{\log\epsilon}$ .

If $\overline{D}_{C}=\underline{D}_{c}$ , we say that $S$ has the correlation dimension $D_{c}(S)=\overline{D}_{c}=\underline{D}_{c}$ .

Theorem 1. Let $X$ be a Banach space and consider a nonlinear operator $T$ on $X$

and its orbits $\Sigma_{x}=\{T^{n_{X:}}n\in \mathrm{N}_{0}\}$ for some $x\in X$ . Then

$\underline{D}_{c}(\Sigma_{x})\geq\underline{D}_{r}(\Sigma_{x})$ . (2.2)

Proof. From the definition, for every $\delta>0$ , there exists a constant $\epsilon_{0}>0$ such
that, if $0<\epsilon<\epsilon_{0}$ ,

$\underline{D}_{r}\leq\frac{\log\underline{M}}{-\log\epsilon}+\delta$ .

It follows that
$\epsilon^{-\underline{D}_{r}\delta}\leq+\underline{M}$ .

For a large integer $n\in \mathrm{N}$ , let $1\leq l,$ $m\leq n$ . If $0\leq m-l<\epsilon^{-\underline{D}_{\tau}+\delta}$ , we have

$||T^{m}x-\tau lx||=||\tau^{m-l}\tau^{l}x-T^{l}X||\geq\epsilon$ ,

and also, if $0\leq l-m<\epsilon^{-\underline{D}_{r}+\delta}$ , we have

$||\tau^{\iota_{x-}m}\tau x||=||.\tau^{\iota-m_{Tx}}m-T^{m}x||-\geq\epsilon$ .
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Let $M_{n}(\epsilon)$ be a number of elements $T^{m}x,$ $1\leq m\leq n$ in the $\epsilon$-neighborhood of
$T^{l}x,$ $1\leq l\leq n$ ;

$M_{n}(\epsilon)=\#\{m\in \mathrm{N} : T^{m}x\in V_{\epsilon}(\tau_{x}^{l}), 1\leq m\leq n\}$ .

Then we have
$M_{n}(\epsilon/2)\leq n\epsilon^{\underline{D}_{\mathit{7}^{-}}}\delta$

and it follows that

$\frac{1}{n^{2}}\sum_{1l,m=}^{n}H(\frac{\epsilon}{2}-||T^{\iota_{x-}}T^{m_{X||}})\leq\frac{1}{n^{2}}n\cdot n\epsilon^{\underline{D}_{r}\delta}-=\epsilon^{\underline{D}_{r}-\delta}$ .

Thus we obtain

$\underline{D}_{c}=\lim_{\epsilonarrow 0}\inf\frac{\log N(\frac{\epsilon}{2})}{\log\frac{\epsilon}{2}}\geq\lim_{\epsilonarrow 0}\inf\frac{\log\epsilon^{\underline{D}_{\Gamma^{-\delta}}}}{\log\frac{\epsilon}{2}}=\underline{D}_{r}-\delta$

for every $\delta>0$ , which yields (2.2). $\square$

On the other hand, we can estimate the upper bound of the correlation dimensions
by using the periodically recurrent dimension by using the similar argument to the
proof of Theorem 1.

Theorem 2. Let $T^{m}x,$ $m\in \mathrm{Z}$ , be almost periodic and denote

$\tilde{\Sigma}_{x}=\mathrm{f}^{T^{m}}x$ : $m\in \mathrm{Z}$ }.

Then we have
$\overline{D}_{p}(\tilde{\Sigma}_{x})\geq\overline{D}_{c}(\Sigma_{x}\sim)$ . (2.3)

3. Dimensions of quasi-periodic orbits
Let $S(t),$ $t\geq 0$ , be a semigroup of continous (generally nonlinear) operators on

a Banach space $X$ . For each $x\in X$ , assume that $S(t+1)x=S(t)x,$ $t\geq 0$ and
consider the following H\"older conditions:
(G1) There exists a constants $\delta_{1}$ : $0<\delta_{1}\leq 1$ and a monotone increasing function

$k_{1}$ : $\mathrm{R}^{+}arrow \mathrm{R}^{+}$ , which satisfies

$||S(t)_{X}-S(S)x||\leq k_{1}(||x||)|t-S|\delta_{1}$ , $t,$ $s\geq 0,$ $|t-s|\leq\epsilon_{0}$
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for a small constant $\epsilon_{0}>0$ .

(G2) There exists a constant $\delta_{2}$ : $0<\delta_{2}\leq 1$ and a monotone increasing function
$k_{2}$ : $\mathrm{R}^{+}arrow \mathrm{R}^{+}$ , which satisfies

$||S(t)_{X}-S(S)x||\geq k_{2}(||x||)|t-s|\delta_{2}$ , $t,$ $s\geq 0,$ $|t-s| \leq\frac{1}{2}$ .

For an irrational number $\tau$ : $0<\tau<1$ , define a quasi-periodic dynamical system
by

$T^{n}x=S(\tau n)x,$ $n\in \mathrm{N}_{0}$ ,

then our purpose is to estimate the recurren$\mathrm{t}$

,
dimension under the following algebraic

conditions on the frequency $\tau$ .

(i) Constant type; there exists a constant $c_{0}>0$ such that

$| \tau-\frac{r}{q}|\geq\frac{c_{0}}{q^{2}}$ (3.1)

for every positive integers $r,$ $q$ .
(ii) Roth number type; for every $\epsilon>0$ , there exists a constant $c_{\epsilon}>0$ which satisfies

$| \tau-\frac{r}{q}|\geq\frac{c_{\epsilon}}{q^{2+\epsilon}}$ (3.2)

for every positive integers $r,$ $q$ .
(iii) $\alpha_{0}$-order quasi Roth number type; there exist a constant $\alpha_{0}>0$ such that for
every $\alpha\geq\alpha_{0}$ there exists a constant $c_{\alpha}>0$ which satisfies

$| \tau-\frac{r}{q}|\geq\frac{c_{\alpha}}{q^{2+\alpha}}$ (3.3)

for every positive integers $r,$ $q$ .

These above conditions are classified by th.$\cdot$

e rational approXimab.l $\mathrm{e}$ properties of
the irrational number $\tau$ :

Consider the continued fraction of the number $\tau=[a_{1}a_{2}\cdots a_{n}\cdots]$ . and take the
rational approximation as follows. Let $m_{0}=1,$ $n_{0}=0,$ $m_{-1}=0,$ $n_{-1}=1$ and define
the pair of sequences of natural numbers

$m_{i}=aimi-1+mi-2$ , (3.4)
$n_{i}=aini-1+ni-2$ , $i\geq 1$ , (3.5)

then the elementary number theory gives the Diophantine approximation

$\frac{1}{m_{i}(m_{i1}++m_{i})}<|\tau-\frac{n_{i}}{m_{i}}|<\frac{1}{m_{i}m_{i+1}}<\frac{1}{m_{i}^{2}}$ (3.6)
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where the sequence $\{n_{i}/m_{i}\}$ is the best approximation in the sense that

$| \tau-\frac{n_{i}}{m_{i}}|\leq|\tau-\frac{r}{l}|$

holds for every rational $r/l:l\leq m_{i}$

An irrational number $\tau$ , which has extremely good approximable property by
rational numbers, is called a Liouville number if

$| \tau-\frac{n_{i}}{m_{i}}|\leq\frac{1}{m_{i}^{i}}$ , $\forall i$ .

Here we introduce a class of irrational numbers which contains Liouville numbers as
follows. We state that an irrational number $\tau$ is an $\alpha_{1}$-order Liouville number, or a
quasi Liouville number with its order $\alpha_{1}$ if
(iv) there exist constants $c,$ $\alpha_{1}>0$ such that

$| \tau-\frac{n_{i}}{m_{i}}|\leq\frac{c}{m_{i}^{2+\alpha_{1}}}$, $\forall i$ . (3.7)

Furthermore, considering some subsequece of the Diophantine approximation, we
define $\alpha_{1}$-order weak Liouville numbers as follows:
(v) There exists a subsequence $\{m_{k_{j}}\}\subset\{m_{j}\}$ : which satisfies

$| \tau-\frac{n_{k_{j}}}{m_{k_{j}}}|<\frac{c}{m_{k_{j}^{+\alpha_{1}}}^{2}}$

for some constant $c>0$ .
For the case of the constant type (i), it is well known (cf. [8]) that the uniform

boundedness of the sequence $\{a_{i}\}$ is equivalent to the property (1.1). For the quasi
Roth numbers and the weak Liouville numbers we can show the equivalent or suffi-
cient conditions to the rationally approximable properties of these numbers by using
the growth rate of some subsequences $\{m_{k_{J}}\}$ .

(R1) There exists a subsequence $\{m_{k_{\mathrm{J}}}.\}$ which satisfies

$m_{k_{j+1}}\leq Km_{k_{J}}^{1+\beta},$ $\forall j$ . (3.8)

for some constants $\beta,$ $K>0$ : We can obtain the following two lemmas.

Lemma 1. If Hypothesis (R1) is satisfied for an irrational number $\tau$ , then $\tau$ is a
quasi Roth number with its order

$\alpha_{0}=\beta(\beta+3)$ . (3.9)
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On the other hand, in [5] we have already proved the following Lemma.

Lemma $2.([5])$ If $\tau$ is a quasi Roth number with its order $\alpha_{0_{f}}$ then for every $\beta\geq\alpha_{0}$ ,
there exists $I\mathrm{t}_{\beta}^{\nearrow}>0$ which sa.tisfies

$m_{j+1}\leq IC_{\beta}m_{j}^{1+}\beta$ , $\forall j$ . (3.10)

For the $\alpha$-order Liouville numbers we have given the equivalent condition in [5]:

(L1) There exist constants $\alpha_{1},$ $L>0$ :

$m_{j+1}\geq Lm_{j^{+\alpha_{1}}}^{1},$ $\forall j$ . (3.11)

Lemma $3.([5])$ $\tau$ is a quasi Liouville number with its order $\alpha_{1}$ if and only if $\tau$

satisfies the condition (L1).

Obviously, (L1) is equivalent to the following condition on the partial quotients
in the continued fraction expansion of $\tau$ .

(L2) There exist constants $\alpha_{1},$ $L’>0$ :

$a_{i+1}\geq L’m_{j^{1}}^{\alpha},$ $\forall j$ . (3.12)

In [5] we have given a sufficient condition for a quasi Roth number, using the
partial quotients of the continued fraction expansion.

Lemma $4.([5])$ Let $\{a_{i}\}$ be the partial quotients in the continued fraction expansion
of $\tau$ . Assume that, for a given constant $\epsilon>0$ , there exists a constant $C_{\epsilon}>0$ , which
satisfies

$a_{i+1}a_{j}^{2}\leq C_{\xi}(a_{i}-1aj-2\ldots a_{1})\epsilon$ , $\forall j$ .
Then we have

$| \tau-\frac{r}{q}|\geq\frac{c_{\epsilon}}{q^{2+\epsilon}}$
$\forall q,$ $r\in N$

where $c_{\epsilon}=1/(16c_{\epsilon})$ .

For a $\alpha$-order Liouville number we can show the following lemma.
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Lemma 5. If the partial quotients in the continued fraction expansion of $\tau$ satisfies

$a_{j+1}\geq L_{0}a_{i^{+1}’}^{\beta}$ $\forall j$

for some $\beta>0$ and $L_{0}\geq 2^{\beta+1}$ , then $\tau$ is a quasi Liouville number with its order $\beta$ .

For the weak Liouville numbers we can show the equivalent condition:

$(\mathrm{W}\mathrm{L}1)$ There exist constants $\alpha_{1},$ $L>0$ :

$m_{k_{\mathrm{J}}+1}\geq Lm_{k_{J}^{+\alpha_{1}}}^{1},$ $\forall j$ . (3.13)

Lemma 6. $\tau$ is a weak Liouville numbers with its order $\alpha_{1}$ if and only if $\tau$ satisfies
the condition (WLI).

Obviously, (WLI) is equivalent to the following condition on the partial quotients
in the continued fraction expansion of $\tau$ .

$(\mathrm{W}\mathrm{L}2)$ There exist. constants $\alpha_{1},$ $L’>0$ :

$a_{k_{J}+1}\geq L’m_{k_{J}}^{\alpha_{1}},$ $\forall j$ . (3.14)

For a sufficient condition for a quasi-Roth number, instead of Lenuna 4, we can
show the following lemma.

Lemma 7. Let $\{a_{i}\}$ be the partial quotients in the continued fraction expansion of
$\tau$ . Assume that there exists a subsequence $\{a_{k_{j}}\}$ , which satisfies that, for a given
constant $\epsilon>0$ , there exists a constant $C_{\epsilon}>0$ such that

$(a_{k_{j}+1}+1)(ak_{j}+1)^{2}(a_{k_{j^{-}}1}+1)^{2}\cdots(a_{k_{j}-1}+2+1)2(a_{k_{\mathrm{J}}}-1+1+1)2\leq C_{\epsilon}(ak_{g}-1ak_{J}-1-1\ldots a_{1})^{\mathcal{E}},$ $\forall j$ .

Then we have
$| \tau-\frac{r}{l}|\geq\frac{c_{\epsilon}}{l^{2+\epsilon}’}$ $\forall l,$ $r\in N$ .

On the other hand, for a weak Liouville number, we can show the following
lemma.

Lemma 8. Assume that the partial quotients $\{a_{j}\}$ in the continued fraction expan-
sion of $\tau$ has a subsequence $\{a_{k_{\mathrm{J}}}\}$ , which satisfies

$a_{k_{j+1}}\geq(a_{k_{j+1}-1}+1)^{\beta}(a_{k_{j}-2}+1+1)^{\beta}\cdots(a_{k_{j}+1}+1)^{\beta}(a_{k_{j}}+1)^{\beta}a_{k_{J}}$. (3.15)
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for some $\beta>0$ , then $\tau$ is a weak Liouville number with its order $\beta$ .

Example 1. For some positive numbers $\kappa,$ $M>1$ , let

$a_{j}\sim M^{\kappa^{j}}$ ,

that is, there exist constants $d_{1}>d_{2}>0$ :

$d_{1}M^{\kappa^{\mathrm{J}}}\geq a_{j}\geq d_{2}M^{\kappa^{J}}$ (3.16)

Assume that
$M^{\kappa^{2}-\hslash}>\underline{2d_{1}}$

, (3.17)
$-d_{2}$

then $\tau$ is a quasi Liouville number with its order $\beta$ :

$\beta\leq\frac{\log d_{2}+\kappa^{2}\log M}{\log 2d_{1}+\kappa\log M}-1$. (3.18)

Example 2. Let $\{k_{i}\}$ be a sequence of integers which is increasing and goes to
infinity such that

$k_{j}-k_{j-1}\leq C\kappa^{j}$ (3.19)

for some $C>0$ and $\kappa>1$ . For constants $M,$ $M’>1$ , to simplify the argument, let

$a_{k_{j}}=M^{\kappa^{j}}$ , $a_{l}\leq M’,$ $l\not\in\{k_{j} : j\in \mathrm{N}\}$ . (3.20)

Then the irrational number, which has the partial quotients above, is a weak Liouville
number with its order $\beta$ , which satisfies

$\beta\leq\frac{\kappa-1}{1+\frac{C\kappa\log(M+1)}{\log M}+\frac{\kappa^{-1}\log 2}{\log M}},$ . (3.21)

The number, which satisfies (3.19) and (3.20), is also a quasi Roth number with
its order $\alpha$ such that

$\alpha\geq(\kappa-1)(2c_{\kappa\frac{\log(M’+1)}{\log M}+2)}$ .

In fact, for every $\epsilon>0$ , which saisfies

$\epsilon\frac{\kappa}{\kappa-1}\geq\frac{\log(M’+1)}{\log M}2C\kappa^{2}+2\kappa$,
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there exists a constant $C_{\epsilon}$ such that

$C_{\epsilon}M^{\frac{\kappa(\kappa^{j-1}-1)}{\kappa-1}\epsilon}$

$\geq$
$(M’+1)M^{\frac{\log(M’+1)}{1\circ \mathrm{g}M}2c_{\kappa^{j}}}+122M^{2}\kappa^{j}$

$\geq$
$(M’+1)M^{\frac{\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{t}M’+1)}{\log M}}2(k_{\mathrm{J}+}1-k\cdot-\mathrm{J}1)(M\kappa+j1)^{2}$.

Thus we have

$C_{\epsilon}M^{()\epsilon}\kappa^{g-}1+\kappa^{j2}-+\cdots+\kappa 1\geq(M’+1)(M’+1)^{2()}k_{\mathrm{J}}\cdot+1-k_{\mathrm{J}}\cdot-1(M\kappa^{J}+1)^{2}$ ,

which implies the condition in Lemma 7.
Since the correlation dimensions are estimated by the recurrent dimensions, here

we give upper bounds and lower bounds of the recurrent dimension of the quasi-
periodic orbits

$\Sigma_{x}=\{S(\mathcal{T}n)_{X}:n\in \mathrm{N}_{0}\}$ , $x\in X$

when the frequency $\tau$ is (iii) a quasi Roth number and (v) a weak Liouville number,
respectively.

Theorem 3. Under the assumption $(\mathrm{G}2)_{y}$ assume that there exists a constant
$I\mathrm{t}_{2}^{\nearrow}>0$ such that

$\inf_{n\in \mathrm{N}0}k2(||s(\tau n)x||)\geq I\iota_{2}^{\nearrow}$

:

and assume that the frequency $\tau$ is a quasi Roth number with its order $\alpha_{0}$ . Then the
recurrent dimension of the quasi-periodic orbit $\Sigma_{x}$ satisfies

$\underline{D}_{r}(\Sigma_{x})\geq\frac{1}{\delta_{2}(1+\alpha_{0})}$ . (3.22)

Proof. Put
$\varphi(m)=S(\tau m)x$ , $m\in \mathrm{N}_{0}$ ,

then, since we can find an integer $n’$ :

$|m \tau-n’|<\frac{1}{2}$

it follows from (iii), (G2) and Hypothesis that

$||\varphi(m+n)-\varphi(n)||$ $=$ $||S(\tau(m+n))x-s(\tau n)x||$

$=$ $||S(\tau(m+n))x-s(\mathcal{T}n+n’)X||$

$\geq$ $k_{2}(||S(\tau n)x||)|\tau m-n^{;}|^{\delta_{2}}$

$\geq$ $K_{2}( \frac{c_{\alpha}}{m^{1+\alpha}})^{\delta_{2}}$ , $\forall\alpha\geq\alpha_{0}$ ,
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for all $m\in \mathrm{N}$ and for all $n\in \mathrm{N}_{0}$ . For every $\epsilon>0$ , there exists $m\in \mathrm{N}$ such that

$Ii_{2}’( \frac{c_{\alpha}}{(m+1)^{1+\alpha}})^{\delta_{2}}\leq\epsilon<IC2(\frac{c_{\alpha}}{m^{1+\alpha}})^{\delta_{2}}$

and as $\epsilonarrow 0,$ $marrow+\infty$ . Thus we can obtain

$\underline{D}_{r}$ $=$ $\lim_{\epsilonarrow 0}\inf\frac{\log\underline{M}}{-\log\epsilon}$

$\geq$ $\lim_{\epsilonarrow}\inf_{0}\frac{\log m}{-\log\epsilon}$

$\geq$ $\lim_{marrow\infty}\frac{\log m}{\delta_{2}(1+\alpha)\log(m+1)-\log I’\backslash 2C2\delta\alpha}$

$=$ $\frac{1}{\delta_{2}(1+\alpha)}$

for all $\alpha\geq\alpha_{0}$ . $\square$

Theorem 4. Under the assumption (G1), assume that the frequency $\tau$ is a weak
Liouville number with its order $\alpha_{1}$ . Then the recurrent dimension of the quasi-
periodic orbit $\Sigma_{x}$ satisfies

$\underline{D}_{r}(\Sigma_{x})\leq\frac{1}{\delta_{1}(1+\alpha_{1})}$. (3.23)

Proof. Put
$\epsilon_{j}=\frac{k_{1}(||S(\mathcal{T}n_{0})x||)c^{\mathit{5}}1}{\delta_{1}(1+\alpha 1)}$

$m_{k_{j}}$

for some positive integer $n_{0}$ and $x\in X$ . It follows from Hypothesis that we have

$|m_{k_{\mathrm{J}}} \tau-nk_{J}|<\frac{c}{m_{k_{J}}^{\alpha_{1}+1}}$ . (3.24)

By the above estimate and (G1) we have

$||\varphi(m_{k_{\mathrm{J}}}+n_{0})-\varphi(n\mathrm{o})||$ $=$ $||S(\tau(m_{k_{J}}+n_{0})x-s(\tau n0)x||$

$=$ $||S(\tau(m_{k_{j}}+n_{0})x-s(\tau n_{0}+n_{k_{j}})x||$

$\leq$ $k_{1}(||S(\mathcal{T}n\mathrm{o})X||)|mk_{j}\mathcal{T}-n_{k_{j}}|^{\mathit{5}_{1}}$

$\leq$
$\frac{k_{1}(||s(\tau n0)x||)c^{\delta}1}{m_{k_{J}}^{\delta_{1}()}1+\alpha 1}=\epsilon_{j}$ .
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Thus we can obtain

$\underline{D}_{r}$ $= \lim_{\epsilon_{0}arrow 00<\epsilon}\inf_{\epsilon<0}\frac{\log\underline{M}}{-\log\epsilon}$

$\leq\lim_{jarrow\infty}\frac{\log\underline{M}_{j}}{-\log\epsilon_{j}}$

$\leq\lim_{iarrow\infty}\frac{\log m_{k_{j}}}{\delta_{1}(1+\alpha_{1})\log mk_{j}-\log k1(||S(\mathcal{T}n0)x||)c^{\delta_{1}}}$

$=$ $\frac{1}{\delta_{1}(1+\alpha_{1})}$ . $\square$
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