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§1 INTRODUCTION AND BASIC RESULTS

Let E be a linear space over R, and P be a convex cone in E satisfying

(P1) E=P-P,

(P2) Pn(-P)={0}.

An order relation in E can be defined by z <y <= y—x € P. Wecall a
linear space E equipped with such a positive cone P a partially ordered
linear space, and denote it by (E, P).

For a subset A of E, the generalized supremum Sup A is defined to
be the set of all minimal elements of U(A), where U(A) is the set of all
upper bound of A. In other words, U(A) = {z € E |y < z, Vy € A},
and SupA ={a € E |b<a, beU(A) = a =b}. The generalized
infimum Inf A can be defined similarly. In order to distinguish this notion
from the least upper bound and the greatest lower bound, we denote
the latter ones by sup A and inf A respectively. If E is order complete,
then Sup A = {sup A} holds whenever the subset A is upper bounded
(ie.,U(A) # 0). When E = R"™ and P is closed and not a lattice cone,
Sup A becomes an infinite set in most cases. However, it is possibly empty,
even when A is upper bounded. For the preparation, we recall some
basic results of the generalized supremum. The proofs of the following
propositions can be found in previous papers([4],[5],[6]).

Proposition 1. Fora € E and A > 0, we have
(1) Sup(A+a)=SupA+a,
(2) SupAA = ASupA4,
(3) SupA = —Inf(—A).
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Proposition 2. For an arbitrary set A C E with U(A) # 0,
Sup A = Sup(coA)
holds where coA is the convex hull of A.

Prposition 3. For a,b € E, Sup{a,b} # 0 implies Inf{a,b} # 0 and
the converse is also true. Moreover,

a+ b — Sup{a,b} = Inf{a, b}

holds and in particular we have a € ay + a_ where ay = Sup{a,0} and
a_ = Inf{a,0}.

A partially ordered linear space (F, P) is said to be monotone order
complete (m.o.c. for short) if every upper bounded totally ordered subset
of E has the least upper bound in E. In the case E = R¢, (E, P) is m.o.c.
if and only if P is closed. In the case when F is a Banach space with a
closed positive cone P satisfying P* — P* = E*, (E*, P*) is m.o.c. where
E* is the topological dual of £ and P* = {z* € E* | z*(z) > 0, z € P}.
The proofs of these facts can be seen in a previous paper [6].

Proposition 4.  Suppose that a partz'ally ordered linear space (E, P)
s monotone order complete. Then for every subset A of E,

U(A) = (Sup A) + P

holds. In particular, Sup{a,b} # 0, Inf{a,b} # O for every a,b € E, and
U(a,b) = (Sup{a,b}) + P.

Let (E, P) be a partially ordered linear space, and suppose that P is
algebraically closed, that is, every straight line of ' meets P by a closed
interval. A point z of a convex subset A C FE is called an algebraic
interior point of A if for every z € E, there exists A > 0 such that
z + Az € A. Algebraic exterior points are defined similarly, and we
denote the algebraic interior (exterior) of A by intA (extA) respectively.
Moreover, 0A = (intAUextA)¢ is called the algebraic boundary of A.
A convex subset C' of P is called an exposed face of P if there exists a
supporting hyperplane H of P such that C = PNH. By §(P), we denote
the set of all exposed faces of P. For C € §(P), dimC is defined as the
dimension of affC where affC' denotes the affine hull of C.

Propositon 5.  Suppose that P 1is algebraically closed and int P +# {).
If dim C < oo for every C € §(P), then

U(A) = (SupA) + P
holds for every subset A C E.
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Corollary 1. Suppose that (E, P) satisfies the hypotheses in Proposition
4 or Proposition 5, and let A be a subset of E. If Sup A consists of a
single element a, then a is the least upper bound of A.

Corollary 2. For every subset A of E, U(L(U(A))) = U(A) holds
where L(U(A)) denotes the lower bound of U(A). Moreover, if (E,P)
satisfies the hypotheses in Proposition 4 or Propositon 5, then we have
Sup Inf Sup A = Sup A.

The proofs of these results can be seen in [4],[5],[6], and [7].

§2 PROPERTIES OF THE SET OF UPPER BOUNDS AND LOWER BOUNDS

Through this section, we consider only the case when E = R? the finite
dimensional Euclidean space and the positive cone P is a closed convex
cone satisfying (P1),(P2). Under this assumptions, it is easy to observe
that U(A) and L(A) are closed convex sets for every A C R%. Moreover
(R?, P) is monotone order complete, and by Proposition 4, the formula

(2.1) | . U(A)=(Suwpd)+P

always holds. Let B and 8’ be the family of all upper bounded subset
and lower bounded subset in R¢ respectively, i.e.

B={ACR*|A#0, UA) # 0},
® = {BCR'|B#0, L(B)#0}.
We define an equivalence relation ~ in B by
A~B<=U(A)=U(B) (A,BE¢e*DB).

Let' X be the quotient set B/ ~ = {[A] | A € B} where [A] denotes the
equivalence class of A.

Proposition 6. [A] = [L(U(A))] = [L(Sup A)] holds for every A € B
and [L(B)] = [Inf B] for every B € B'. Moreover if [L(B)] = [A] for
some A € B and B € B, then A C L(B).

proof. By (2.1) we can easily see that

U(4)

U(L(U(4)))
U(L(Sup A + P))
U(L(Sup A4)).

I

I
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This directly shows the first formula. Since we also have L(B) = (Inf B)—
P (B € %) by (2.1), the second formula follows similarly. Indeed,
U(Inf B) = U((Inf B) — P) = U(L(B)). The latter statement follows

from Corollary 2. Indeed,
ACL(U(A))
= L(U(L(B)))
= L(B). |
For every [A] € X, two operations u([4]) = U(A) and I([4]) =
L(U(A)) are well defined. By virtue of (2.1), X can be identified with

the set {U(A) | A € B} or the set {Sup A | A € B}. We now define an
order relation in X by

[A] < [B] <= u([B]) cu([4]) [A],[B] € X.
By this definition X becomes a partially ordered set. Moreover, we shall
show that X is an order complete lattice and that X has a subset which
is order isomorphic to (R%, P). Let X; be the set of all [4] € X such that

u([A]) = a + P for some a € R?. Note that the correspondence which
assigns a € R9 to [A] € X such that u([A]) = a + P is one to one.

Theorem 1. X is an order complete lattice with respect to the order

* <. Moreover, X; is order isomorphic to (R%, P) by the correspondence
R? 5 a +— [A] € X, where u([A]) =a + P.

Lemma 1. Let {Ay}oes C B, and {Bx}rea C B’, be arbitrary families
such that Uses Ay € B and Uyen By € B'. Then

(1) Noex u([Acr]) - u([UGEE Acr])7 Miea l([L(BA)]) - l([L(UAEA BA)])'
(2) U(L(Noex u([45]))) = Noex w([4q]), L(U(Nrea H[L(BA)]))) =
Maea [L(BA)])-

proof. (1) can be shown directly by the definitions. Indeed,
Noex u([4s]) = Noex U(4s)
= U(UUEE AU)
= u([Uses 4s)),
and
Maea U[L(BA)]) = Naea L(U(L(BA)))
= Nxea L(B»)
= L(User By)
— LU(L(Uzen B)
= l([L(Urea Ba)))-
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Moreover, we can see by (1) and Corollary 2 that
U(L(Noes u([45])) = U(L(u([Uses As])))
= u([Uses As])-
The latter formula can be shown similarly.

proof of Theorem 1. Let Y be an upper bounded subset of X. Then there
exists a subset B € B such that U(B) C u([A]) for all [4] € Y. Let

C=L( (] u(A])

[A]leY
Then C' € B and by Lemma 1,
ulC)= (1 w(A)
[AleY
D U(B).

This means that [C] is the least upper bound of Y. Next we suppose that
Y’ is a lower bounded subset of X. We put

C'= (] L(u([A)
[A]leY!
Then C' € B and U(C’) D U(L(u([4]))) = u([4]) for every [A] € Y.
Hence [C'] is a lower bound of Y’. Let [B’] be an arbitrary lower
bound of Y’ then u([A]) C U(B') for every [A] € Y’, and we have
Nagey L(u((A]) > L(U(B’)) Thus

U( () Lu(

[AleY”
c U(L(U(B)))

= u([B')).

This means that [C’] is the greatest lower bound of Y’. Thus we have
proved that X is order complete. To prove that X forms a lattice it is
sufficient to show that {[A], [B]} is bounded for every pair [A],[B] € X.
For a € u([A]) and b € u([B]) we can choose p, g € P such that a—b = p—q
by the condition (P1). Hence a + ¢ = b+ p € u([4]) Nu([B]). Thus
u([A]) Nu([B]) and L(u([A])) N L(u([B])) are both nonempty, and we put
C1 = L(u([A]) nu([B])), and Cy = L(u([A])) N L(u([B])). It is easy to
see that [C1] > [A],[B] and [C3] < [A],[B], and this is what we wanted
to show. The second statement of this theorem is obvious.

By [A] V [B], and [A] A [B] we denote the least upper bound and the
greatest lower bound of {[A4], [B]} in X respectively. Repeating the same
arguement of the proof of Theorem 1, we obtain
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Proposition 7. For [A],[B] € X,
(1) [Alv[B] = [L(u([A]) nu((B])],
(2)  [AIA[B] = [L(u([A]) N L(u([B]))]-
For A € B we can characterize U(A) by using the support function of

A and the dual cone P* = {z* ¢ R | < z*,z >>0 =z € P}. In the
conditions we have assumed, the relation

(2.2) P=P*={zecR?| <z*,z>>0 z*eP*}.

holds. If A € B then the support function f4(z*) = sup < z*,z > is
z€A
finite on P*. Indeed if zg € U(A), then < z*,z ><< z*,z9 > holds for

all z € A.
Theorem 2. For every A € B,

(| {z| <z*2>> fa(z)},

z*€QP*
where OP* denotes the boundary of P*.

It is known that the dual cone P* satisfies (P1) and (P2), if P is closed
in R?. For the proof of Theorem 2, we prepare a basic lemma.

Lemma 2. Let P C R? be a closed positive cone satzsfyzng (P1) and
(P2). Then

(1) if0<b<aandbs+#0, there exists n € N such that nb £ q,

(2)  if a is an interior point of P and b £ a, then there exists t > 0
such that a + t(a — b) € OP.

proof. Suppose that = —b > 0 for every n = 1,2,3,---. Then the closed-
ness of P yields —b 2 0 which contradicts (P1). Hence there exists n € N
such that a —nb # 0 and (1) follows immediately. Next we suppose that
a+t(a—b) >0 for every t > 0. Then g —b >0 (¢t > 0) and the
closedness of P yields a —b > 0 which contrad1cts the assumption. Hence
we can choose tg = sup{t > 0| a+t(a —b) € P}, and a+to(a—b) € OP.

proof of Theorem 2. Since ~ C’ is obvious we will prove only the converse.
Let z* be an arbirary element of P*. By (1) in Lemma 2, we can take
z3 € OP* such that 2 £ z*. Moreover, by (2) in Lemma 2, there exists
x5 € OP* such that z* = Az} + (1 — A\)z; for some 0 < A < 1. Suppose
that z€ () {z| <z*,2>> fa(z*)} and y € A, then

T*€EQP*

<zt rz—y>=A<zhz—y>+(1-N<zibz—y>

> 0.
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Since z* € P* and y € A are arbirary, we can conclude by (2.2) that
z € U(A).

The following is an immediate consequence of this theorem.

Corollary 3. Let A, B € 98 and suppose that fs(z*) = fg(z*) on OP*,
then [A] = [B].
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