<table>
<thead>
<tr>
<th>Title</th>
<th>SOME PROPERTIES OF GENERALIZED SUPREMUM IN PARTIALLY ORDERED LINEAR SPACES (Nonlinear Analysis and Convex Analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Komuro, Naoto</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2001), 1187: 88-94</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2001-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/64685</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
SOME PROPERTIES OF GENERALIZED SUPREMUM IN PARTIALLY ORDERED LINEAR SPACES

NAOTO KOMURO

Mathematics Laboratory, Asahikawa Campus, Hokkaido University of Education

§1 Introduction and Basic Results

Let E be a linear space over \mathbb{R}, and P be a convex cone in E satisfying

(P1) $E = P - P$,
(P2) $P \cap (-P) = \{0\}$.

An order relation in E can be defined by $x \leq y \iff y - x \in P$. We call a linear space E equipped with such a positive cone P a partially ordered linear space, and denote it by (E, P).

For a subset A of E, the generalized supremum $\text{Sup} A$ is defined to be the set of all minimal elements of $U(A)$, where $U(A)$ is the set of all upper bound of A. In other words, $U(A) = \{x \in E \mid y \leq x, \forall y \in A\}$, and $\text{Sup} A = \{a \in E \mid b \leq a, \ b \in U(A) \implies a = b\}$. The generalized infimum $\text{Inf} A$ can be defined similarly. In order to distinguish this notion from the least upper bound and the greatest lower bound, we denote the latter ones by $\sup A$ and $\inf A$ respectively. If E is order complete, then $\text{Sup} A = \{\sup A\}$ holds whenever the subset A is upper bounded (i.e., $U(A) \neq \emptyset$). When $E = \mathbb{R}^n$ and P is closed and not a lattice cone, $\text{Sup} A$ becomes an infinite set in most cases. However, it is possibly empty, even when A is upper bounded. For the preparation, we recall some basic results of the generalized supremum. The proofs of the following propositions can be found in previous papers([4],[5],[6]).

Proposition 1. For $a \in E$ and $\lambda > 0$, we have

(1) $\text{Sup}(A + a) = \text{Sup} A + a$,
(2) $\text{Sup} \lambda A = \lambda \text{Sup} A$,
(3) $\text{Sup} A = -\text{Inf}(-A)$.
Proposition 2. For an arbitrary set $A \subset E$ with $U(A) \neq \emptyset$,

$$\text{Sup} A = \text{Sup}(\text{co} A)$$

holds where coA is the convex hull of A.

Proposition 3. For $a, b \in E$, $\text{Sup}\{a, b\} \neq \emptyset$ implies $\text{Inf}\{a, b\} \neq \emptyset$ and the converse is also true. Moreover,

$$a + b - \text{Sup}\{a, b\} = \text{Inf}\{a, b\}$$

holds and in particular we have $a \in a_+ + a_-$ where $a_+ = \text{Sup}\{a, 0\}$ and $a_- = \text{Inf}\{a, 0\}$.

A partially ordered linear space (E, P) is said to be monotone order complete (m.o.c. for short) if every upper bounded totally ordered subset of E has the least upper bound in E. In the case $E = \mathbb{R}^d$, (E, P) is m.o.c. if and only if P is closed. In the case when E is a Banach space with a closed positive cone P satisfying $P^* - P^* = E^*$, (E^*, P^*) is m.o.c. where E^* is the topological dual of E and $P^* = \{x^* \in E^* | x^*(x) \geq 0, x \in P\}$. The proofs of these facts can be seen in a previous paper [6].

Proposition 4. Suppose that a partially ordered linear space (E, P) is monotone order complete. Then for every subset A of E,

$$U(A) = (\text{Sup} A) + P$$

holds. In particular, $\text{Sup}\{a, b\} \neq \emptyset$, $\text{Inf}\{a, b\} \neq \emptyset$ for every $a, b \in E$, and $U(a, b) = (\text{Sup}\{a, b\}) + P$.

Let (E, P) be a partially ordered linear space, and suppose that P is algebraically closed, that is, every straight line of E meets P by a closed interval. A point x of a convex subset $A \subset E$ is called an algebraic interior point of A if for every $z \in E$, there exists $\lambda > 0$ such that $x + \lambda z \in A$. Algebraic exterior points are defined similarly, and we denote the algebraic interior (exterior) of A by intA (extA) respectively. Moreover, $\partial A = (\text{int} A \cup \text{ext} A)^c$ is called the algebraic boundary of A. A convex subset C of P is called an exposed face of P if there exists a supporting hyperplane H of P such that $C = P \cap H$. By $\mathfrak{F}(P)$, we denote the set of all exposed faces of P. For $C \in \mathfrak{F}(P)$, dim C is defined as the dimension of affC where affC denotes the affine hull of C.

Proposition 5. Suppose that P is algebraically closed and int $P \neq \emptyset$. If dim $C < \infty$ for every $C \in \mathfrak{F}(P)$, then

$$U(A) = (\text{Sup} A) + P$$

holds for every subset $A \subset E$.
Corollary 1. Suppose that \((E, P)\) satisfies the hypotheses in Proposition 4 or Proposition 5, and let \(A\) be a subset of \(E\). If \(\text{Sup} A\) consists of a single element \(a\), then \(a\) is the least upper bound of \(A\).

Corollary 2. For every subset \(A\) of \(E\), \(U(L(U(A))) = U(A)\) holds where \(L(U(A))\) denotes the lower bound of \(U(A)\). Moreover, if \((E, P)\) satisfies the hypotheses in Proposition 4 or Proposition 5, then we have \(\text{Sup} \text{Inf} \text{Sup} A = \text{Sup} A\).

The proofs of these results can be seen in [4],[5],[6], and [7].

§2 Properties of the set of upper bounds and lower bounds

Through this section, we consider only the case when \(E = \mathbb{R}^d\) the finite dimensional Euclidean space and the positive cone \(P\) is a closed convex cone satisfying \((P1),(P2)\). Under this assumptions, it is easy to observe that \(U(A)\) and \(L(A)\) are closed convex sets for every \(A \subset \mathbb{R}^d\). Moreover \((\mathbb{R}^d, P)\) is monotone order complete, and by Proposition 4, the formula

\[
(2.1) \quad U(A) = (\text{Sup} A) + P
\]

always holds. Let \(\mathfrak{B}\) and \(\mathfrak{B}'\) be the family of all upper bounded subset and lower bounded subset in \(\mathbb{R}^d\) respectively, i.e.

\[
\mathfrak{B} = \{A \subset \mathbb{R}^d \mid A \neq \emptyset, U(A) \neq \emptyset\},
\]

\[
\mathfrak{B}' = \{B \subset \mathbb{R}^d \mid B \neq \emptyset, L(B) \neq \emptyset\}.
\]

We define an equivalence relation \(\sim\) in \(\mathfrak{B}\) by

\[
A \sim B \iff U(A) = U(B) \quad (A, B \in \mathfrak{B}).
\]

Let \(X\) be the quotient set \(\mathfrak{B}/\sim = \{[A] \mid A \in \mathfrak{B}\}\) where \([A]\) denotes the equivalence class of \(A\).

Proposition 6. \([A] = [L(U(A))] = [L(\text{Sup} A)]\) holds for every \(A \in \mathfrak{B}\) and \([L(B)] = [\text{Inf} B]\) for every \(B \in \mathfrak{B}'\). Moreover if \([L(B)] = [A]\) for some \(A \in \mathfrak{B}\) and \(B \in \mathfrak{B}'\), then \(A \subset L(B)\).

proof. By (2.1) we can easily see that

\[
U(A) = U(L(U(A)))
= U(L(\text{Sup} A + P))
= U(L(\text{Sup} A)).
\]
This directly shows the first formula. Since we also have \(L(B) = (\text{Inf } B) - P \) \((B \in \mathfrak{B}') \) by (2.1), the second formula follows similarly. Indeed,
\[
U(\text{Inf } B) = U((\text{Inf } B) - P) = U(L(B)).
\]
The latter statement follows from Corollary 2. Indeed,
\[
A \subset L(U(A)) \\
= L(U(L(B))) \\
= L(B).
\]

For every \([A] \in X\), two operations \(u([A]) = U(A) \) and \(l([A]) = L(U(A)) \) are well defined. By virtue of (2.1), \(X \) can be identified with the set \(\{U(A) \mid A \in \mathfrak{B}\} \) or the set \(\{\text{Sup } A \mid A \in \mathfrak{B}\} \). We now define an order relation in \(X \) by
\[
[A] \leq [B] \iff u([B]) \subset u([A]) \quad [A], [B] \in X.
\]
By this definition \(X \) becomes a partially ordered set. Moreover, we shall show that \(X \) is an order complete lattice and that \(X \) has a subset which is order isomorphic to \((\mathbb{R}^d, P)\). Let \(X_1 \) be the set of all \([A] \in X\) such that \(u([A]) = a + P \) for some \(a \in \mathbb{R}^d \). Note that the correspondence which assigns \(a \in \mathbb{R}^d \) to \([A] \in X_1\) such that \(u([A]) = a + P \) is one to one.

Theorem 1. \(X \) is an order complete lattice with respect to the order ‘\(\leq \)’. Moreover, \(X_1 \) is order isomorphic to \((\mathbb{R}^d, P)\) by the correspondence \(\mathbb{R}^d \ni a \leftrightarrow [A] \in X_1 \) where \(u([A]) = a + P \).

Lemma 1. Let \(\{A_\sigma\}_{\sigma \in \Sigma} \subset \mathfrak{B}, \) and \(\{B_\lambda\}_{\lambda \in \Lambda} \subset \mathfrak{B}' \), be arbitrary families such that \(\cup_{\sigma \in \Sigma} A_\sigma \in \mathfrak{B \ and \ } \cup_{\lambda \in \Lambda} B_\lambda \in \mathfrak{B}' \). Then

1. \(\cap_{\sigma \in \Sigma} u([A_\sigma]) = U(\cap_{\sigma \in \Sigma} A_\sigma) \) \(= U(\cup_{\sigma \in \Sigma} A_\sigma) = u([\cup_{\sigma \in \Sigma} A_\sigma]) \).
2. \(U(L(\cap_{\sigma \in \Sigma} u([A_\sigma]))) = \cap_{\sigma \in \Sigma} u([A_\sigma]) \) \(= U(\cap_{\lambda \in \Lambda} l([L(B_\lambda)])) = \cap_{\lambda \in \Lambda} l([L(B_\lambda)]) \).

proof. (1) can be shown directly by the definitions. Indeed,
\[
\cap_{\sigma \in \Sigma} u([A_\sigma]) = U(\cup_{\sigma \in \Sigma} A_\sigma) = u([\cup_{\sigma \in \Sigma} A_\sigma]),
\]
and
\[
\cap_{\lambda \in \Lambda} l([L(B_\lambda)]) = U(\cap_{\lambda \in \Lambda} L(B_\lambda)) = \cap_{\lambda \in \Lambda} L(B_\lambda) = L(\cup_{\lambda \in \Lambda} B_\lambda) = L(U(\cup_{\lambda \in \Lambda} B_\lambda)) = l([L(\cup_{\lambda \in \Lambda} B_\lambda)]).
Moreover, we can see by (1) and Corollary 2 that
\[U(L(\bigcap_{\sigma\in\Sigma} u([A_{\sigma}]))) = U(L(u([\bigcup_{\sigma\in\Sigma} A_{\sigma}]))) = u([\bigcup_{\sigma\in\Sigma} A_{\sigma}]). \]

The latter formula can be shown similarly.

proof of Theorem 1. Let \(Y \) be an upper bounded subset of \(X \). Then there exists a subset \(B \in \mathfrak{B} \) such that \(U(B) \subset u([A]) \) for all \([A] \in Y\). Let
\[C = L(\bigcap_{[A] \in Y} u([A])) \]
Then \(C \in \mathfrak{B} \) and by Lemma 1,
\[U(C) = \bigcap_{[A] \in Y} u([A]) \supset U(B). \]
This means that \([C]\) is the least upper bound of \(Y \). Next we suppose that \(Y' \) is a lower bounded subset of \(X \). We put
\[C' = \bigcap_{[A] \in Y'} L(u([A])) \]
Then \(C' \in \mathfrak{B} \) and \(U(C') \supset U(L(u([A]))) = u([A]) \) for every \([A] \in Y'\). Hence \([C']\) is a lower bound of \(Y' \). Let \([B']\) be an arbitrary lower bound of \(Y' \) then \(u([A]) \subset U(B') \) for every \([A] \in Y'\), and we have \(\bigcap_{[A] \in Y'} L(u([A])) \supset L(U(B')) \). Thus
\[U(C') = U(\bigcap_{[A] \in Y'} L(u([A]))) \subset U(L(U(B'))) = u([B']). \]
This means that \([C']\) is the greatest lower bound of \(Y' \). Thus we have proved that \(X \) is order complete. To prove that \(X \) forms a lattice it is sufficient to show that \(\{[A], [B]\} \) is bounded for every pair \([A], [B] \in X\). For \(a \in u([A]) \) and \(b \in u([B]) \) we can choose \(p, q \in P \) such that \(a-b = p-q \) by the condition (P1). Hence \(a+q = b+p \in u([A]) \cap u([B]) \). Thus \(u([A]) \cap u([B]) \) and \(L(u([A])) \cap L(u([B])) \) are both nonempty, and we put \(C_1 = L(u([A]) \cap u([B])) \), and \(C_2 = L(u([A])) \cap L(u([B])) \). It is easy to see that \([C_1] \geq [A], [B]\) and \([C_2] \leq [A], [B]\), and this is what we wanted to show. The second statement of this theorem is obvious.

By \([A] \vee [B]\), and \([A] \wedge [B]\) we denote the least upper bound and the greatest lower bound of \(\{[A], [B]\} \) in \(X \) respectively. Repeating the same argument of the proof of Theorem 1, we obtain
Proposition 7. For $[A],[B] \in X$,
(1) $[A] \lor [B] = [L(u([A]) \cap u([B]))]$,
(2) $[A] \land [B] = [L(u([A])) \cap L(u([B]))]$.

For $A \in \mathfrak{B}$ we can characterize $U(A)$ by using the support function of A and the dual cone $P^* = \{x^* \in \mathbb{R}^d \mid <x^*,x> \geq 0 \quad x \in P\}$. In the conditions we have assumed, the relation

(2.2) $P = P^{**} = \{x \in \mathbb{R}^d \mid <x^*,x> \geq 0 \quad x^* \in P^*\}.$

holds. If $A \in \mathfrak{B}$ then the support function $f_A(x^*) = \sup_{x \in A} <x^*,x>$ is finite on P^*. Indeed if $x_0 \in U(A)$, then $<x^*,x> \leq <x^*,x_0>$ holds for all $x \in A$.

Theorem 2. For every $A \in \mathfrak{B}$,

$$U(A) = \bigcap_{x^* \in \partial P^*} \{x \mid <x^*,x> \geq f_A(x^*)\},$$

where ∂P^* denotes the boundary of P^*.

It is known that the dual cone P^* satisfies (P1) and (P2), if P is closed in \mathbb{R}^d. For the proof of Theorem 2, we prepare a basic lemma.

Lemma 2. Let $P \subset \mathbb{R}^d$ be a closed positive cone satisfying (P1) and (P2). Then

(1) if $0 \leq b \leq a$ and $b \neq 0$, there exists $n \in \mathbb{N}$ such that $nb \ngeq a$,
(2) if a is an interior point of P and $b \ngeq a$, then there exists $t > 0$ such that $a + t(a - b) \in \partial P$.

proof. Suppose that $\frac{a}{n} - b \geq 0$ for every $n = 1, 2, 3, \ldots$. Then the closedness of P yields $-b \geq 0$ which contradicts (P1). Hence there exists $n \in \mathbb{N}$ such that $a - nb \ngeq 0$ and (1) follows immediately. Next we suppose that $a + t(a - b) \geq 0$ for every $t > 0$. Then $\frac{t+1}{t}a - b \geq 0$ (for all $t > 0$) and the closedness of P yields $a - b \geq 0$ which contradicts the assumption. Hence we can choose $t_0 = \sup\{t > 0 \mid a + t(a - b) \in P\}$, and $a + t_0(a - b) \in \partial P$.

proof of Theorem 2. Since ‘\subset’ is obvious we will prove only the converse. Let x^* be an arbitrary element of P^*. By (1) in Lemma 2, we can take $x_1^* \in \partial P^*$ such that $x_1^* \ngeq x^*$. Moreover, by (2) in Lemma 2, there exists $x_2^* \in \partial P^*$ such that $x^* = \lambda x_1^* + (1 - \lambda)x_2^*$ for some $0 < \lambda < 1$. Suppose that $x \in \bigcap_{x^* \in \partial P^*} \{x \mid <x^*,x> \geq f_A(x^*)\}$ and $y \in A$, then

$$<x^*,x - y> = \lambda <x_1^*,x - y> + (1 - \lambda) <x_2^*,x - y> \geq 0.$$
Since \(x^* \in P^* \) and \(y \in A \) are arbitrary, we can conclude by (2.2) that \(x \in U(A) \).

The following is an immediate consequence of this theorem.

Corollary 3. Let \(A, B \in \mathfrak{B} \) and suppose that \(f_A(x^*) = f_B(x^*) \) on \(\partial P^* \), then \([A] = [B]\).

References

N.Komuro
Hokkaido University of Education at Asahikawa
Hokumoncho 9 chome Asahikawa
070 Japan
e-mail: komuro@atson.asa.hokkyodai.ac.jp