<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>Related Topics to Transferable Utility Games: An Infinite Market Game (Nonlinear Analysis and Convex Analysis)</td>
</tr>
<tr>
<td>著者</td>
<td>Komiya, Hidetoshi</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 2001年, 1187, 49-57</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2001-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/64689</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ
Kyoto University Research Information Repository
1 Introduction

Let $(\Omega, \mathcal{F}, \mu)$ be a finite measure space throughout this paper. A game v is a nonnegative real valued function, defined on the σ-field \mathcal{F}, which maps the empty set to zero. An outcome of a game v is a finitely additive real valued function α on \mathcal{F} such that $\alpha(\Omega) = v(\Omega)$. For an outcome α of v, an integrable function f satisfying $\int_S f \, d\mu = \alpha(S)$ for all $S \in \mathcal{F}$ is said to be an outcome density of α with respect to μ. An outcome indicates outcomes to each coalitions while an outcome density designates outcomes to every players. The core of v is the set of outcomes α satisfying $\alpha(S) \geq v(S)$ for all $S \in \mathcal{F}$.

To every game v we associate an extended real number $|v|$ defined by

$$|v| = \sup \left\{ \sum_{i=1}^{n} \lambda_i v(S_i) : \sum_{i=1}^{n} \lambda_i \chi_{S_i} \leq \chi_{\Omega} \right\},$$

where $n = 1, 2, \ldots$, $S_i \in \mathcal{F}$, λ_i is a real number. The notation χ_A denotes the characteristic function of a subset A of Ω. For a game v with $|v| < \infty$, we define two games \bar{v} and \hat{v} by

$$\bar{v}(S) = \sup \left\{ \sum_{i=1}^{n} \lambda_i v(S_i) : \sum_{i=1}^{n} \lambda_i \chi_{S_i} \leq \chi_S \right\}, \quad S \in \mathcal{F},$$

$$\hat{v}(S) = \min \left\{ \alpha(S) : \alpha \text{ is additive, } \alpha \geq v, \ \alpha(\Omega) = |v| \right\}, \quad S \in \mathcal{F},$$
following [3]. A game v is said to be \textit{balanced} if $v(\Omega) = |v|$, \textit{totally balanced} if $v = \bar{v}$ and \textit{exact} if $v = \hat{v}$, respectively. It is proved in [3] that the core of a game is nonempty if and only if it is balanced, every exact game is totally balanced, and every totally balanced game is balanced.

A game v is said to be \textit{monotone} if $S \subset T$ implies $v(S) \leq v(T)$ for any S and T in \mathcal{F}. A game v is said to be \textit{continuous} at Ω if it follows that $\lim_{n \to \infty} v(S_n) = v(\Omega)$ for any nondecreasing sequence $\{S_n\}$ of measurable sets such that $\bigcup_{n=1}^{\infty} S_n = \Omega$.

2 Market Games

We denote utilities of players by a Carathéodory type function u defined on $\Omega \times R^l_+ \to R_+$, where R^l_+ denotes the nonnegative orthant of the l-dimensional Euclidean space R^l, and R_+ is the set of nonnegative real numbers. The nonnegative number $u(\omega, x)$ designates the density of the utility of a player ω getting goods x. We always use the ordinary coordinatewise order when having concern with an order in R_+^l. We suppose that the function $u : \Omega \times R^l_+ \to R_+$ satisfies the conditions:

1. The function $\omega \mapsto u(\omega, x)$ is measurable for all $x \in R^l_+$;
2. The function $x \mapsto u(\omega, x)$ is continuous, concave, nondecreasing, and $u(\omega, 0) = 0$, for almost all ω in Ω;
3. $\sigma \equiv \sup\{u(\omega, x) : (\omega, x) \in \Omega \times B_+\} < \infty$, where $B_+ = \{x \in R^l_+ : \|x\| \leq 1\}$, and $\|x\|$ denotes the Euclidean norm of $x \in R^l_+$.

For any set S in \mathcal{F}, the set of integrable functions on S to R^l_+ is denoted by $L_1(S, R^l_+)$. We take an element e of $L_1(\Omega, R^l_+)$ as the density of initial endowments for the players. For any S in \mathcal{F}, define

$$v(S) \equiv \sup \left\{ \int_S u(\omega, x(\omega)) \, d\mu(\omega) : x \in L_1(S, R^l_+), \int_S x \, d\mu = \int_S e \, d\mu \right\}.$$

The set function v defined above is called a \textit{market game} derived from the market $(\Omega, \mathcal{F}, \mu, u, e)$.

It is well known that the function $\omega \mapsto u(\omega, x(\omega))$ is measurable for any $x \in L_1(S, R^l_+)$. Moreover we need to show that the function $\omega \mapsto u(\omega, x(\omega))$ is integrable in order to define $v(S)$ as a real number.
Lemma 1 If $x \in L_1(S, R_+^l)$, then $u(\cdot, x(\cdot)) \in L_1(S, R_+^l)$ for any $S \in \mathcal{F}$ and the map $x \mapsto u(\cdot, x(\cdot))$ is continuous with respect to the norm topologies of $L_1(S, R_+^l)$ and $L_1(S, R_+)$.

Proof Let $x \in L_1(S, R_+^l)$. Since $u(\omega, \cdot)$ is concave, for any $x \in R_+^l$ with $\|x\| > 1$, we have the inequality
$$\frac{u(\omega, x) - u(\omega, x/\|x\|)}{\|x - x/\|x\|\|} \leq \frac{u(\omega, x/\|x\|) - u(\omega, 0)}{\|x/\|x\| - \mathrm{o}\|},$$
and hence we have $u(\omega, x) \leq \|x\|\sigma$ for any $\omega \in \Omega$ and $x \in R_+^l$ with $\|x\| > 1$. It is obvious from the definition of σ that $u(\omega, x) \leq \sigma$ for any $\omega \in \Omega$ and $x \in R_+^l$ with $\|x\| \leq 1$. Thus we have $u(\omega, x) \leq \sigma(1 + \|x\|)$ for any $(\omega, x) \in \Omega \times R_+^l$ and this leads to the inequalities
$$\int_S u(\omega, x(\omega)) d\mu(\omega) \leq \sigma \left(\mu(S) + \int_S \|x(\omega)\| d\mu(\omega) \right) < \infty.$$
Thus it follows that $u(\cdot, x(\cdot)) \in L_1(S, R_+)$. The second part of the assertion is verified in Theorem 2.1 of [2]. Although Theorem 2.1 of [2] is proved under the hypotheses that S is a measurable set in R^l and the second argument x of the function u runs over R, the proof of Theorem 2.1 of [2] is valid even in our setting. Thus the map $x \mapsto u(\cdot, x(\cdot))$ is norm continuous. Q.E.D.

Lemma 2 A market game v is actually a game and is monotone.

Proof It is obvious $v(\emptyset) = 0$. The finiteness of $v(S)$ follows since the inequalities
$$\int_S u(\omega, x(\omega)) d\mu(\omega) \leq \sigma \left(\mu(S) + \sum_{i=1}^{l} \int_S x^i d\mu \right) = \sigma \left(\mu(S) + \sum_{i=1}^{l} \int_S e^i d\mu \right)$$
hold if
$$\int_S x d\mu = \int_S e d\mu,$$
where x^i and e^i are the i-th coordinate functions of x and e, respectively. Moreover v is monotone because u has nonnegative values. Q.E.D.
3 Cores of Market Games

We start with a lemma on concave functions.

Lemma 3 If \(f : \mathbb{R}_+^n \to \mathbb{R} \) is concave and \(f(0) = 0 \), then for any \(x_1, \ldots, x_n \in \mathbb{R}_+^l \) and \(\lambda_1, \ldots, \lambda_n \geq 0 \) with \(\sum_{i=1}^{n} \lambda_i \leq 1 \), it follows that

\[
\sum_{i=1}^{n} \lambda_i f(x_i) \leq f(\sum_{i=1}^{n} \lambda_i x_i).
\]

Proof We can assume that \(\lambda = \sum_{i=1}^{n} \lambda_i > 0 \) without loss of generality. It follows that

\[
\sum_{i=1}^{n} \lambda_i f(x_i) = \lambda \sum_{i=1}^{n} \frac{\lambda_i}{\lambda} f(x_i)
\]

\[
\leq \lambda f\left(\sum_{i=1}^{n} \frac{\lambda_i}{\lambda} x_i\right)
\]

\[
= (1 - \lambda) f(0) + \lambda f\left(\frac{1}{\lambda} \sum_{i=1}^{n} \lambda_i x_i\right)
\]

\[
\leq f\left(\sum_{i=1}^{n} \lambda_i x_i\right).
\]

Q.E.D.

Let \(S \) be a measurable set. For any \(x \in L_1(S, \mathbb{R}_+^l) \), define \(\overline{x} \in L_1(\Omega, \mathbb{R}_+^l) \) by

\[
\overline{x}(\omega) = \begin{cases}
 x(\omega), & \text{if } \omega \in S; \\
 0, & \text{if } \omega \in S^c.
\end{cases}
\]

Proposition 1 A market game \(v \) is totally balanced.

Proof Take any \(S \in \mathcal{F} \) and \(S_i \in \mathcal{F} \) and \(\lambda_i > 0 \), \(i = 1, \ldots, n \) with \(\sum_{i=1}^{n} \lambda_i \chi_{S_i} \leq \chi_S \). We can assume that \(\mu(S) > 0 \) without loss of generality.

Let \(\epsilon \) be an arbitrary positive number. Take \(x_i \in L_1(S_i, \mathbb{R}_+^l) \) such that

\[
\int_{S_i} x_i \, d\mu = \int_{S_i} e \, d\mu \quad \text{and} \quad v(S_i) - \frac{\epsilon}{n} < \int_{S_i} u(\omega, x_i(\omega)) \, d\mu(\omega),
\]
and define $y \in L_1(S, R_+)$ by

$$y = \sum_{i=1}^{n} \lambda_i \overline{x}_i.$$

Then we have the following:

$$\int_S y \, d\mu = \sum_{i=1}^{n} \lambda_i \int_S \overline{x}_i \, d\mu$$

$$= \sum_{i=1}^{n} \lambda_i \int_{S_i} e \, d\mu$$

$$= \int_S e \sum_{i=1}^{n} \lambda_i \chi_{S_i} \, d\mu$$

$$\leq \int_S e \, d\mu.$$

Define $y' \in L_1(S, R_+)$ by

$$y' = y + \frac{1}{\mu(S)} \left(\int_S e \, d\mu - \int_S y \, d\mu \right).$$

Then it is easily seen that $\int_S y' \, d\mu = \int_S e \, d\mu$.

On the other hand, let \mathcal{A} be the family of all nonempty subsets A of \{1, \ldots, n\} such that $T_A = \bigcap_{i \in A} S_i \cap \bigcap_{j \in A^c} (S \setminus S_j) \neq \emptyset$. Then it is easily seen that $S_i = \bigcup_{A \ni i} T_A$ for $i = 1, \ldots, n$ and $\{T_A : A \in \mathcal{A}\}$ is a partition of $\bigcup_{i=1}^{n} S_i$, and $\sum_{i \in A} \lambda_i \leq 1$ for all $A \in \mathcal{A}$. For any i and A with $i \in A \in \mathcal{A}$, define $x_i^A = x_i|_{T_A}$, the restriction of x_i to T_A. Then we have

$$\overline{x}_i = \sum_{A \ni i} \overline{x}_i^A \quad \text{and} \quad y = \sum_{A \in \mathcal{A}} \sum_{i \in A} \lambda_i \overline{x}_i^A.$$
Thus we have

\[
\sum_{i=1}^{n} \lambda_i v(S_i) - \epsilon < \sum_{i=1}^{n} \lambda_i \int_{S_i} u(\omega, x_i(\omega)) d\mu(\omega)
\]

\[
= \sum_{i=1}^{n} \sum_{A \ni i} \lambda_i \int_{T_A} u(\omega, x_i^A(\omega)) d\mu(\omega)
\]

\[
= \sum_{A \in A} \sum_{i \in A} \lambda_i \int_{T_A} u(\omega, x_i^A(\omega)) d\mu(\omega)
\]

\[
\leq \sum_{A \in A} \int_{T_A} \sum_{i \in A} \lambda_i u(\omega, x_i^A(\omega)) d\mu(\omega)
\quad \text{by Lemma 3}
\]

\[
= \int_S u(\omega, y(\omega)) d\mu(\omega)
\]

\[
\leq \int_S u(\omega, y'(\omega)) d\mu(\omega)
\quad \text{by monotonicity of } u(\omega, \cdot)
\]

\[
\leq v(S).
\]

Therefore, we have

\[
\sum_{i=1}^{n} \lambda_i v(S_i) \leq v(S).
\]

Thus \(\overline{v}(S) \leq v(S) \) and the reverse inequality is obvious. Hence we have \(\overline{v} = v \). Q.E.D.

Proposition 2 A market game \(v \) is continuous at \(\Omega \).

Proof Let \(\{S_n\} \) be a nondecreasing sequence of measurable sets with \(\Omega = \bigcup_{n=1}^{\infty} S_n \) and \(\epsilon \) an arbitrary positive number. Then, there is \(x \in L_1(S, R^d_+) \) such that

\[
v(\Omega) - \epsilon < \int_{\Omega} u(\omega, x(\omega)) d\mu(\omega)
\quad \text{and} \quad \int_{\Omega} x d\mu = \int_{\Omega} e d\mu.
\]
Let \(x_n \) be the restriction \(x|_{S_n} \) and define a sequence \(\{y_n\} \) of functions in \(L_1(S_n, R^+_\iota) \) by

\[
y_n^i = \begin{cases}
\frac{\int_{S_n} e^i d\mu}{\int_{S_n} x^i d\mu} x_n^i, & \text{if } \int_{S_n} x_n^i d\mu > \int_{S_n} e^i d\mu; \\
\frac{1}{\mu(S_n)} \left(\int_{S_n} e^i d\mu - \int_{S_n} x_n^i d\mu \right), & \text{if } \int_{S_n} x_n^i d\mu \leq \int_{S_n} e^i d\mu,
\end{cases}
\]

for \(i = 1, \ldots, l \). It is obvious that

\[
\int_{S_n} y_n d\mu = \int_{S_n} e d\mu.
\]

On the other hand, since

\[
\lim_{n \to \infty} \int_{S_n} |y_n^i - x_n^i| d\mu = \lim_{n \to \infty} \left| \int_{S_n} e^i d\mu - \int_{S_n} x_n^i d\mu \right| = 0,
\]

for \(i = 1, \ldots, l \), we have

\[
\lim_{n \to \infty} \int_{\Omega} \|\overline{y}_n - x\| d\mu = \lim_{n \to \infty} \int_{\Omega} \|y_n - x\| d\mu + \lim_{n \to \infty} \int_{S_n} \|x\| d\mu = 0,
\]

and hence \(\overline{y}_n \) converges to \(x \) with respect to the norm topology of \(L_1(\Omega, R^+_\iota) \). Therefore, by Lemma 1, it follows that

\[
\lim_{n \to \infty} \int_{S_n} u(\omega, y_n(\omega)) d\mu(\omega) = \lim_{n \to \infty} \int_{\Omega} u(\omega, \overline{y}_n(\omega)) d\mu(\omega) = \int_{\Omega} u(\omega, x(\omega)) d\mu(\omega)
\]

and hence, for sufficiently large \(n \),

\[
v(\Omega) - \epsilon < \int_{S_n} u(\omega, y_n(\omega)) d\mu(\omega) \leq v(S_n).
\]

Thus we have \(\lim_{n \to \infty} v(S_n) = v(\Omega) \). Q.E.D.

Now we have reached our main theorem combining Proposition 1 and Proposition 2.

Theorem 1 A market game \(v \) has a nonempty core, and every element \(\alpha \) of the core is countably additive and has a unique outcome density \(f \) in \(L_1(\Omega, R^+_\iota) \) with respect to \(\mu \), and hence it follows that

\[
\alpha(S) = \int_S f d\mu, \quad S \in \mathcal{F}.
\]
Proof The core is nonempty by Proposition 1. Since v is continuous at Ω by Proposition 2, any element α of the core is continuous at Ω, which implies that α is countably additive. To prove existence of an outcome density for α, it is sufficient to show that α is absolutely continuous with respect to μ by virtue of the Radon-Nikodym theorem. If $\mu(S) = 0$, then $v(S^c) = v(\Omega)$ by the definition of the market game v, and hence we have $\alpha(S^c) \geq v(S^c) = v(\Omega) = \alpha(\Omega)$, that is, $\alpha(S) = 0$. Q.E.D.

Remark 1 Similar to the assertion of Theorem 1, an exact game which is continuous at Ω has a nonempty core and every element of the core is countably additive. Moreover, there is a measure λ on \mathcal{F} such that every element of the core is absolutely continuous with respect to λ according to [3]. The following example shows that there is a market game which is not exact and Theorem 1 is independent of the results of [3].

Example 1 ([1], pp. 192) Let $l = 1$, $\Omega = [0,1]$ and μ be the Lebesgue measure. Define $u : [0,1] \times \mathbb{R}_+ \to \mathbb{R}_+$ by

$$u(\omega, x) = \sqrt{x + \omega} - \sqrt{\omega} \quad \text{and} \quad e(\omega) = \frac{1}{32} \quad \text{for all } \omega \in [0,1].$$

According to [1], the supremum is attained for every measurable sets in the definition of the market game, and the core has only one element α and the outcome density f of α is given by

$$f(\omega) = \begin{cases} \left(\frac{1}{2} - \sqrt{\omega}\right)^2 + \frac{1}{32}, & \text{if } \omega \in [0,\frac{1}{4}]; \\ \frac{1}{32}, & \text{if } \omega \in [\frac{1}{4},1]. \end{cases}$$

Thus it follows $\alpha([\frac{1}{2},1]) = \frac{1}{64}$, and hence $\hat{v}([\frac{1}{2},1]) = \frac{1}{64}$. On the other hand, we have

$$\sqrt{x + \omega} - \sqrt{\omega} \leq \sqrt{x + \frac{1}{2}} - \sqrt{\frac{1}{2}} \leq \sqrt{\frac{1}{2}} x$$

for $1/2 \leq \omega \leq 1$ and $x \geq 0$. Thus, if $x \in L_1([0,1], \mathbb{R}_+)$ satisfies

$$\int_{\frac{1}{2}}^{1} x \, d\mu = \int_{\frac{1}{2}}^{1} e \, d\mu = \frac{1}{64},$$

then

$$\int_{\frac{1}{2}}^{1} u(\omega, x(\omega)) \, d\mu(\omega) \leq \int_{\frac{1}{2}}^{1} \sqrt{\frac{1}{2}} x \, d\mu = \frac{1}{64\sqrt{2}} < \frac{1}{64}.$$

Therefore we have $v([\frac{1}{2},1]) < \hat{v}([\frac{1}{2},1])$ and v is not exact.
References

