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OPTIMAL CONTROL PROBLEM FOR THE NONLINEAR
HYPERBOLIC SYSTEMS

JONG YEOUL PARK, YONG HAN KANG AND MI JIN LEE

ABSTRACT. In this paper we study parameter optimal control monitored by nonlinear
hyperbolic systems. We show that for every value of the parameter, the optimal control
problem has a solution. Moreover we obtain the necessary optimality condition on the
control system.

1. INTRODUCTION

The optimal control problems have been extensively studied by many authors [1,3,5,7,10,13
and reference there in] and also identification problem for damping parameters in the sec-
ond order hyperbolic systems have been dealt with by many authors [6,8,12 and there

reference in]. In this paper, we consider the following control systems

(1.1) {zﬂ+Aﬂm@M+Aﬂm®y+NWUWO=BU+fw®
' y(q,u)(0) =5 €V, (q,u)(0) =y1 € H

and the cost functional given by the quadratic form
1
(1.2) (g, w) = S1ICy(g,u) — 2l

Here A((t,q), and As(t,q) are differential operators containing unknown parameter g € Q
and there are given by some bilinear forms on Hilbert spaces, N*g(Ny) is a nonlinear
term, B is a controller, u € U is a control, f is a forcing term and C is an observation
operator defined on an observation space M, z; is a desired value. The optimal con-
trol problem subject to (1.1) with (1.2) is to find an element (g,4) € @ x U such that
(q,ui)gcfg o J(q,u) = J(G,u). In this paper we will study the optimal control to the system
(1.1) with (1.2) and the existence of weak solution for (1.1). It is not easy to find the

optimal control pairs (g, %) belonging to a general admissible set () x U of parameters and

controls subject to (1.1) with (1.2). Hence we will show the existence of such (7,4) when
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@ x U is a compact subset of a topological space. Recently, inspired by the optimal con-
trol theoretical studies of Euler-Bernoulli Beam Equations with Kelvin-Voigt Damping,
and Love-Kirchoff Plate Equations with various damping terms, the appeared numerous
paper studying optimal control theory and identification problems. In Banks et al.[4],
Banks and Kunisch [5], they treated the existence of the optimal control (or minimizing
parameters) by using the methods of approximations, but they didn’t deal with the nec-
essary conditions (or characterizations) on them. When A;(t,q) = vA2(t,q),y > 0 and
N*g(Ny) = 0 in (1.1), the identification problem estimating q via output least-square
identification problem is studied by Ahmed [1,2] based on the transposition methods. In
the nonlinear parabolic type case, Papageorgiou [11] treated with the optimal control
problems contained parameter and control. But we deal with the second order nonlinear
hyperbolic ’systems.

In specially, in this paper we study the optimal control (or minimizing parameters)

problems to (1.1) with (1.2) on the Gelfand five fold and the necessary conditions.

2. PRELIMINARIES

Let X be a real Hilbert spaces. (-,-)x and || ||x denote the inner product and the
induced norm on X. X* the dual space of X and (:,-)x- x denotes the dual pairing
between X* and X. Let us introduce underlying Hilbert spaces to describe the nonlinear
hyperbolic systems. Let H be a real pivot Hilbert space, its norm ||- ||y is denoted simply
by |+ |g. Throughout this paper we assume there is a sequence of real separable Hilbert
spaces Vi, Vo, Vi, V5 forming a Gelfand quintuple satisfying Vi — Vo — H = H* —
Vo — V. And also we assume that the embedding V; — V; is dense and continuous
with ||¢|], < ¢||dlly, for ¢ € V; and Vi, — H is a densely compact embedding. From

now on, we write V7 = V for convenient of notation. We assume that the equalities
(D p)vev = (D, p)vpy, for ¢ € V5,0 € V and (@, ¢)v-v = (¢, p)y for ¢ € Hyp € V.
We shall give an exact description of the nonlinear hyperbolic systems. We suppose that
() is algebraically contained in a linear topological vector space with topology 7 and
Qr = (Q,7) is compact. And also we suppose that [/ is compact subspace of Hilb;ert
space Y. Let I = [0,7],T > 0 be fixed and t € [0,T]. Let q € Q..

We will need the following hypotheses on the data.
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H(A) : A;: I x Q — L(V;,V;) is an operator (i = 1,2).
(1) ai(t,q; b, ) = ai(t, q; ¢, d), where a;(t,q; ¢, ) = (Ai(t, 9)¢, 0)vsvi, Vo, € Vi
(2) There exists ¢;; > 0 such that |a;(t, ¢; ¢, 0)| < calldlly; LYo, p eV
(3) There exists o; > 0 and A; € R such that a;(t, q; ¢, ) + Ailoly > il |BllE, Vo € Vi
(4)
()

4) The function t — a;(t,q; ¢, @) is continuously differentiable in [0, 7.

5) There exists ¢i > 0 such that |a/(t, q; ¢, ¢)| < colldllvllellv, Vo, ¢ € Vi, where ' = 4
and a;(t, g; ¢, ) = (Ai(t, 9)9, @) vi-

H(f) : f: I x Q — Vy is the forcing term such that f(t,q) € L*(0,T; Vy).

H(B) : B:Y — Vy is a bounded linear operator such that B € L*(0,T; L(Y,V5)).

H(N) : N :V; — H is a linear operator such that N € L(V;, H) with [|[No|| < VEil¢llv
k; is constant and the range of N on V; is dense in H.

H(g) : g : H — H is a continuous nonlinear mapping of real gradient(or potential)type
such that

(1) llg(o)l] < ellel| + 2, ¢ € H and for some constant ¢y, cg,

(2) llg(w) — g(d)|| < eslle — éll, ¢, ¢ € H and for some constant c;.

We consider the following problem for the nonlinear second order evolution equations

of the form :
(2.1) y" + As(t, q)y’ + Ai(t, @)y + Ng(Ny) = f(t,q)
(2.2) Y(@)(0) =y € V,y'(9)(0) =y € H,
,_dy o, _ &y
where y' = Y = g We define a Hilbert space, which will be a space of solutions,
as

W (0,T) = {yly € L*0,T;V),y € L*0,T:Vs),y" € L*(0,T;V*)}
with an inner product

(1, y2)w.) = /OT{(:ul(f), Yo (0)v + (W5 (1), 5(1) v + (91 (1), Yo (1)) v~ }dt

and the induced norm

i
yllw.r = (HUHL" 0Ty T H’/HL2 0,1:v5) T HUH”L?(()TV )?.

We denote by D(0,T) the space of distributions on (0,7').
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Definition 2.1. A function ¥ is said to be a weak solution of (2.1)-(2.2) if y € W(0,T)

and y satisfies

(2.3) (V') Doy + a2l 69 () 8) + a5 3y(), d) + (g(Ny()), Ndyu = (S (0 Dhvs
for all ¢ € V in the sense of D(0,7T),

(2.4) y(9)(0) =yo €V, %(q)(O) =y € H.

By Definition2.1 it is verified that a weak solution y of (2.1) satisfies

(2.5) /0T<y”(t) + As(t,q)y' () + AL(t, @)y (t) + N g(Ny(t)), o(1))v; vt

T
= 0 <f(t7q)a¢(t)>v2",‘/zdtv V(/) € L2(0:T, ‘/2)

We state the existence and uniqueness results of a weak solution of (2.1)-(2.2).

Theorem 2.1. IfH(A),H(f),H(B),H(N) and H(g) hold and L(t) satisfy L(-) € L™(0,T; L(Vz, V5)).
Then the equation '

(2.6) { y" + As(t, )y + Ai(t,Q)y + N*g(Ny) = L(t)y + f(t,q) in (0,T),
¥(9)(0) =y € V, 4 (9)(0) =y € H,

has a unique weak solution y € W(0,T) NC(0,T;V)NCY0,T; H). Here the concept of a
weak solution for (2.6) is defined as
W' () dvey + a2l g9 (), 8) + a4 9(), @) + (g(Ny(-)), No)u
= (LO)y() + f(,0), B)vy i, Yo €V in the sense of D'(0,T)

with the initial conditions y(q)(0) = yo € V,y'(¢)(0) = y1 € H.

PROOF. We can prove by using the method Lions [9] and Ha [8].

3. EXISTENCE OF BOTH PARAMETERS AND CONTROLS FOR OPTIMALITY

In this section we consider the optimal control problem for the following system:

(3.1) y" + As(t, @)y + Ai(t, @)y + N*g(Ny) = Bu+ f(t,q) in (0,7T)
y(q,w)(0) =yp € V, 4/ (q,u)(0) =y € Hg € Q,,uc U

Note that since there is a unique solution y to (3.1) for given (q,u) € @, x U, we have a

well-defined mapping y = y(q,u) of @, x U into W(0,T).
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We often call (3.1) the state equation and y(gq,u) the state with respect to (3.1). Let us

consider a quadratic cost functional attached to (2.6) as
1
(32 7(g,u) = lIOu(a,0) — 2l (0.0) € @ x U
where M is a Hilbert space of observations, C € L(W(0,T), M) is an observer and z, is

a desired value belonging to M. Our main aim is to find (7,%) € Q, x U satisfying

3.3 J(7,@) = min J(q,
(3.3) (7, 2) gmin - J(g,u)

and to give a characterization of such (g,). We call (7,%) the optimal control to the
system (3.1) and (3.2). Furthermore, we will give an assumption to a;(t,q; ¢, ¢),7 = 1,2
and f:

H(A)y : q— a;(t,q;¢,9) : Q- — R is continuous for all t € [0,T], ¢, € V..

Note that for each ¢ € Q;, ¢, p € V; the following equalities hold :

sup |aL(t7q ¢a (10)! = Sup I<Ai(t7q)¢aa90>\/}“,vi
el =1 il =1

= ”Al(ta q)¢”VL"’

whence the assumption H(A); and the above equality imply that ||A(t, g)¢||v- is contin-

uous on q.

H(f)1:9g— f(-,q) : Q, — Vi is continuous.

Lemma 3.1. IfH(A) H(f),H(B),H(N),H(A); and H(f); hold and also L(t) satisfy L(.) €
L>*(0, T L(V2,V5)). Then y(q,u) is strongly continuous on (q,u), i.e., y(q,u) € C(Q, x
U, W(0,T)).

PROOF. It can be proved by using the method of Ahemd|[2] and Ha|8].

Theorem 3.1. If H(A) H(f),H(B),H(N),H(A), and H(f); hold and also L(t) satisfy
L(-) € L>(0,T; L(V5,V5)). Then there is at least one optimal control (7,a) if Q; x U is

compact.
PROOF. It is clear from Lemma 3.1 and continuity of norm. O

4. NECESSARY CONDITION OF OPTIMALITY FOR BOTH PARAMETERS AND CONTROLS

Here we present the necessary condition (the minimizing condition) for the optimal

controls (§,%) € @, x U to the system (3.1) with the cost functional J(p,u) given by
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(3.2). If J(p,u) is Gateaux differentiable at (§,%) in the direction (¢ — q,u — %), the

necessary condition on (g, %) is characterized by the following inequality
(41) DJ(q_,’L_I,;q—q_,’LL—ﬂ) _>_07 V(q,u) € QT X U,

where DJ(q,%;q — q,u — 1) denotes the Gateaux derivative at (g,%) in the direction
(q —q,u— ’a) :

Note that since J(q,u) composed of the term y(q,«), the Gateaux differentiability of
J(q,u) follows from that of y(q,u). Hence to obtain that of y(q,u) we will need the

following condition:

H(A)y : ¢ — Ai(-,q) is Gateaux differentiable for all ¢ and DA;(t,q)(p) = DAi(t,q;p) €
L*(0,T; L(V;, V¥)) for all q € Q,, where DA,(t,q; p) denotes the Gateaux derivative
at q in the direction of p.

H(g): : For any ¢ € H the Fréchet derivative of g exists and satisfies g,(p) € L(H, H)
with ||g,(0)||cam) < ¢4, where g,(p) is the Fréchet derivative of g at ¢ and ¢4 is
constant.

H(f)2 : ¢ — f(t,q) is Gateaux differentiable for all ¢ and f,(t, q)p = f,(t, ¢; p) € L*(0,T, V),

where f,(t,q; p) is Gateaux derivative at ¢ in the direction of p.

Lemma 4.1. Assume that the conditions in Theorem 2.1, H(A), H(A)o, H(f)1, H(f)2
and H(g); are satisfied. Then y(q,u) is weakly Géteauz differentiable at (q,u) in the
direction (q—3,u—1), denote the Gédteaur derivative of y(q,u) by z = Dy(§, @; q—q, u—1a),
which satisfies the following Cauchy problem:

Z” + A2(t) Q)Z, + Al(ta (7)2 + N*gy(N?/(@ ’ﬁ,))NZ
(4 2) = _DAQ(ta q: q— Q)yl((ja 77‘) - DAl(t7 q; q-— q)?)’(‘ia 'UJ)
' +B(u—a) + fo(t,G;9—q) in (0,T)
z(0) = 2/(0) = 0.

PROOF. We can prove by using the method of Ahemd [2] and Park et al. [12]. O

By Lemma 4.1, the cost functional J(q,u) is Gateaux differentiable at (G, %) in the

direction (¢ — ¢,u — @), and so, the condition (4.1) is rewritten by

(4.3) DJ(q,%;9— q,u—1a) = (C"Ay(Cy(q,4) — za), 2)w- 0,1, wo.1)

+<C*AM(Cy(_7 7—1’) - Zd)ayu(@ Uy u — ﬂ)>W*(U,T),W(U,T) >0, V(q, u) € Qr x U,



33

OPTIMAL CONTROL PROBLEM FOR THE HYPERBOLIC SYSTEMS.

where 2z is a unique weak solution to (4.2), C* € L(M*,W*(0,T')) is the adjoint operator
of C and Ay, is the canonical isomorphism of M onto M* in the sense that

(1) (Amd, &) m-m = |18l

(i) [|Amdllae = ||@||m for all € M. In order to avoid the complexity of setting up
observation spaces, we consider the following two types of distributive and terminal value
observations in time sense. that is, the following cases :

(i) we take Cy € L(L*(0,T; Va), M) and observer z(q,u) = Ciy(q, u);
(ii) we take Cy € L(H, M) and observer z(q,u) = Cyy(q,u)(T).

4.1. The case where C; € L(L?*(0,T;V3), M)

In this case the cost functional is given by

1 .
J(q’u) = _‘)‘Holy(qﬂt) - Zd”f\/[’vq € Q‘r X Ua

and then the necessary condition (4.3) is equivalent to

T
(4.4) A (CTAM(Ciy(q, B) (1) — 2a), 2(1)) vz 1, dt

) |
+ [ (CiA(CY@ B (0) = 20), @, T =~ D)z 0t 2 0, Y(g,w) € @ x T,

Let us introduce an adjoint state 7(g,%) satisfying

(4.5)  0'(q7) — Aa(t, @) (q,7) + [(A1(F,9) — A5(t, @) + (N*g,(Ny(q,3) N)* (g, )
= CTAM(Ciy(q,T) — z4),

n(q,a)(T) =0, +'(q,a)(T) = 0.

Since Ct Ay (C1y(G, @) —2a) € L*(0,T; Vy') and Ay(t,q) € L>¥(0,T; L(Va, Vi), the equation
(4.5) is well-posed and permits a unique weak solution 7(§, @) € W(0,T) if we consider
the change of the time variable as ¢t — 7' — ¢. Multiplying (4.5) by z, which is the weak

solution to (4.2), integrating it by parts after integrating it on [0, 7], we obtain

/T<'f/(67, a)(t). 2"(t) + Ao(t, 92’ (1) + [Ar(t, ) + N*gy(Ny(g, w) (1)) Nz(t)) v vt

T
(4.6) = /“ (g, @) (t), —DAx(t,§ 9 — @y (g, @) (t) — DA (L, G, q — §)y(q,8) (t))y- v dt
+ T('f/(ci, u)(t), B(u—a)(t) + [o(t,§ q — @))v-vdt > 0,¥(q,u) € Q,; X U.
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From (4.3) and (4.4), we obtain the inequality
T
/0 (n(@,w)(t), 2" (1) + As(t,9)2'(t) + [Ar(t, @) + N"gy(Ny(q, w) (1)) N2())v- v dt

+/ Clyu(q, U, q — )( ) Cly(q,u)( ) — Zd>df
= T(’](qyu)( ) DA2(t,(_7’ q— (j)yl(—q—, 'ﬁ/)(t) . ])Al(t’ (7, - q)(/(q’ u)( )>‘/ Vd?,_

+/ 03, ) (1), B(u— ) (1) + fy(t, @ q — @))v- vt
+ [ {Cwla, 559~ DO, Cl@,)(0) — 2av- vt 2 0,¥(¢,0) € @, x U

Here we used the inequality (4.4). Summarizing these we have the following theorem.

Theorem 4.1. Assume that H(A), H(f), H(B), H(N), H(g), H(A);, H(A)s, H(f)1,
H(f)s, H(g)1 hold. Then the optimal control (g, ) is characterized by state and adjoint

equations and inequality:

{ y"(q,7) + Aa(t, 9)y'(q, 1) + Ar(t, Qy(q, %) + N*g(Ny(g,u)) = Bu+ f(t,q) n (0,T)
(7,2)(0) = yo € V,¥'(q,4)(0) =y € H,

= CiAu(Chy(g,

{ 1"(q, ) — Ag(t, )1/ (G, ) + [(Ar(t
n'(T,q) =0

/ B(u—a)(t) + fo(t,3;9 — q@))v-vdl
A (Cryu(q, @5 u — ) (t), Cry(q, 7) (1) — za)v-vdl

T
Z/“ (0(@, @) (), DA(t, T  — Dy (3, 8)(£) + DAy (1, G g — D)y(@ @) (1)) v~ v,
V(g,u) € Qr x U.

4.2. The case where C; € L(H, M)

In this case the cost functional is given by
J(q,u) —|’C2y(q, u)(T) = zallyy, (9. 1) € Q- x U
and then the necessary condition (4.3) is equivalent to
(4.7) (C5Am(Caylq,u)(T) — 2a), 2(T))n

+(CoAM(Coy(q, u)(T) — za), yu(q, s u — @)(T)) 1 2 0, V(g,u) € Qr x U.
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Let us introduce an adjoint state 7)(q, %) satisfying
n"(3,3) — A2 (t, )0 (7,3) + [(Ar(t, q) — Ay(t, 7)) ‘
(4.8) | +(N"g,(Ny(g, @) N)"In(g,a) = 0
‘ n(q,u)(T) =0,
7'(q,2)(T) = —C5Am(Coy(q, 7)(T) — za).

It follows by the same reason as the case 4.1 that there is a unique weak solution 7(q, @) €

W(0,T), because C5Ap (Coy(q,a)(T) — z4) € H.

Theorem 4.2. We assume that H(A), H(f), H(B), H(N), H(g), H(A)1, H(A)2, H(f)1,
H(f)s and H(g); hold. Then the optimal control (§,u) is characterized by state and

adjoint equations and inequality:

{ y"(q, ) + A2(t, 9y (7, 8) + A2, 9y(q, 1) + N*g(Ny(q, 7)) = Bu+ f(t,q) i (0,T)

(C5(Coy(q,u)(T) — za)m +/ )+ fo(t, 39 — @), n(q, @) (8)) v vdt
/( (DAs(t, ;9 — @)y (g, a)(t) + DAL, §; g — Qy(q, ) (t), (g, ) (t))v=vdt, Vg € Q.

PRrROOF. We prove the inequality condition of optimal control only. Multiplying (4.8)
by z, which is a weak solution to (4.2), integrating it by parts after integrating it on [0, ],

we obtain

[ 0@ W0, 20+ At 80 + [ (55) + V0, (Ny(G, 8 () N]=(0))v- v
+(Z(T)a 77/((—]—7 ﬁ) (T))H

= [ 0. @0, ~DAstt, 0~ DY @0 (6) — DA — Dy (g DOy

T

+ [ @ a0, Blu—m)0) + fi(t. 79— D)v-vat

+(2(T), =CoAm (Coy(q,2)(T) — za))n = 0.
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Hence from (4.7) and (4.8) we conclude that
(2(T), Cs A (Coy(q,8)(T) — 2a)) 1 + (Yu(, B u — W)(T), C5Am (Coy (7, 2)(T) — 2a)m
- /0T<77((i, a)(t), =DAs(t, G 9 — 9y (3. 8) (1) — DA(E, G g — Py(, 1) (1))v-vdt

+ [ @ a0, Blu - 00 + fy(6.3 0~ D)yt
(@, B0~ )(T), CiAn(Coy(@)(T) — 2 20, () € Qo x U
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