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ON ENERGY DECAY ESTIMATES FOR THE
WAVE EQUATION OF KIRCHHOFF TYPE

JoNG YEOUL PARK*, JEONG JA BAE AND IL Hyo JuNg

ABSTRACT. In this paper we prove the existence and uniqueness of the solution to the
mixed problem for wave equation of Kirchhoff type with nonlinear boundary damping
and memory term. Moreover we discuss the uniform decay of the solution.

1. INTRODUCTION

In this paper, we are concerned with the existence, uniqueness and uniform decay of
solution for nondegenerate wave equation of Kirchhoff type with nonlinear boundary
damping and memory source term of the form:

(1.1) u" = M(|Vu|P)Au-Au' =0 on Q= x (0,00),
u(z,0) = ug(z), u'(z,0)=wui(z) on =z€Q,

(1.3) u=0 on X¥;=TI;x(0,00),

(1.4 MO P4 Ot 1 gl u! = g =

on Xy =Ty x (0,00),

where (2 is a bounded domain of R" with C? boundary I' := 9 such that ' = T'qUTy,
IoyNTy = 0 and Ty, T'; have positive measures, M(s) is a ct class function such
that M(s ) > myg for some constant mg > 0, g *x u = fo (t — r)u(r)dr, |Vul]®> =

D fQ ]2dac Au =37 1‘3 Z and v denotes the unit outer normal vector pointing
towards Q. Here

1
(1.5) 0<7,p§—2 if n>3, or v,0>0 if n=1,2.
n —
This problem has its origin in the mathematical description of small amplitude vibra-

tions of an elastic string([1-3, 5, 7, 8, 13-16, 18 and reference therein]). There exists a

1991 Mathematics Subject Classification. 35L70, 35L15, 65M60.

Key words and phrases. Existence of solution, uniform decay, wave equation, boundary value
problem, a priori estimates.
This work was supported by Brain Korea 21, 1999

Typeset by AAS-TEX



16

JONG YEOUL PARK, JEONG JA BAE, IL HYO JUNG

large body of literature regarding viscoelastic problems with the memory term acting
in the domain([3, 4, 6, 9]). Boundary stabilization has received considerable attention
in the literature and among the numerous works in this direction, we can cite the
works of Lasiecka and Tataru[10], Rao[17] and Zuazua[19].

Matsuyama [11](also see [12]) investigated the existence and asymptotic behavior of
solutions of (1.1)-(1.3) with Dirichlet boundary conditions. Our work was motivated
by some results of Cavalcanti et al.[3]. They have studied the existence and uniform
decay of strong solutions of wave equations with nonlinear boundary damping and
memory source term, that is, semilinear case. In this paper, we will study the existence
of strong solutions of the problems (1.1)-(1.4). Moreover, when p = -, the uniform
decay of the energy

(1.1) B() = W OIF + 3 M(IVu@I?) + 5 )R,

is proved. Here, M(s) = [J M(r)dr.

It is important to observe that as far as we concerned it has never been considered
nonlinear memory terms acting in the boundary in the literature. Works of this
paper may be contribute the study of wave equation of Kirchhoff type and nonlinear
boundary feedback combined with a nonlinear memory source term. QOur paper is
organized as follows: In Section 2, we give some notations, assumptions and state the
main result. In Section 3, we prove the existence of solution of the problems (1.1)-(1.4)
and the uniform decay of energy is given in Section 4.

2. ASSUMPTION AND MAIN RESULT

Throughout this paper we define

Vi={ue H(Q); u=0 on I}, (u,v) ::/;Zu(a:)v(a:)das,

(1, v)r, = /F u(z)v(z)dT and [ull? o, = /F (u(z) Pds.

For simplicity we denote || - ||12(q) and || - ||2,r, by || - || and || - ||r,-
(A1) Assumptions on the initial data
Let us consider ug, uy € VN H %(Q) verifying the compatibility conditions
M(||Vuoll?)Aug + Auy =0 in £,
Ug = 0 on Fl,
M(HVU()Hz)% + % + up + ug + g(0)|u1|pu1 =0 on F().
ov ov
(A3) Assumptions on the kernel g of the memory:

Let us consider the function g € W1*(0,00) N W11(0, 00) such that g(t) > 0,
Vt > 0 and
—apg(t) < g'(t) < —aig(t), Vit > to,

9(0) =0, |g/(t)! < aZg(t)7 Vt € [OatO]
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for some ag, a1, az >0and [ :=1— f;o g(r)dr > 0.

Now we are in position to state our main result.

Theorem 2.1. Under the assumptions (A1)-(Az), suppose that v, p satisfy the hy-
pothesis (1.5) with p > ~. Then problems (1.1)-(1.4) have a unique strong solution
u:Q — R such that u € L®(0,00;V), u' € L>(0,00; V), v’ € L%(0, 00; L*(2)).
Moreover, if p =+ and oy > 2(y + 2), then there exist positive constants Cy and Co
such that

E(t) < C1E(0)exp(—Cat) for allt > to.

3. PrOOF OF THEOREM 2.1

In this section we are going to show the existence of solution for problems (1.1)-
(1.4) using Faedo-Galerkin’s approximation. For this end we represent by {w;};en a
basis in V which is orthonormal in L?(2), by V,;, the finite dimensional subspace of V
generated by the first m vectors. Next we define uy, (t) = L2 gjm (t)w;, where up(t)
is the solution of the following Cauchy problem:

(u” ,w) + M(||Vur||?) (Vm, V) + (Vul,, Vw) + (Um, w)r,

(31) + (tu;nv w)[‘o + (g(t)iu'lm|pu;na w)l"g
= / g(t — )|um (r)|" (um(r), w)r,dr, w € Vp
0
with the initial conditions,

(3.2) U (0) = uom = X7 (uo, wj)w; = uo  in VN H? (),

UIm(O) =Uim = E?ib;l(ul, wj)’LUj — U1 in V.

The approximate system is a system of m ordinary differential equations. It is easy to
see that equation (3.1) has a local solution in [0, T,,). The extension of these solutions
to the whole interval [0, c0) is a consequence of the first estimate which we are going
to prove below.

A Priori Estimate I.
Replacing w by u},(¢) in (3.1), assumption (Az) yield

%(%Hu,’m(t)llz + %M(HVum(t)llz) + %Iium(t)ll%o

b OO, + [ 9t = )0y
33+ IO, + o0 B2, + 1T O]

= [ gt = ()P 1) (Dt + 56 Olam O e

T g(8) () i (£), (), + / ¢t — ) Jum () |2 dr

0
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< f 9t = 1)t ()] (7). 0 () el

9O lum 1735 5, + 9(0) um (8)]7 (um (), upn (8))r

. +
(3.3) L

t
_ 2
+Oz/(; g(t—"")“um( )”312 To

where & = max{ap, a1, @2}.
Note that Holder’s inequality and Young’s inequality give us, for any n > 0,

[tean ()| (o (7) g ()15 < . [t ()| g () [T

< (] fum()T2dT) ([ Jul, (6)7F2dD) 7
To To

+1
= l[um ()15 52,06 l[4m () ll+2.76

2 2
< Crmllum (M E2.p, + 2llumOI532 r,-

(3.4)

Thus we have

/0 9t = 1) i ()] (2t (), e (8)) o
(35) < / g(t = 1) (Coln) lum (MITE2 1 + nllec (81742 1, )l

:Cl(n)/o 9(t = P)llum (M3 20,0 + nllum (0175, FO/O, (r)dr.

Since p > v, LP12(Tg) < L"*%(Ty) and therefore we can obtain

(3.6)  nllun (O 2 / 9(r)dr < Ca(n) / Cg(r)dr + / g (r)dr i (D125 v,

Therefore (3.5) and (3.6) yield

/O 9t = 1)t ()] 2t (), 2 (£)) o
(3.7) < Cy(n) / 9t = ) Jum (P [TE

t t
+ o) / g(r)dr +7 / g(r)dr el (N2
0
Similarly we have |

9() [t ()] (wm (£), wp, ()T
(3.8)
< C3(m)g(W)[um ) 1255 1, + 9(O)Caln) + ng (D) llury, (D575 1, -

18
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Therefore (3.3), (3.7) and (3.8) give

%(%nu;n(t)uz + S V([T () + 3 (0,

g0 Oum O, + [ a0=llum ()7 )
B9+ IVU O + I (O, + (1 = M (®) ~ lalss 0.0 (O,

< (Ca(n) + o) / gt = 1) (1) 1272 . d

a2

+ (Cs(n) + e

)9 (O)llum ()72, + Caln)g(t) + Cal) /0 o(r)dr.

Note that we can choose n > 0 sufficiently small such that (1 —7)g(t) —nllgllz1(0,00) >
Cog(t) for some constant Cp, which can be from assumption (Az). Integrating (3.9)
over [0, t], choosing n > 0 sufficiently small and employing Gronwall’s lemma we obtain
the first estimate: '

1 ! 2 1 -
5 [um O + S M ([ Vun ()]7) + 9(O)lum (O35 1,

+2

- 2 t ; +2
(3.10) + 3 lum®)lr, + Co /0 9(8) il ()1272 1 d

t
T / (9t = ) um (TE2 1y + [T ()12 + [l (8)]12, )ds
S Ll)

where L1 > 0 is independent of m. Since M (||Vum (t)||?) > mol|Vm (t)]|2, from (3.10)
we have
2L
IVun () < 22
A Priori Estimate II.

Differentiating (3.1) and substituting w by !’ (t), assumption (A4) and (3.10) yield

G (G + Sl @R, ) + IV 01 + @R,
+ (o + DO O, O )r,

= =M (|Vum O)*) (Vg (), Vi (8)) = g (0) [ ()1 (g (), 1 (),
= 2M'([Vum (O)I*) (Vum(t), Vg, () (Vum (8), Vi, (£))

+ [ 9/ = Dl () (), sl
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< CHIVA ()P + S IV (O & (Ol (O 0 (D
[ = Pl 1)

1
= CulIVu (I + 5 IVun @I + I+ I,

where My = SUDy o< 201 M(s), My = SUPy o< 2L M'(s) and C; = M? + 4M22(%)2.

Now, Schwarz’s inequality and first estimate gives us

T < oag(t) [ (6)1F aupy (8)] 2 g (8)|dT
(3.11) /To

2
(8%
< IO @735, +n9 @ ()1 him @) P)r,

Now, taking into account that 'y +2 + 1 — 1, using the generalized Holder inequality

agd the continuity of the trace operator Yo : HY(2) — L(T") for 1 < ¢ < 2:_2 , We
obtain

(s (P) Yt (), 2 (8ol < ([ fun (1) PTH2d0)F52 ([ i () dT) E

To To
(3.12) | < COIVum(r)IIP7*2 + nllum (]I,

2L,
< C) (=2 + nllup, (117,
mo
Thus from (3.12), we get

2L,

t
I < as / gt = D (COE2) + nlh, (1) )

2L,
< 02C(n)(==)"" g1l 22 (0.00) + N2l (B)IF, 91l L2 (0,00) -
my

(3.13)

Combining the estimates (3.11)-(3.13), we get

%(%nu;(t)uz + %Hu;n(t)lI%O) + lum (DI, + %Ilvui’n(lt)ll2

+ (p+1—=n)g(t)(Jup, ()7, lum ()1*)r,
mj

(3.14)
< Ol O 5, + OV O
T (meO(T, 77)[2L01]”“ Tl (612,119l 24 0.00)-

Integrating (3.14) over [0,%], choosing n > 0 sufficiently small and employing (3.10)
and Gronwall’s lemma we obtain the second estimate:
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(3.15) [l (O + Il (DIIE, +/0 (IVum ()7 + [luz, (s)l7,)ds < La,

where Lo > 0 is independent of m.

The estimates above are sufficient to pass to the limit in the linear terms of problem
(3.1). Next we are going to consider the nonlinear ones.

Analysis of the nonlinear terms.

From the above estimates we have that

(3.16) (ur) is bounded in  L2(0,T; HZ(Ty)),
(3.17) (u') is bounded in L0, T; H?(Ty)),
(3.18) (u”) is bounded in  L2(0,T; L?(Iy)).

From (3.16)-(3.18), taking into consideration that the imbedding H (') < L?(T")
is continuous and compact and using Aubin compactness theorem, we can extract a
subsequence (u,) of (u,,) such that

(3.19) u, —u ae on Y and wu, —u' ae on Yo
and therefore
(3.20) lup"u, — lu"u and  |u|Pu;, = [u'|Pu’ ae. on .
On the other hand, from the first and second estimate we obtain
(3.21) (g% |u,|"u,) is bounded in  L?(%),
(3.22) (glu),|?u),) is bounded in  L*(%).
Combining (3.20)-(3.22), we deduce that
g*|uu"u, — g+ |ul"u  weakly in  L?*(%o),
glu,|Pu;, — glu'|Pu’ weakly in  L?(5q).

The last convergence is sufficient to pass to the limit in the nonlinear terms of problem
(3.1). This completes the proof of the existence of solutions of the problems (1.1)-(1.4).
The uniqueness is obtained in a stand way, so we omit the proof here. [J

4. UNIFORM DECAY OF ENERGY

Note that the derivative of energy (1.1) is given by

E'(t) = = ||V @)1° = [/ ()I1F, — 9@)llw' O5

p+271_‘0

4.1 ‘
4y +/O gt = r)lu(r)| (u(r), u'(¢))rdr.
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Defining
42) (o)@) 1= [ gt = lulr)u(r) — w0
a simple computation gives us
[ ot = utrute) i
48 = Leoww + Lo + S E IR, [ o)

2dt
— 2o @O,

Now we define the modified energy by

eft) = 2l () + SM(IVuI?) + 5 (gTh) (1)
(4.4) t
+ 50— [ gl + — 5@,
Then assumption (Az) implies
/()= I @, = IV OI - g O,
+ 50 OO r, + 90 (0P u(t), 1 O)r,
~ Lo}, + 10

< [l @I, — Ve @)1 - gl 53 2r,

- WO r, + ) (O u(t),w O)r,

— 59l ~ S (g0u) (1)

2

22

Thus using Young’s inequality, 7 = p and then choosing n = 2=0"*Y and 1 —n > 3

we have
. .
e'(t) < —[lu' ()1, — VL' ()]* — —2-9(t)IIU’(t)|;lT+L§,r0 — B |[u(®)1L5

(4.6) N
~ 9 OIIE, ~ S (6Tu)(0)

where 8 =

’Y+2

On the other hand we note that from assumption (Az), we obtain

(4.7) E(t) < 17e(t)
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and therefore it is enough to obtain the desired exponential decay for the modified
energy e(t) which will be done below. For this purpose let A be the positive number
such that

loll? < A|Vo|2, YweV
and for every ¢ > 0 let us define the perturbed modified energy by
ee(t) = e(t) +ep(t), where ()= (u(t),u'(t)).
Proposition 4.1. We have
ec(t) = e(0)] < () be(t), Ve 20,
Proof. Applying Cauchy Schwarz’s inequality

@] < ' Olllu@)ll < (mio)%liu'(t)llméllw(t)ll

%ﬁ(%“u’(t)llz + -;—M(IIVU(t)Ilz))
< (k).

mo

<(

Thus we have [e.(t) — e(t)| = elt(t)| < e(2)e(t). O
Proposition 4.2. There ezist C; > 0 and €, such that for e € (0, €1)
e.(t) < —eCre(t).
Proof. Using the problem (1.1) and the fact that M(s)s > M (s) for s > 0, we have
¥'(0) = I @I = M»Vu@ ) IVu@)l? — (V' (), Vu(t) - @),
= (W(8), u(t))r, — (9()1w' (1) |74/ (t), u(t))r,

+ /0 g(¢ = r)lu(r)|"(u(r), u(t))rydr

4.8 _
48) <l ()12 = M(IVu(0)|?) - (Ve (8), Vult)) — [u(@)]12,
— (W'(t), u(t))r, — (g()|w' ()P (2), u(®))r,
+Ayu—mmeMﬂkaﬁﬂ
Now since
Ag@—MMﬂWWﬂw@hﬂr
= [ st = (u)utr) — w0, wl)rdr + [ gt = Dl
(4.9) 0 0

<3 |, ot = PIuu) - u®fdr + )i, [ otrian

= (a0)(0) + 51}, | oo
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we get
W) < Il @2 = MVuOIP VeI - (V4 (2), Tu(t) - (@),
- (@ (8), u(D))r, — (90 (1) P2 (1), w(®))r, + (9T} 1)
+ 51, [ otrydr
(410) = —e(t) - S M([Vu()|?) - (V'(t), V(b))

- IOl + | gdrlu@R, + 500 — 0@, u(O)r,

= (9@ ()17’ (8), u(t))r, + ——-~g( @735, + %llu'(t)llz-
Now, applying Sobolev imbedding, we have

|(w'(8), u(®))ro] < Nu(®)llrollw’()lir,
e < ul| Va1 @),

2
2
< LA (Ivu(®) + 5 @R,
where y is the positive number such that
”vllro < /"'”VU“, Vv eV
Also Schwarz’s inequality and Young inequality imply

(Ve (), V()] < [Vu@lIve @)
w12 < all VU + 4 IV @)

< mlOM(nvu(t)nz) + ;l%llvu’(t)llz,
and

(4.13) (g1 @)1P4 (2), u(t))r | < gl @151 p, ()l o2,

< 0(m)g )l (1533 1, +ng @) lw®57 1,
and

3 3.,
(414 2l < vl
Combining (4.10)-(4.14), we have

(4.15)

W(t) < —e(t) — 2

30 Sy(va)P) - S

2a+ 1)
+ S O, - IOl + | otarlu®l, + 5o

41_77 +INITE O + 0w 2535, + 9IS r,

IVu(@) |2+ + 20| Vu(t) |

+

+ 59O 5,



ENERGY DECAY ESTIMATES FOR THE WAVE EQUATIONS
Combining (4.6), (4.14), (4.15) and assumption (A2) and considering p = v, we get
e(t) = €'(t) + ey'(t)
ep? ' 2 1 ! y+2
< —ee(t) — (1 - —)Ilu OlIr, = (5 = edm)gOllw' (Ol 42.r,

~ (8- en - eI,
- (1= £ = NIV - 50 - et (Ivun))
(G = 390 +¢ | ge)arlu®lf, - o0,
w16) - S v e - o,

€ 2
< ~Osee(t) ~ (1 = So) W O}, - (5 — DOl O3,

2¢ 4ne 2
— — _ t t v+
(B €n v+ 2 + (’7 n 2) )g( )”’U( )”fy+2,l"o
€ 2776)\ 2ne
—(1-— -2+ )HV DI~ (S~ 2 +—)( Du)(t)
4n 2 mo
1 29 1
v+ [ (r)drnu(t)n%o - 59},
Mo Jo
be 2a+1)  2ME 2
e (mac + 20) VU - 2 oz,
_ 4 1 Bmo(v+2 4
where Cp = 2 — E% Defining €; = mm{uz’ 26(n)° mon(7+g§12m)o —4n> mo+8nn>\1?glo n)?

4("%%"‘_1")} and sufficiently small n < 2. Then for each € € (0, €;1], we have

(4.17) el(t) < —eCie(t)
if ||g]| 21 (0,00) 1s sufficiently small. O

Now let ¢y = mln{ pres ,€1} and let us consider € € (0,€p]. Then we conclude from

Proposition 4.1, (1 — e)\ 2)e(t) < ec(t) < (1+ erz)e(t) and so
(4.18) %e(t) <edt) < g-e(t).

Thus we have e, (t) < —%C’lee6 (t) for all ¢ > to. Consequently, by virture of (4.18), we
get

e(t) < 3e(0)ea:p(—§Clet) for all ¢ > to.

This concludes the proof of Theorem 2.1. [

25
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