<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>COXETER GROUPの境界とVIRTUAL COHOMOLOGICAL DIMENSIONについて（集合論的・幾何学的トポロジーとその応用の研究）</td>
</tr>
<tr>
<td>著者(s)</td>
<td>Hosaka, Tetsuya; Yokoi, Katsuya</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 (2001), 1188: 106-111</td>
</tr>
<tr>
<td>発行日</td>
<td>2001-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/64699</td>
</tr>
<tr>
<td>種類</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>publisher</td>
</tr>
</tbody>
</table>
The purpose of this note is to introduce our recent paper [Ho-Y] about Coxeter groups and their boundaries. Let V be a finite set and $m: V \times V \to \mathbb{N} \cup \{\infty\}$ a function satisfying the following conditions:

1. $m(v, w) = m(w, v)$ for all $v, w \in V$,
2. $m(v, v) = 1$ for all $v \in V$, and
3. $m(v, w) \geq 2$ for all $v \neq w \in V$.

A Coxeter group is a group Γ having the presentation

$$\langle V \mid (vw)^{m(w)}v = 1 \text{ for } v, w \in V \rangle,$$

where if $m(v, w) = \infty$, then the corresponding relation is omitted, and the pair (Γ, V) is called a Coxeter system. If $m(v, w) = 2$ or ∞ for all $v \neq w \in V$, then (Γ, V) is said to be right-angled. For a Coxeter system (Γ, V) and a subset $W \subset V$, Γ_W is defined as the subgroup of Γ generated by W. The pair (Γ_W, W) is also a Coxeter system. Γ_W is called a parabolic subgroup.

For a Coxeter system (Γ, V), the simplicial complex $K(\Gamma, V)$ is defined by the following conditions:

1. the vertex set of $K(\Gamma, V)$ is V,
2. for $W = \{v_0, \ldots, v_k\} \subset V$, $\{v_0, \ldots, v_k\}$ spans a k-simplex of $K(\Gamma, V)$ if and only if Γ_W is finite.

A simplicial complex K is called a flag complex if any finite set of vertices, which are pairwise joined by edges, spans a simplex of K. For example, the barycentric subdivision of a simplicial complex is a flag complex.

For any finite flag complex K, there exists a right-angled Coxeter system (Γ, V) with $K(\Gamma, V) = K$. Namely, let V be the vertex set of K and define $m: V \times V \to \mathbb{N} \cup \{\infty\}$ by

$$m(v, w) = \begin{cases}
1 & \text{if } v = w, \\
2 & \text{if } \{v, w\} \text{ spans an edge in } K, \\
\infty & \text{otherwise.}
\end{cases}$$

The associated right-angled Coxeter system (Γ, V) satisfies $K(\Gamma, V) = K$. Conversely, if (Γ, V) is a right-angled Coxeter system, then $K(\Gamma, V)$ is a finite flag complex ([D2, Corollary 9.4]).
For a group Γ and a ring R with identity, the cohomological dimension of Γ over R is defined as

$$\text{cd}_R \Gamma = \sup \{ i \mid H^i(\Gamma; M) \neq 0 \text{ for some } R\Gamma\text{-module } M \}.$$

If $R = \mathbb{Z}$ then $\text{cd}_R \Gamma$ is simply called the cohomological dimension of Γ, and denoted $\text{cd} \Gamma$. It is obvious that $\text{cd}_R \Gamma \leq \text{cd} \Gamma$ for a ring R with identity. It is known that $\text{cd} \Gamma = \infty$ if Γ is not torsion-free ([Br, Corollary VIII.2.5]). A group Γ is said to be virtually torsion-free if Γ has a torsion-free subgroup of finite index. For a virtually torsion-free group Γ the virtual cohomological dimension of Γ over a ring R is defined as $\text{cd}_R \Gamma'$, where Γ' is a torsion-free subgroup of Γ of finite index, and denoted $\text{vcd}_R \Gamma$. It is a well-defined invariant by Serre's Theorem: if G is a torsion-free group and G' is a subgroup of finite index, then $\text{cd}_R G' = \text{cd}_R G$ ([Br, Theorem VIII.3.1]). If $R = \mathbb{Z}$ then $\text{vcd}_R \Gamma$ is simply called the virtual cohomological dimension of Γ, and denoted $\text{vcd} \Gamma$. It is known that every Coxeter group is virtually torsion-free and the virtual cohomological dimension of each Coxeter group is finite (cf. [D1, Corollary 5.2, Proposition 14.1]).

For a simplicial complex K and a simplex σ of K, the closed star $\text{St}(\sigma, K)$ of σ in K is the union of all simplices of K having σ as a face, and the link $\text{Lk}(\sigma, K)$ of σ in K is the union of all simplices of K lying in $\text{St}(\sigma, K)$ that are disjoint from σ.

In [Dr2], Dranishnikov gave the following formula.

Theorem 1 (Dranishnikov [Dr2]). Let (Γ, V) be a Coxeter system and R a principal ideal domain. Then there exists the formula

$$\text{vcd}_R \Gamma = \text{lcd}_R CK = \max \{ \text{lcd}_R K, \text{cd}_R K + 1 \},$$

where $K = K(\Gamma, V)$ and CK is the simplicial cone of K.

Here, for a finite simplicial complex K and an abelian group G, the local cohomological dimension of K over G is defined as

$$\text{lcd}_G K = \max_{\sigma \in K} \{ i \mid H^i(\text{St}(\sigma, K), \text{Lk}(\sigma, K); G) \neq 0 \},$$

and the global cohomological dimension of K over G is

$$\text{cd}_G K = \max \{ i \mid \tilde{H}^i(K; G) \neq 0 \}.$$

When $\tilde{H}^i(K; G) = 0$ for each i, then we consider $\text{cd}_G K = -1$. We note that $H^i(\text{St}(\sigma, K), \text{Lk}(\sigma, K); G)$ is isomorphic to $\tilde{H}^{i-1}(\text{Lk}(\sigma, K); G)$. Hence, we have

$$\text{lcd}_G K = \max_{\sigma \in K} \{ \text{cd}_G \text{Lk}(\sigma, K) + 1 \}.$$

Remark. We recall Dranishnikov's remark in [Dr3]. The definition of the local cohomological dimension in [Dr2] is given by the terminology of the normal star and link. Since $\text{Lk}(\sigma, K)$ is homeomorphic to the normal link of σ in K, their definitions are equivalent by the formula above.

Dranishnikov also proved the following theorem as an application of Theorem 1.
Theorem 2 (Dranishnikov [Dr2]). A Coxeter group Γ has the following properties:

(a) $\text{vcd}_Q \Gamma \leq \text{vcd}_R \Gamma$ for any principal ideal domain R.
(b) $\text{vcd}_{Z_p} \Gamma = \text{vcd}_Q \Gamma$ for almost all primes p.
(c) There exists a prime p such that $\text{vcd}_{Z_p} \Gamma = \text{vcd} \Gamma$.
(d) $\text{vcd} \Gamma \times \Gamma = 2 \text{vcd} \Gamma$.

We extend this theorem to one over principal ideal domain coefficients.

Theorem A. Let Γ be a Coxeter group and R a principal ideal domain. Then Γ has the following properties:

(a) $\text{vcd}_Q \Gamma \leq \text{vcd}_{R/I} \Gamma \leq \text{vcd}_R \Gamma \leq \text{vcd} \Gamma$ for any prime ideal I in R.
(b) $\text{vcd}_{R/I} \Gamma = \text{vcd}_Q \Gamma$ for almost all prime ideals I in R, if R is not a field.
(c) There exists a non-trivial prime ideal I in R such that $\text{vcd}_{R/I} \Gamma = \text{vcd}_R \Gamma$, if R is not a field.
(d) $\text{vcd}_R \Gamma \times \Gamma = 2 \text{vcd}_R \Gamma$.

Let (Γ, V) be a Coxeter system and $K = K(\Gamma, V)$. Consider the product space $\Gamma \times |CK|$ of Γ with the discrete topology and the underlying space $|CK|$ of the cone of K. Define an equivalence relation \sim on the space as follows: for $(\gamma_1, x_1), (\gamma_2, x_2) \in \Gamma \times |CK|$, $(\gamma_1, x_1) \sim (\gamma_2, x_2)$ if and only if $x_1 = x_2$ and $\gamma_1^{-1}\gamma_2 \in \Gamma_{V(x_1)}$, where $V(x) = \{v \in V| x \in \text{St}(v, \beta^1 K)\}$. Here we consider that $|K|$ is naturally embedded in $|CK|$ as the base of the cone and $\beta^1 K$ denotes the barycentric subdivision of K. The natural left Γ-action on $\Gamma \times |CK|$ is compatible with the equivalence relation; hence, it passes to a left action on the quotient space $\Gamma \times |CK|/\sim$. Denote this quotient space by $A(\Gamma, V)$. The space $A(\Gamma, V)$ is contractible and Γ acts cocompactly and properly discontinuously on the space ([D1, Theorem 13.5]).

We can also give the space $A(\Gamma, V)$ a structure of a piecewise Euclidean cell complex with the vertex set $\Gamma \times \{v_0\}$ ([D2, §9]). $\Sigma(\Gamma, V)$ denotes this piecewise Euclidean cell complex. Refer to [D2, Definition 2.2] for the definition of a piecewise Euclidean cell complex. In particular, if (Γ, V) is right-angled, then each cell of $\Sigma(\Gamma, V)$ is a cube, hence, $\Sigma(\Gamma, V)$ is a cubical complex. More precisely, for a right-angled Coxeter system (Γ, V), we can define the cubical complex $\Sigma(\Gamma, V)$ by the following conditions:

1. the vertex set of $\Sigma(\Gamma, V)$ is Γ,
2. for $\gamma, \gamma' \in \Gamma$, $\{\gamma, \gamma'\}$ spans an edge in $\Sigma(\Gamma, V)$ if and only if the length $l_V(\gamma^{-1}\gamma') = 1$, and
3. for $\gamma \in \Gamma$ and $v_0, \ldots, v_k \in V$, the edges $|\gamma, \gamma v_0|, \ldots, |\gamma, \gamma v_k|$ form a $(k+1)$-cube in $\Sigma(\Gamma, V)$ if and only if $\{v_0, \ldots, v_k\}$ spans a k-simplex in $K(\Gamma, V)$.

We note that $l_V(\gamma^{-1}\gamma') = 1$ if and only if γ and γ' are in the same S-orbit. Hence, $\Sigma(\Gamma, V)$ is a CAT(0) geodesic space by a piecewise Euclidean metric (cf. [D2, Theorem 7.8]). We define the boundary $\partial \Gamma$ as the set of
geodesic rays in $\Sigma(\Gamma, V)$ emanating from the unit element $e \in \Gamma \subset \Sigma(\Gamma, V)$ with the topology of the uniform convergence on compact sets, i.e., $\partial \Gamma$ is the visual sphere of $\Sigma(\Gamma, V)$ at the point $e \in \Sigma(\Gamma, V)$. In general, for all points x, y in a CAT(0) space X, the visual spheres of X at points x and y are homeomorphic (cf. [Dr1, Assertion 1]). This boundary is known to be a finite-dimensional compactum (i.e., metrizable compact space). Details of the boundaries of CAT(0) spaces can be found in [D2] and [D-J].

It is still unknown whether the following conjecture holds.

Rigidity Conjecture (Dranishnikov [Dr4]). Isomorphic Coxeter groups have homeomorphic boundaries.

We note that there exists a Coxeter group Γ with different Coxeter systems (Γ, V_1) and (Γ, V_2).

Let X be a compact metric space and G an abelian group. The cohomological dimension of X over G is defined as

$$c \text{-dim}_G X = \sup \{ i \mid \check{H}^i (X, A; G) \neq 0 \text{ for some closed set } A \subset X \},$$

where $\check{H}^i (X, A; G)$ is the Čech cohomology of (X, A) over G.

In [B-M], Bestvina-Mess proved the following theorem for hyperbolic groups. An analogous theorem for Coxeter groups is proved by the same argument (cf. [Dr1]).

Theorem 3 (Bestvina-Mess [B-M]). Let Γ be a Coxeter group and R a ring with identity. Then there exists the formula

$$c \text{-dim}_R \partial \Gamma = \operatorname{vcd}_R \Gamma - 1.$$

We have a dimension theorectic theorem in the study of Coxeter groups.

Theorem B. Let (Γ, V) be a right-angled Coxeter system with $\operatorname{vcd}_R \Gamma = n$, where R is a principal ideal domain. Then there exists a sequence $W_0 \subset W_1 \subset \cdots \subset W_{n-1} \subset V$ such that $\operatorname{vcd}_R \Gamma_{W_i} = i$ for $i = 0, \ldots , n - 1$. In particular, we can obtain a sequence of simplexes $\tau_0 \succ \tau_1 \succ \cdots \succ \tau_{n-1}$ such that W_i is the vertex set of $\operatorname{Lk}(\tau_i, K(\Gamma, V))$ and $K(\Gamma_{W_i}, W_i) = \operatorname{Lk}(\tau_i, K(\Gamma, V))$.

We note that Theorem B is not always true for general Coxeter groups.

Example. We consider the Coxeter system (Γ, V) defined by $V = \{v_1, v_2, v_3\}$ and

$$m(v_i, v_j) = \begin{cases} 1 & \text{if } i = j, \\ 3 & \text{if } i \neq j. \end{cases}$$

Then Γ is not right-angled, and $K(\Gamma, V)$ is not a flag complex. Indeed, $\Gamma_{\{v_i, v_j\}}$ is finite for each $i, j \in \{1, 2, 3\}$, but Γ is infinite (cf. [Bo, p.98, Proposition 8]). Since $\cd K(\Gamma, V) = 1$ and $\lcd K(\Gamma, V) = 1$, we have $\operatorname{vcd} \Gamma = 2$ by Theorem 1. For any proper subset $W \subset V$, $\operatorname{vcd} \Gamma_W = 0$, because Γ_W is a finite group. Hence there does not exist a subset $W \subset V$ such that $\operatorname{vcd} \Gamma_W = 1$. □

By Theorem 3, we can obtain the following corollary.
Corollary B'. For a right-angled Coxeter system (Γ, V) with $c\dim_R \partial \Gamma = n$, where R is a principal ideal domain, there exists a sequence $\partial \Gamma_{W_0} \subset \partial \Gamma_{W_1} \subset \cdots \subset \partial \Gamma_{W_{n-1}}$ of the boundaries of parabolic subgroups of (Γ, V) such that $c\dim_R \partial \Gamma_{W_i} = i$ for each $i = 0, 1, \ldots, n - 1$.

In general, for a finite dimensional compactum X, the equality $c\dim_Z X = \dim X$ holds ([K, §2, Remark 4]). Since the boundaries of Coxeter groups are always finite dimensional, we obtain the following corollary.

Corollary B". For a right-angled Coxeter system (Γ, V) with $\dim \partial \Gamma = n$, there exists a sequence $\partial \Gamma_{W_0} \subset \partial \Gamma_{W_1} \subset \cdots \subset \partial \Gamma_{W_{n-1}}$ of the boundaries of parabolic subgroups of (Γ, V) such that $\dim \partial \Gamma_{W_i} = i$ for each $i = 0, 1, \ldots, n - 1$.

Finally, we see a relation between a subgroup of a Coxeter group which is of finite index and their boundaries.

If X and Y are topological spaces, let us define $X \star Y$ to be the quotient space of $X \times Y \times [0, 1]$ obtained by identifying each set $x \times Y \times 0$ to a point and each set $X \times y \times 1$ to a point.

Theorem C. Let (Γ, V) be a right-angled Coxeter system and W a subset of V. Then the following conditions are equivalent:

1. The parabolic subgroup $\Gamma_W \subset \Gamma$ is of finite index.
2. $\{v, v'\}$ spans an edge of $K(\Gamma, V)$ for any $v \in V \setminus W$ and $v' \in V$.
3. $\Gamma = \Gamma_W \times \Gamma_{V \setminus W}$ and $\Gamma_{V \setminus W} \approx \mathbb{Z}_2^{V \setminus W}$.
4. $\partial \Gamma = \partial \Gamma_W$.

REFERENCES

INSTITUTE OF MATHEMATICS, UNIVERSITY OF TSUKUBA, TSUKUBA, 305-8571, JAPAN

E-mail address: thosaka@math.tsukuba.ac.jp

DEPARTMENT OF MATHEMATICS, INTERDISCIPLINARY FACULTY OF SCIENCE AND ENGINEERING, SHIMANE UNIVERSITY, MATSUE, 690-8504, JAPAN

E-mail address: yokoi@math.shimane-u.ac.jp