<table>
<thead>
<tr>
<th>Title</th>
<th>RECENT PROGRESS IN TOPOLOGICAL GROUPS: SELECTED TOPICS (Research of Set-Theoretic and Geometric Topology and Their Applications)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Shakhmatov, Dmitri</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2001), 1188: 1-19</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2001-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/64710</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
RECENT PROGRESS IN TOPOLOGICAL GROUPS:
SELECTED TOPICS

Dmitri Shakhmatov
Department of Mathematics, Faculty of Science, Ehime University

Some historical background on topological groups

Theorem (Pontryagin?): If the space of a topological group is a T_0-space, then it is automatically Tychonoff.

Theorem (Markov [1941]): There exists a topological group the space of which is not normal.

Theorem (Birkhoff-Kakutani [1930s]): A topological group is metrizable if and only if it is first countable.

Theorem: Every locally compact group has a Haar measure. (This allows for integration on it.)

Theorem: Let G be a locally compact abelian group, $g \in G$ and $g \neq 0$. Then there exists a continuous group homomorphism $\pi : G \to T$ from G into the torus group T such that $\pi(g) \neq 0$.

Theorem (Peter-Weyl-van Kampen): Let G be a locally compact group, $g \in G$ and $g \neq 1_G$ where 1_G is the identity element of G. Then there exist a natural number n and a continuous group homomorphism $\pi : G \to U(n)$ from G into the group $U(n)$ of unitary $n \times n$ matrices over the complex number field such that $\pi(g) \neq I$. (Here I is the identity matrix of $U(n)$.) A cardinal τ is Ulam nonmeasurable provided that for every ultrafilter F on τ with the countable intersection property there exists $\alpha \in \tau$ such that $F = \{ A \subseteq \tau : \alpha \in A \}$.

Theorem (Varopolous [1964]): Let G and H be locally compact groups, and let $\pi : G \to H$ be a group homomorphism. Assume that:

(i) $|G|$ is an Ulam nonmeasurable cardinal, and

(ii) π is sequentially continuous, i.e. for every sequence $S \subseteq G$ the image $\pi(S)$ is also a convergent sequence.

Then π is continuous.

Theorem (Comfort-Remus [1994]): Let G be a compact group that is either abelian or connected. Suppose also that every sequentially continuous group homomorphism...
\(\pi : G \to H \) from \(G \) into any compact group \(H \) is continuous. Then \(|G| \) is an Ulam measurable cardinal.

Theorem (Pasynkov [1961]): \(\text{ind } G = \text{Ind } G = \dim G \) for a locally compact group \(G \).

Note: Locally compact groups are paracompact (Pasynkov).

A continuous image of a Cantor cube \(\{0,1\}^\kappa \) is called a \emph{dyadic} space.

Theorem (Kuz'minov [1959]): Compact groups are dyadic.

A compact space \(X \) is said to be Dugundji if any continuous function \(f : A \to X \) defined on a closed subset \(A \) of a Cantor cube \(\{0,1\}^\kappa \) has a continuous extension \(F : \{0,1\}^\kappa \to X \).

Since we can choose the above \(f \) to be onto, Dugundji spaces are dyadic.

Theorem (Čoban [1970s]): Let \(X \) be a compact \(G_\delta \)-subset of some topological group. Then \(X \) is a Dugundji space.

Theorem (Hagler, Gerlits and Efimov [1976/77]): An infinite compact group \(G \) contains a homeomorphic copy of the Cantor cube \(\{0,1\}^{w(G)} \).

As a corollary, one gets a particular version of Shapirovskii’s theorem about mappings onto Tychonoff cubes:

Theorem: Every infinite compact group \(G \) admits a continuous map onto a Tychonoff cube \([0,1]^{w(G)} \).

Recall that a space \(X \) is \emph{\(\sigma \)-compact} if it is a union of countable family of its compact subspaces.

A space \(X \) is \emph{ccc} provided that \(X \) does not have an uncountable family of non-empty pairwise disjoint open subsets.

Theorem (Tkachenko [1981]): A \(\sigma \)-compact group is ccc.

A space is \emph{pseudocompact} if every real-valued continuous function defined on it is bounded.

Theorem (Comfort and Ross [1966]): Let \(G \) be a dense subgroup of a compact group \(K \). Then the following conditions are equivalent:

(i) \(G \) is pseudocompact,

(ii) \(G \cap B \neq \emptyset \) for every non-empty \(G_\delta \)-subset \(B \) of \(K \).

Corollary (Comfort and Ross [1966]): The product of any family of pseudocompact groups is pseudocompact.

A (Hausdorff) topological group \((G, \mathcal{T}) \) is called \emph{minimal} provided that for every Hausdorff group topology \(\mathcal{T}' \) on \(G \) with \(\mathcal{T}' \subseteq \mathcal{T} \) one has \(\mathcal{T}' = \mathcal{T} \).
Clearly, compact groups are minimal.

Theorem (Prodanov, Stoyanov [1984]): A minimal abelian group G is totally bounded, i.e. G is (isomorphic to) a subgroup of some compact topological group.

Generating dense subgroups of topological groups:

Suitable sets

If X is a subset of a group G, then $\langle X \rangle$ denotes the smallest subgroup of G that contains X.

Let X be a subspace X of a topological group G.

We say that X *algebraically generates* G provided that $\langle X \rangle = G$.

We say that X *topologically generates* G if $\langle X \rangle$ is dense in G.

A compact connected abelian group G has weight less than or equal to the continuum if and only if it is monothetic; that is, there exists an element $g \in G$ such that G is topologically generated by the subset $\{g\}$.

This result was improved by Hofmann and Morris [1990] by showing that a compact connected group G can be topologically generated by two elements if and only if the weight of G is less than or equal to the continuum.

Clearly, neither finite nor countable subsets of a topological group G with weight greater than the continuum can generate a dense subgroup of G. This fact led Hofmann and Morris to introduce the concept of suitable set as a way to define the notion of topological generating sets which are in some sense "close" to finite sets:

Definition (Hofmann and Morris [1990]): A subset S of a topological group G is said to be *suitable* for G if S is discrete in itself, generates a dense subgroup of G and $S \cup \{1_G\}$ is closed in G, where 1_G is the identity of G.

Theorem (Hofmann and Morris [1990]): Every locally compact group has a suitable set.

Theorem (Comfort, Morris, Robbie, Svetlichny, and Tkačenko [1998]):

Each metric group has a suitable set. A topological group G is *almost metrizable* if there exists a compact subgroup K of G such that the space of left cosets G/K is metrizable.

Theorem (Okunev and Tkachenko [1998]): An almost metrizable group has a suitable set.

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): A topological group representable as a countable union of closed metrizable subspaces has a suitable set.
Corollary (Dikranjan, Tkachenko, Tkachuk [1999]): A free (abelian) topological group over a metric space has a suitable set.

Question (Dikranjan, Tkachenko, Tkachuk [1999]): Suppose that a topological group G is a countable union of its metrizable subspaces. Does G have a suitable set?

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): Every topological group with a σ-discrete network has a suitable set.

Corollary (Dikranjan, Tkachenko, Tkachuk [1999]): Every topological group with a countable network (i.e. a cosmic group) has a suitable set.

Corollary (Dikranjan, Tkachenko, Tkachuk [1999]): Stratifiable groups have suitable sets.

From the above results it follows that all countable groups have suitable sets. In fact, even more can be said for countable groups:

Theorem (Comfort, Morris, Robbie, Svetlichny, and Tkačenko [1998]):
Every countable topological group G has a closed discrete subspace S that algebraically generates G.

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): A separable σ-compact group has a suitable set.

Question (Dikranjan, Tkachenko, Tkachuk [1999]): Does every σ-compact group of size $< c$ have a suitable set?

Theorem (Comfort, Morris, Robbie, Svetlichny, and Tkačenko [1998]):
Let G be the free (abelian) topological group of $\beta\mathbb{N} \setminus \mathbb{N}$. Then G does not have a suitable set. In particular, a σ-compact group need not have a suitable set.

Question (Dikranjan, Tkachenko, Tkachuk [1999]): Does every σ-compact group have a dense subgroup with a suitable set?

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): If G is a topological group with a suitable set, then $d(G) \leq l(G) \cdot \psi(G)$. In particular, a non-separable Lindelöf group of countable pseudocharacter does not have a suitable set.

A space is *submetrizable* if it has a weaker metric topology.

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): There exists a submetrizable Lindelöf non-separable linear topological space L of countable tightness. Thus, L does not have a suitable set.

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): Under some additional set-theoretic assumptions (diamond) there exists a hereditarily Lindelöf non-separable linear topo-
logical space L of countable tightness. Thus no dense additive subgroup of L has a suitable set.

Question (Dikranjan, Tkachenko, Tkachuk [1999]): Can one construct in ZFC a topological group which does not contain a dense subgroup with a suitable set?

A space X is ω-bounded if the closure of each countable subset of X is compact.

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): There exists an ω-bounded group G without a suitable set. Moreover, each power G^κ of G does not have a suitable set.

Question: In ZFC, does there exists a separable (pseudocompact) group without a suitable set?

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): A locally separable non-pseudocomapct group has a suitable set.

Question (Dikranjan, Tkachenko, Tkachuk [1999]): Does there exists an ω-bounded topological group of size c without a suitable set?

Generating dense subgroups of topological groups:

Topologically generating weight

We use $w(X)$ to denote the weight of a topological space X, i.e. the smallest size of a base for the topology of X if such a base is infinite, or ω otherwise.

Define

$$agw(G) = \min\{w(X) : X \text{ is closed in } G \text{ and algebraically generates } G\}$$

and

$$tgw(G) = \min\{w(F) : F \text{ is closed in } G \text{ and topologically generates } G\}.$$

We will call $agw(G)$ an algebraically generating weight of G and $tgw(G)$ a topologically generating weight of G.

Clearly $tgw(G) \leq agw(G) \leq w(G)$. While the definition of algebraically generating weight appears to be more natural than that of topologically generating weight, it does not lead to anything new for compact groups:

Theorem (Arhangel'skii): $agw(G) = w(G)$ holds for every compact group G.

For an infinite cardinal τ define $\sqrt{\tau}$ to be the smallest infinite cardinal κ with $\tau \leq \kappa^\omega$. Clearly, $\sqrt{\tau} \leq \tau$.

Theorem (Dikranjan and Shakhmatov [1998]): $tgw(G) = \sqrt{w(c(G))} \cdot w(G/c(G))$ for every compact group G, where $c(G)$ is the connected component of G.
Corollary (Dikranjan and Shakhmatov [1998]): \(tgw(G) = w(G) \) for a totally disconnected compact group \(G \).

Corollary (Dikranjan and Shakhmatov [1998]): \(tgw(G) = \sqrt{w(G)} \) for every connected compact group \(G \). A super-sequence is a compact space with at most one non-isolated point.

Suitable sets in compact groups are precisely super-sequences, so Hofmann-Morris’ theorem justifies an introduction of the following cardinal number for a compact group \(G \):

\[
seq(G) = \omega \cdot \min\{|S| : S \subseteq G \text{ is a super-sequence topologically generating } G\}.
\]

Clearly \(tgw(G) \leq seq(G) \leq w(G) \).

Theorem (Dikranjan and Shakhmatov [1998]): \(tgw(G) = seq(G) \) for every compact group \(G \).

For topological spaces \(X \) and \(Y \) we use \(C(X, Y) \) to denote the family of all continuous maps from \(X \) to \(Y \). No topology is assumed on \(C(X, Y) \).

For topological groups \(G \) and \(H \) we will use \(\text{Hom}(G, H) \) to denote the family of all continuous homomorphisms from \(G \) to \(H \). No topology is assumed on \(\text{Hom}(G, H) \).

Lemma 1: Let \(X \) be a subset of a topological group \(G \). Assume that \(X \) topologically generates \(G \). Then \(|\text{Hom}(G, H)| \leq |C(X, H)|\) for every topological group \(H \).

Proof: Define a map \(f : \text{Hom}(G, H) \rightarrow C(X, H) \) by \(f(\pi) = \pi|_{X} \) for \(\pi \in \text{Hom}(G, H) \). We claim that \(f \) is an injection. Indeed, assume that \(\pi, \omega \in \text{Hom}(G, H) \) and \(f(\pi) = f(\omega) \). Then \(\pi|_{X} = \omega|_{X} \). Since both \(\pi \) and \(\omega \) are group homomorphisms from \(G \) to \(H \), one has \(\pi|_{\langle X \rangle} = \omega|_{\langle X \rangle} \). Since \(\langle X \rangle \) is dense in \(G \), continuity of \(\pi \) and \(\omega \) implies now that \(\pi = \omega \).

Proof of the totally disconnected case

Lemma 2: Let \(X \) be a totally disconnected compact space and \(H \) be a discrete space. Then \(|C(X, H)| \leq w(X)\).

Let \(X \) be a closed subset of \(G \) that topologically generates \(G \). Since \(G \) is compact and totally disconnected, it is profinite, i.e. its topology is determined by the family of all continuous homomorphisms into finite discrete groups. Let \(H \) be one of these discrete groups.

Since \(G \) is totally disconnected, so is \(X \). Therefore \(|C(X, H)| \leq w(X)\) by Lemma 2.

We also have \(|\text{Hom}(G, H)| \leq |C(X, H)|\) since \(X \) topologically generates \(G \) (Lemma 1).

Since there are only countably many pairwise non-isomorphic finite discrete groups \(H \), it now follows that \(w(G) \leq \omega \cdot w(X) = w(X) \).

Proof of the inequality \(\sqrt{w(G)} \leq tgw(G) \)
Lemma 3: Let X be a compact space and H be a separable metric space. Then $|C(X,H)| \leq w(X)^\omega$.

Theorem: $\sqrt{w(G)} \leq tgw(G)$ for every compact group G.

Proof: Let G be a compact group. By Peter-Weyl-van Kampen theorem the topology of every compact group is determined by the set of its homomorphisms into the compact metric group $H = \prod_n U(n)$, where $U(n)$ is the group of unitary $n \times n$ matrices over the complex number field.

Therefore $w(G) \leq |\text{Hom}(G,H)|$.

Let X be a closed subspace of G that topologically generates G and satisfies the equality $w(X) = tgw(G)$. From Lemmas 1 and 3 we have the following:

$$|\text{Hom}(G,H)| \leq |C(X,H)| \leq w(X)^\omega = tgw(G)^\omega.$$

Therefore $\sqrt{w(G)} \leq \sqrt{tgw(G)^\omega} \leq tgw(G)$.

STRONGLY TOPOLOGICALLY FINITELY GENERATED GROUPS

Recall that a topological group G is **topologically finitely generated** provided that there exists a finite subset of G topologically generating G.

Definition (Dikranjan and Shakhmatov): We say that a topological group G is **strongly topologically finitely generated** provided that for every open set U containing the identity element of G one can find a finite set $F \subseteq U$ such that F topologically generates G.

Lemma 4: Let G be a topologically finitely generated group that has no proper open subgroups. Then G is strongly topologically finitely generated. **Proof:** Let $D = \langle g_1, \ldots, g_n \rangle$ be a dense finitely generated subgroup of G.

Let U be an open neighbourhood of e in G. Then the subgroup $H = \langle D \cap U \rangle$ of D is obviously open in D, hence also closed in D. On the other hand, its closure \overline{H} in G contains $D \cap \overline{U} \supseteq \overline{U}$ since U is open and D is dense in G. Therefore \overline{H} is an open subgroup of G. Our hypothesis gives $\overline{H} = G$.

Now closedness of H in D yields $H = \overline{H} \cap D = G \cap D = D$. We have proved in this way that $D = H$.

Let $i = 1, \ldots, n$. Since $g_i \in D = H = \langle D \cap U \rangle$, there exists a finite subset $F_i \subseteq D \cap U$ such that $g_i \in \langle F_i \rangle$. Clearly the finite set set $F = \bigcup_{i=1}^n F_i$ generates the whole group D and $F \subseteq U$. Since D is dense in G, F topologically generates G.

Lemma 5: Let G be a metric (not necessarily compact!) group that is strongly topologically finitely generated. Then for every infinite cardinal τ one has $\text{seq}(G^{\tau^+}) \leq \tau$.
Proof: Fix an infinite cardinal τ, and let $\{U_n : n \in \omega\}$ be a decreasing open base at the identity element e of G. For each $n \in \omega$ use the hypothesis of our lemma to fix a finite set $F_n = \{g_i^n : i < m_n\} \subseteq U_n$ such that $\langle F_n \rangle$ is dense in G.

For $f \in \tau^{\omega}$ and $n \in \omega$ let $f|n \in \tau^n$ be the restriction of the function f to $n = \{0, 1, \ldots, n-1\}$.

For $n \in \omega$, $i < m_n$ and $\phi \in \tau^n$ we define a point $x_{n,i,\phi} \in G^{\tau^n}$ as follows:

for each $f \in \tau^n$ let $x_{n,i,\phi}(f) = g_i^n$ if $f|n = \phi$ and $x_{n,i,\phi}(f) = e$ otherwise. Then

$$X = \{x_{n,i,\phi} : n \in \omega, i < m_n, \phi \in \tau^n\}$$

is a subset of $G^{\tau^{\omega}}$ of size at most τ.

CLAIM 1. For every open set W which contains the identity element e of $G^{\tau^{\omega}}$ the set $X \setminus W$ is at most finite.

Claim 1 implies that $X \cup \{e\}$ is a super-sequence.

Proof of Claim 1. Since W contains a finite intersection of sets of the form

$$V_{f,n} = \{x \in G^{\tau^{\omega}} : x(f) \in U_n\},$$

it suffices to prove that, for each $f \in \tau^{\omega}$ and for every $n \in \omega$, $x(f) \in U_n$ for all but finitely many $x \in X$, i.e., the set $\{x \in X : x(f) \notin U_n\}$ is finite.

So let $f \in \tau^{\omega}$ and $n \in \omega$. Our construction implies that if $k \in \omega$, $j < m_k$, $\phi \in \tau^k$ and $x_{k,j,\phi}(f) \notin U_n$, then:

(i) $k < n$ (because $n \leq k$ implies $U_k \subseteq U_n$), and

(ii) $f|k = \phi$ (because $f|k \neq \phi$ implies $x_{k,j,\phi}(f) = e \in U_n$).

There are only finitely many of such $x_{k,j,\phi}$, and the result follows.

CLAIM 2. For every finite subset F of τ^{ω} there exists $n \in \omega$ (depending on F) such that, for each $f \in F$, the finite set

$$\{x_{n,i,f|n} : f \in F, i < m_n\} \subseteq X$$

satisfies the following two properties:

(i) $\langle\{x_{n,i,f|n}(f) : i < m_n\}\rangle$ is dense in G,

(ii) $x_{n,i,f|n}(f') = e$ whenever $f' \in F \setminus \{f\}$.

From Claim 2 it immediately follows that, for every finite set $F \subseteq \tau^{\omega}$, the projection of

$$\langle\{x_{n,i,f|n} : f \in F, i < m_n\}\rangle$$

(where n is as in Claim 2) onto the subproduct G^F is dense in G^F. Since

$$\{x_{n,i,f|n} : f \in F, i < m_n\} \subseteq X,$$
this implies that \(\langle X \cup \{e\} \rangle \) is dense in \(G^{\tau^\omega} \). \textit{Proof of Claim 2.} There exists \(n \in \omega \) such that \(f'|n \neq f''|n \) whenever \(f', f'' \in F \) and \(f' \neq f'' \). We will show that this \(n \) works.

Indeed, let \(f \in F \). By our construction, one has \(x_{n,i,f|n}(f) = g^n_i \) for all \(i < m_n \), so

\[
\{x_{n,i,f|n}(f) : i < m_n\} = \{g^n_i : i < m_n\},
\]
and the latter set generates a dense subgroup of \(G \). This implies (i).

Again by our construction, \(f' \in F \setminus \{f\} \) implies \(f'|n \neq f|n \) and so \(x_{n,i,f|n}(f') = e \). This gives (ii).

\textbf{PROOF OF THE CONNECTED CASE}

\textbf{Theorem:} (Universal compact connected group of a given weight)

There exists a sequence \(\{L_n : n \in \omega\} \) of compact connected simple Lie groups \(L_n \) such that every compact connected group of weight \(\leq \tau \) is a quotient group of the group

\[
G_\tau = (\hat{Q})^{\tau} \times \prod_{n} L_n^\tau,
\]

where \(\hat{Q} \) is the Pontryagin dual of the discrete group \(Q \) of rational numbers. (Note that \(G_\tau \) is a connected group of weight \(\tau \).)

\textbf{Theorem:} \(\text{seq}(G) \leq \sqrt{w(G)} \) for a compact connected group \(G \).

\textit{Proof:} Let \(\tau = \sqrt{w(G)} \). By the above theorem, \(G \) is a quotient group of the group

\[
H = (\hat{Q})^{w(G)} \times \prod_{n} L_n^{w(G)}
\]

for a suitable sequence \(\{L_n : n \in \omega\} \) of compact connected simple Lie groups \(L_n \). Since \(w(G) \leq \tau^\omega \), \(H \) is a natural quotient group (under projection map) of the group \(K^{\tau^\omega} \), where

\[
K = (\hat{Q}) \times \prod_{n} L_n.
\]

Therefore \(\text{seq}(G) \leq \text{seq}(H) \leq \text{seq}(K^{\tau^\omega}) \).

Since \(K \) is connected, it has no proper open subgroups. Since \(K \) is also topologically finitely generated, \(K \) is strongly topologically finitely generated (Lemma 4).

Therefore \(\text{seq}(K^{\tau^\omega}) \leq \tau \) by Lemma 5.

Finally, \(\text{seq}(G) \leq \text{seq}(K^{\tau^\omega}) \leq \tau = \sqrt{w(G)} \).

\textbf{Applications of Michael's selection theorem to proving results about (mostly compact) topological groups}
Uspenskii [1988] was the first to notice how Michael's selection theorem can be applied to get a simple topological proof of the classical result of Kuzminov that compact groups are dyadic. Recall that a set-valued map $F: Y \rightarrow Z$ is a map which assigns a non-empty closed set $F(y) \subseteq Z$ to every point $y \in Y$.

This set-valued map is lower semicontinuous if

$$V = \{ y \in Y : F(y) \cap U \neq \emptyset \}$$

is open in Y for every set U open in Z.

A selection for a set-valued map $F : Y \rightarrow Z$ is a (single-valued) continuous map $f : Y \rightarrow Z$ such that $f(y) \in F(y)$ for all $y \in Y$.

Theorem (Michael [1956]): Every lower semicontinuous set-valued map $F: Y \rightarrow Z$ from a zero-dimensional compact space Y into a complete metric space (in particular, compact metric space) Z has a selection.

Lemma: Suppose that H and H' are topological groups, G is a subgroup of the product $H \times H'$, $\varphi : H \times H' \rightarrow H$ and $\pi : H \times H' \rightarrow H'$ are projections onto the first and second coordinates respectively. Assume also that:

(i) the restriction $\varphi|G : G \rightarrow \varphi(G)$ of φ to G is an open map,

(ii) the restriction $\pi|G : G \rightarrow \pi(G)$ of π to G is a closed map, and

(iii) the subgroup $\pi(G)$ of H' is a complete metric group.

Then for every compact zero-dimensional space $Y \subseteq \varphi(G)$ there exists a homeomorphism embedding $f : Y \rightarrow G$ such that $(\varphi \circ f)(y) = y$ for every $y \in Y$. Proof: Define $Z = \pi(G)$ and note that $G \subseteq H \times Z$.

For $y \in Y$ define $F(y) = \{ z \in Z : (y, z) \in G \}$.

The set $G \cap (\{ y \} \times H')$ is closed in G, so from (ii) it follows that

$$F(y) = \pi(G \cap (\{ y \} \times H'))$$

is closed in $Z = \pi(G)$.

For $y \in Y$, since $y \in Y \subseteq \varphi(G)$, we have $F(y) \neq \emptyset$. Therefore $F : Y \rightarrow Z$ is a set-valued map.

We claim that F is lower semicontinuous. Indeed, let U be an open subset of Z. We have to check that the set

$$V = \{ y \in Y : F(y) \cap U \neq \emptyset \}$$

is open in Y. To see this note that the set $G \cap (H \times U)$ is open in G, so $\varphi(G \cap (H \times U))$ is open in $\varphi(G)$ by (i). Since $Y \subseteq \varphi(G)$,

$$V = Y \cap \varphi(G \cap (H \times U))$$
is open in Y.

Since $\pi(G) = Z$ is a complete metric group, we can use Michael's selection theorem to pick a (single-valued) continuous selection $f : Y \to Z$ of F.

From the definition of F it follows that $(\varphi \circ f)(y) = y$ for all $y \in Y$. In particular, f is one-to-one. Since Y is compact, f is a homeomorphism.

Corollary: Suppose that H is a topological group, H' is a metric group, G is a compact subgroup of the product $H \times H'$, and $\varphi : H \times H' \to H$ is the projection onto the first coordinate.

Then for every compact zero-dimensional space $Y \subseteq \varphi(G)$ there exists a homeomorphic embedding $f : Y \to G$ such that $(\varphi \circ f)(y) = y$ for every $y \in Y$.

Proof: Let $\pi : H \times H' \to H'$ be the projection onto the second coordinate.

Since G is compact, the restriction $\varphi|_G : G \to \varphi(G)$ of φ to G is a closed continuous map, so is a quotient map, and so an open map. This gives (i).

Since G is compact, the restriction $\pi|_G : G \to \pi(G)$ of π to G is a closed map. This gives (ii).

The subgroup $\pi(G)$ of H' is compact, being a continuous image of the compact group G. Since H' is metric, so is $\pi(G)$. In particular, $\pi(G)$ is a complete metric group. This gives (iii).

A subset X of an abelian group G is independent provided that $\langle A \rangle \cap \langle X \setminus A \rangle = \{0\}$ for every $A \subseteq X$.

For a prime number $p \geq 2$, a subset X of an abelian group G is called p-independent provided that X is independent and

$$\min\{1 \leq n \leq p : nx = 0\} = p$$

for every $x \in X$. For an abelian group G and a prime number p, cardinal numbers

$$r_0(G) = \sup\{|X| : X \subseteq G \text{ is independent}\}$$

and

$$r_p(G) = \sup\{|X| : X \subseteq G \text{ is } p\text{-independent}\}$$

are called rank and p-rank of G respectively.

For a cardinal number τ we define $\log(\tau)$ to be the smallest infinite cardinal σ such that $2^\sigma \geq \tau$.

Theorem (Shakhmatov): Let G be an infinite compact abelian group. Then:

(i) G contains an independent subset X homeomorphic to the Cantor cube $\{0,1\}^{\log r_0(G)}$ of weight $\log r_0(G)$, and
(ii) for every prime number $p \geq 2$ the group G contains a p-independent subset X homeomorphic to the Cantor cube $\{0,1\}^{\log r_p(G)}$ of weight $\log r_p(G)$.

Even the following corollary to the above general theorem is new:

Corollary (Shakhmatov): Let G be an infinite compact abelian group. Then:

(i) G contains a closed independent subset X with $|X| = r_0(G)$, and

(ii) for every prime number $p \geq 2$ the group G contains a closed p-independent subset X with $|X| = r_p(G)$.

Wallace’s problem and continuity of separately continuous multiplication in semigroups

A *semigroup* is a pair (S, \cdot) consisting of a set S and a binary associative operation \cdot on S.

A semigroup S has the *cancellation property* provided that either of $sx = sy$ and $xs = ys$ implies $x = y$ whenever $x, y, s \in S$.

A *topological semigroup* is a semigroup equipped with a topology which makes its binary operation continuous.

Clearly, every topological group is a topological semigroup with the cancellation property.

Theorem (Gelbaum, Kalish and Olmsted [1951]): A compact semigroup with the cancellation property is a topological group.

Problem (Wallace [1955]): Is a countably compact Hausdorff semigroup with the cancellation property a topological group?

A series of positive results by Mukhurjea-Tserpes, Grant, Korovin, Reznichenko, Yur’eva culminated in the following most general result:

Theorem (Bokalo-Guran [1996]): A sequentially compact Hausdorff semigroup with the cancellation property is a topological group.

Theorem (Robbie, Svetlichny [1996]): Suppose that there exists an abelian topological group G with the following properties:

(i) G is countably compact,

(ii) every infinite closed subset of G has cardinality greater or equal than the continuum,

(iii) G is torsion-free, i.e. for every $x \in G$ and each $n \geq 1$ one has $ng \neq 1_G$.

Then, (inside of G) one can find a Tychonoff counterexample to the Wallace problem, i.e. there exists a commutative Tychonoff countably compact semigroup with the
cancellation property that is not a topological group.

Theorem (Tkačenko [1990]): Assume CH. Than there exists a topological group G with the following properties:

(i) G is countably compact,

(ii) every infinite closed subset of G has cardinality greater or equal than the continuum,

(iii) G is a free abelian group (in particular, G is torsion-free).

Tomita [1997] constructed similar group under Martin’s Axiom for Countable Sets.

Question: Is there such a group in ZFC?

Theorem (Ellis [1957]): A group equipped with a locally compact topology such that multiplication is separately continuous is a topological group.

Theorem (Korovin [1992]): A group equipped with a countably compact topology such that multiplication is separately continuous is a topological group.

Theorem (Reznichenko [1994]): Let G be group equipped with a pseudocompact topology such that multiplication is separately continuous. Then G is a topological group provided that one of the following conditions holds:

(i) G has countable tightness,

(ii) G is separable,

(iii) G is a k-space.

Theorem (Korovin [1992]): There exists an abelian group (of period 2) equipped with a pseudocompact group topology such that multiplication is separately continuous but is not jointly continuous.

Since the group is of period 2, i.e. $x + x = 0$ and so $x = -x$ for all $x \in G$, the inverse operation is just the identity map, and so the inverse operation is automatically continuous.

Thus a pseudocompact group with a separately continuous multiplycation (and even continuous inverse) need not be a topological group.

Convergence properties in topological groups and function spaces

Let X be a topological space. For $A \subseteq X$ we use \overline{A} to denote the closure of A in X.

A *sequence converging to* $x \in X$ is a countable infinite set S such that $S \setminus U$ is finite for every open neighbourhood U of x.
A space X is Fréchet-Urysohn provided that for each set $A \subseteq X$ if $x \in \overline{A}$, then there exists a sequence $S \subseteq A$ converging to x.

Definition (Arhangel’skii [1970]): The tightness $t(X)$ of a topological space X is defined as the smallest cardinal τ such that

$$\overline{A} = \bigcup \{\overline{B} : B \in [A]^{\leq \tau}\}$$

for every $A \subseteq X$.

Definition (Arhangel’skii [1972]): Let X be a topological space. For $i = 1, 2, 3$ and 4 we say that X is an α_i-space if for every countable family $\{S_n : n \in \omega\}$ of sequences converging to some point $x \in X$ there exists a (kind of diagonal) sequence S converging to x such that:

- (α_1) $S_n \setminus S$ is finite for all $n \in \omega$,
- (α_2) $S_n \cap S$ is infinite for all $n \in \omega$,
- (α_3) $S_n \cap S$ is infinite for infinitely many $n \in \omega$,
- (α_4) $S_n \cap S \neq \emptyset$ for infinitely many $n \in \omega$.

Definition (Nyikos [1990]): We say that a space X is an $\alpha_{3/2}$-space if for every countable family $\{S_n : n \in \omega\}$ of sequences converging to some point $x \in X$ such that $S_n \cap S_m = \emptyset$ for $n \neq m$, there exists a sequence S converging to x such that $S_n \setminus S$ is finite for infinitely many $n \in \omega$.

The only nontrivial implication $\alpha_{3/2} \rightarrow \alpha_2$ is due to Nyikos [1992].

GENERAL TOPOLOGICAL SPACES

Theorem (Simon [1980]): There exists a compact Fréchet-Urysohn α_4-space that is not α_3.

Theorem (Reznichenko [1986], Gerlits, Nagy [1988] and Nyikos [1989]): There exists a compact Fréchet-Urysohn α_3-space that is not α_2.

Theorem (Dow [1990]): α_2 implies α_3 in the Laver model for the Borel conjecture.

For $f, g \in \omega^\omega$ we write $f <^* g$ if $f(n) < g(n)$ for all but finitely many $n \in \omega$.

A family $F \subseteq \omega^\omega$ is unbounded if for every function $g \in \omega^\omega$ there exists $f \in F$ such that $g <^* f$.

We define b to be the smallest cardinality of an unbounded family in $(\omega^\omega, <^*)$.

Theorem (Nyikos [1992]): If $b = \omega_1$ holds, then there exists a countable Fréchet-Urysohn α_2-space that is not α_1.

Corollary: The existence of a (Fréchet-Urysohn) α_2-space that is not α_1 is both consistent with and independent of ZFC.

Theorem (Gerlits, Nagy [1988] and Nyikos [1989]): There exists a countable Fréchet-Urysohn α_2-space that is not first countable.

Theorem (Gerlits, Nagy [1982]): There exists a (uncountable) Fréchet-Urysohn α_2-space that is not first countable.

Theorem (Nyikos [1989]): Every space of character $< b$ is α_1.

c is the cardinality of the continuum.

Theorem (Malyhin, Shapirovskii [1974]): If $MA + \neg CH$ holds, then every countable space of character $< c$ is Fréchet-Urysohn.

Corollary: $MA + \neg CH$ implies the existence of a countable Fréchet-Urysohn α_1-space that is not first countable.

Theorem (Dow, Steprans [1990]): There is a model of ZFC in which all countable Fréchet-Urysohn α_1-spaces are first countable.

Corollary: The existence of a countable Fréchet-Urysohn α_1 space that is not first countable is both consistent with and independent of ZFC.

Theorem (folklore): Let

$$G = \{f \in 2^\omega_1 : |\{\beta \in \omega_1 : f(\beta) = 1\}| \leq \omega\}.$$

Then G is a Fréchet-Urysohn topological group that is α_1 but is not first countable.

TOPOLOGICAL GROUPS

Theorem (Nyikos [1981]): Every Fréchet-Urysohn topological group is α_4.

Theorem (Shakhmatov [1990]): Let M be a model of ZFC obtained by adding ω_1 many Cohen reals to an arbitrary model of ZFC. Then M contains a countable Fréchet-Urysohn topological group G that is not α_3. (Note that G is α_4 by Nyikos' theorem.)

Theorem (Shibakov [1999]): CH implies the existence of a countable Fréchet-Urysohn topological group that is α_3 but is not α_2.

Theorem (Shakhmatov [1990]): Let M be a model of ZFC obtained by adding ω_1 many Cohen reals to an arbitrary model of ZFC. Then M contains a countable Fréchet-Urysohn topological group G that is α_2 but is not $\alpha_{3/2}$.

Theorem (Shibakov [1999]): A Fréchet-Urysohn topological group that is an $\alpha_{3/2}$-space is α_1. Thus $\alpha_{3/2}$ and α_1 are equivalent for Fréchet-Urysohn topological groups.
Theorem (Birkhoff, Kakutani [1936]): A topological group is metrizable if and only if it is first countable.

Question (Shakhmatov [1990]): Is it consistent with ZFC that every Fréchet-Urysohn topological group is α_3? What about countable Fréchet-Urysohn topological groups?

Question: Is it consistent with ZFC that every Fréchet-Urysohn topological group that is an α_3-space is automatically α_2? What about countable Fréchet-Urysohn topological groups?

Question (Shakhmatov [1990]): Is it consistent with ZFC that every countable Fréchet-Urysohn topological group that is an α_2-space is first countable?

Question (Malyhin [1977]): Without any additional set-theoretic assumptions beyond ZFC, does there exist a countable Fréchet-Urysohn topological group that is not first countable?

Theorem (Malyhin [1977]): $MA + \neg CH$ implies the existence of such a group.

Definition (Sipacheva [1998]): Let \mathcal{F} be a filter on ω. We say that \mathcal{F} is a FUF-filter provided that the following property holds:

if $\mathcal{K} \subseteq [\omega]^\omega$ is a family of finite subsets of ω such that for every $F \in \mathcal{F}$ there exists $K \in \mathcal{K}$ with $K \subseteq F$, then there exists a sequence $\{K_n : n \in \omega\} \subseteq \mathcal{K}$ so that for every $F \in \mathcal{F}$ one can find $n \in \omega$ with $K_m \subseteq F$ for all $m \geq n$.

For a filter \mathcal{F} on ω let $\omega_{\mathcal{F}}$ be the space obtained by adding to the discrete copy of ω a single point $*$ whose filter of open neighbourhoods is $\{F \cup \{*\} : F \in \mathcal{F}\}$.

Theorem (Sipacheva [1998]): If \mathcal{F} is a FUF-filter on ω, then the space $\omega_{\mathcal{F}}$ is α_2. For $A, B \in [\omega]^\omega$ define

$$A \cdot B = (A \setminus B) \cup (B \setminus A) \in [\omega]^\omega.$$

This operation makes $[\omega]^\omega$ into an Abelian group with \emptyset as the identity element such that $A \cdot A = \emptyset$ (thus A coincides with its own inverse, and all elements of $[\omega]^\omega$ have order 2).

For a filter \mathcal{F} on ω let $G(\mathcal{F})$ be the group $([\omega]^\omega, \cdot, \emptyset)$ equipped with the topology whose base of open neighbourhoods of \emptyset is given by the family $\{[F]^\omega : F \in \mathcal{F}\}$.

Theorem (folklore): Let \mathcal{F} be a filter on ω. Then:

(i) $G(\mathcal{F})$ is Hausdorff if and only if \mathcal{F} is free (i.e. $\bigcap \mathcal{F} = \emptyset$),

(ii) $G(\mathcal{F})$ is Fréchet-Urysohn if and only if \mathcal{F} is an FUF-filter,

(iii) $G(\mathcal{F})$ is first countable if and only if \mathcal{F} is countably generated.

Theorem (folklore): If there exists a free FUF-filter on ω that is not countably generated, then there exists a countable Fréchet-Urysohn topological group that is not first countable.

Question (folklore): Is there, in ZFC only, a free FUF-filter on ω that is not countably generated?
Theorem (Nogura, Shakhmatov [1995]): All \(\alpha_i \) properties \((i = 1, 3/2, 2, 3, 4)\) coincide for locally compact topological groups.

Theorem (Nogura, Shakhmatov [1995]): The following conditions are equivalent:
(i) every compact group that is an \(\alpha_1 \)-space is metrizable,
(ii) every locally compact group that is an \(\alpha_4 \)-space is metrizable,
(iii) \(b = \omega_1 \).

Corollary (Nogura, Shakhmatov [1995]): Under CH, a locally compact group is metrizable if and only if it is \(\alpha_4 \).
FUNCTION SPACES $C_p(X)$

For a topological space X let $C_p(X)$ be the set of all real-valued continuous functions on X equipped with the topology of pointwise convergence, i.e. with the topology which the set $C_p(X)$ inherits from R^X, the latter space having the Tychonoff product topology.

For every space X, $C_p(X)$ is both a (locally convex) topological vector space and a topological ring.

Theorem (Scheepers [1998]): Let X be a topological space. Then $C_p(X)$ is α_2 if and only if $C_p(X)$ is α_4. Therefore, all three properties α_4, α_3 and α_2 coincide for spaces of the form $C_p(X)$.

Corollary (Scheepers [1998]): If $C_p(X)$ is Fréchet-Urysohn, then $C_p(X)$ is α_2.

Theorem (Scheepers [1998]): It is consistent with ZFC that there exists a subset of real numbers $X \subseteq R$ such that $C_p(X)$ is Fréchet-Urysohn (and thus α_2) but is not α_1.

Note that the existence of the above space is not only consistent with ZFC but also independent of ZFC by Dow's theorem.

Theorem (Scheepers [1998]): It is consistent with ZFC that there exists a subset of real numbers $X \subseteq R$ such that $C_p(X)$ is α_1 but is not Fréchet-Urysohn.

PRODUCTS OF GENERAL SPACES

Theorem (Nogura [1985]):

(i) For $i = 1, 2, 3$, if X and Y are α_i-spaces, then $X \times Y$ is also an α_i-space.

(ii) There exist compact Fréchet-Urysohn α_4-spaces X and Y such that $X \times Y$ is neither Fréchet-Urysohn nor α_4.

Theorem (Arangel'skii [1971]): If X is a Fréchet-Urysohn α_3-space and Y is a (countably) compact Fréchet-Urysohn space, then $X \times Y$ is Fréchet-Urysohn.

Theorem (Costantini, Simon [1999]): There exist two countable Fréchet-Urysohn α_4-spaces X and Y such that $X \times Y$ is α_4 but fails to be Fréchet-Urysohn.

Theorem (Simon [1999]): Under CH, there exist two countable Fréchet-Urysohn α_4-spaces X and Y such that $X \times Y$ is Fréchet-Urysohn but is not α_4.

Question: Is there such an example in ZFC?

PRODUCTS OF TOPOLOGICAL GROUPS

Theorem (Todorčević [1993]): There exist two (compactly generated) Fréchet-Urysohn groups G and H such that $t(G \times H) > \omega$ (in particular, $G \times H$ is not Fréchet-Urysohn). Moreover, every countable subset of G and H is metrizable, and so both G and H are α_1.

Theorem (Malyhin, Shakhmatov [1992]):

Add a single Cohen real to a model of $MA + \neg CH$. Then, in the generic extension,
the exists a (hereditarily separable) Fréchet-Urysohn topological group G such that $t(G \times G) > \omega$ (in particular, $G \times G$ is not Fréchet-Urysohn). Moreover, G is an α_1-space.

Theorem (Shibakov [1999]): Under CH, there exists a *countable* Fréchet-Urysohn topological group G such that $G \times G$ is not Fréchet-Urysohn.

Question: Is there such an example in ZFC only?

Question: In ZFC only, does there exist two *countable* Fréchet-Urysohn topological groups G and H such that $G \times H$ is not Fréchet-Urysohn?

Question: In ZFC only, is there a Fréchet-Urysohn topological group G such that G is α_1 but $G \times G$ is not Fréchet-Urysohn?

PRODUCTS OF $C_p(X)$

Theorem (Tkáčuk [1984]): If $C_p(X)$ is Fréchet-Urysohn, then even its countable power $C_p(X)^\omega$ is Fréchet-Urysohn.

Theorem (Todorcević [1993]): There exist two spaces X and Y such that both $C_p(X)$ and $C_p(Y)$ are Fréchet-Urysohn but

$$t(C_p(X) \times C_p(Y)) > \omega$$

(in particular, $C_p(X) \times C_p(Y)$ is not Fréchet-Urysohn). Moreover, every countable subset of $C_p(X)$ and $C_p(Y)$ is metrizable, and so both $C_p(X)$ and $C_p(Y)$ are α_1.