0000000000
1189 0 2001 0 122-133 122

On some classes of operators by Fujii and Nakamoto

[N

related to p-hyponormal and paranormal operators

RREBR 2 A% (Masatoshi Ito)
(Faculty of Science, Science University of Tokyo)

This report is based on the following paper:

M.Ito, On some classes of operators by Fujii and Nakamoto related to p-hypon.ormal and
paranormal operators, Scientiae Mathematicae, 3 (2000), 319-334.

Abstract

Recently, we introduced class A as a new class of operators in [18]. Class A is
defined by an operator inequality, and also the definition of class A is similar to
that of paranormality defined by a norm inequality. We showed that every log-
hyponormal operator belongs to class A and every class A operator is paranormal
in [18]. As generalizations of class A and paranormality, class A(p,r) was intro-
duced in [11] and absolute-(p, r)-paranormality was introduced in [30]. Moreover,
Fujii-Nakamoto [12] introduced class F(p,r,q) and (p,r,q)-paranormality which
are further generalizations of these classes.

In this report, we shall show some inclusion relations among the families of
class F(p,r,q) and (p,r, g)-paranormality, and we shall show the result on powers
of class F(p,r, q) operators.

1 Introduction

In this report, a capital letter means a bounded linear operator on a complex Hilbert
space H. An operator T is said to be positive (denoted by T' > 0) if (T'z,z) > 0 for all
x € H, and also an operator T is said to be strictly positive (denoted by T > 0) if T is
positive and invertible.

As extensions of hyponormal operators, i.e., T*T > TT*, p-hyponormal operators for
p > 0 defined by (T*T)? > (T'T*)? and log-hyponormal operators defined by log T*T >
logTT* for an invertible operator T are well known. And also an operator T is p-
quasihyponormal for p > 0 if T is p-hyponormal on —(JT) It is easily obtained that
every p-hyponormal operator is g-hyponormal for p > ¢ > 0 by Lowner-Heinz theorem
“A> B > 0 ensures A* > B* for any a € [0,1],” and every invertible p-hyponormal
operator for p > 0 is log-hyponormal since logt is an operator monotone function. We
remark that log-hyponormality is sometimes regarded as 0-hyponormality since % —
log X as p — +0 for X > 0.
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An operator T is paranormal if HT%H > HTm“Z for every unit vector x € H. It
has been studied by many authors, so there are too many to cite their references, for
instance, [3][13][17] and [21]. Ando [3] showed that every p-hyponormal operator for
p > 0 and log-hyponormal operator is paranormal.

1

Recently, in [18], we introduced class A defined by |T?| > |T|* where |T| = (T*T)z,
and we showed that every log-hyponormal operator belongs to class A and every class A
operator is paranormal. It turns out that these results contain another proof of Ando’s
result stated above. We remark that class A is defined by an operator inequality and
paranormality is defined by a norm inequality, and their definitions appear to be similar
forms.

And also we introduced two families of classes of operators based on class A and
paranormality in [18] as follows: An operator T belongs to class A(k) for k > 0 if
(T*|T|*T)#1 > |TJ?, and also an operator 7T is absolute-k-paranormal for & > 0 if
H|T|’“Tx|| > ”T:chJr1 for every unit vector x € H. Particularly an operator T is a
class A (resp. paranormal) operator if and only if T is a class A(1) (resp. absolute-1-
paranormal) operator. It was shown in [18] that the classes of invertible class A(k) oper-
ators and absolute-k-paranormal operators constitute parallel and increasing lines, that
is, invertible class A(k) C invertible class A(l) and absolute-k-paranormal C absolute-I-
paranormal for 0 < k£ < [.

On the other hand, Fujii-Izumino-Nakamoto [7] introduced p-paranormality for p > 0
defined by H]T|”U|T|pm[| > |“T|T’x||2 for every unit vector x € H, where T = U|T| is
the polar decomposition of 7. We remark that 1-paranormality equals paranormality.
As generalizations of class A(k), absolute-k-paranormality and p-paranormality, Fujii-
Jung-S.H.Lee-M.Y.Lee-Nakamoto [11] introduced class A(p,r) and Yamazaki-Yanagida
[30] introduced absolute-(p, 7)-paranormality as follows:

Definition.
(1) For each p> 0 and r > 0, an operator T' belongs to class A(p,r) if

T

(T pPriT)es > 1T,

and let class Al(p,r) be the class of all invertible class A(p,r) operators.
(2) For each p >0 and r > 0, an operator T is absolute-(p, T)-paranormal if
wr T ®|T +r
NPT || > ([T || (1.1)

for every unit vector x € H.

It was pointed out that class A(k, 1) equals class A(k) in [28]. And also, in [30], it was

shown that absolute-(k, 1)-paranormality equals absolute-k-paranormality and absolute-

(p, p)-paranormality equals p-paranormality. Moreover class AI(%, %) equals the class
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of invertible and w-hyponormal operators (|T| > |T| > |(T)*| where T' = U|T| is the
polar decomposition of T and T = |T|2U|T|z) introduced by Aluthge-Wang [2]. We
should remark that the families of class AI(p,r) determined by operator inequalities and
absolute-(p, r)-paranormality determined by norm inequalities constitute two increasing
lines on p > 0 and r > 0 whose origin is log-hyponormality (see section 2).

Moreover, as a continuation of the discussion in [11], Fujii-Nakamoto [12] introduced
the following classes of operators.

Definition.

(1) For each p> 0, r >0 and g > 1, an operator T belongs to class F(p,r,q) if

(T FITPITr)s > e (1.2)
(2) For each p >0, r >0 and ¢ > 0, an operator T is (p,r, q)-paranormal if
1 —+7
IITPUIT =] > |||T)" =] (1.3)

for every unit vector x € H, where T = U|T)| is the polar decomposition of T.

We remark that class F(p,r, 2*) equals class A(p,r), and we obtain that (p,r, B
paranormality equals absolute-(p, r)-paranormality in the next section. Thus many re-
seachers have been discussed parallel families of classes of operators which are general-
izations of class A and paranormality.

In this report, firstly, we obtain more precise inclusion relations among the fami-
lies of class F(p,,q) and (p,r, ¢)-paranormality from the view of monotonicity of class
A(p,r) and absolute-(p, r)-paranormality. Secondly, we give a characterization of log-
hyponormal operators via class F(p,r,q) and (p,r, q)-paranormality. Lastly, we obtain
the result on powers of class F(p, r, q) operators.

2 Background and preliminaries

Firstly, we obtain another expression of (p, r, ¢)-paranormality without using U which
appears in the polar decomposition of T', and it causes that (p,r, ’—ﬁi)-paranormality
equals absolute-(p, r)-paranormality.

Proposition 1. For eachp >0, 7 > 0 and g > 1, an operator T is (p,r, q)-paranormal
if and only if
* |7 : x| BET
TP |7 > |||T*|" =] (2.1)

for every unit vector z € H.
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Corollary 2. For eachp > 0 andr > 0, (p,r, ﬂj—r—)—pamnormality equals absolute-(p,r)-
paranormality.

Next, to explain the background of the classes of operators discussed in this paper,
we have to state the following celebrated order preserving operator inequality.

Theorem F (Furuta inequality [14]).

P (I+r)jg=p+r

If A> B >0, then for each v > 0,
()  (B3A’Bi)1 > (BiBPBi)s

and

()  (ATAPAZ)s > (A3BPA3)s w0

(07 _7‘)

) FIGURE 1
hold for p > 0 and ¢ > 1 with (1 +r)g > p+r.

We remark that Theorem F yields Léwner-Heinz theorem when we put » = 0 in (i)
or (ii) stated above. Alternative proofs of Theorem F were given in [5] and [24] and also
an elementary one page proof in [15]. It was shown in [25] that the domain drawn for
p,q and r in the Figure 1 is the best possible one for Theorem F.

Fujii-Nakamoto [12] observed that class F(p, r, ¢) derives from Theorem F and (p, r, q)-

paranormality corresponds to class F(p, 7, ¢), and also they showed the following Theorem
Al

Theorem A.1 ([12]).

(i) For a fited k > 0, T is k-hyponormal if and only if T belongs to class F(2kp, 2kr, q)
forallp > 0,7 >0 and ¢ > 1 with (1 +2r)qg > 2(p+71), i.e., T belongs to class
F(p,r,q) for allp >0, r >0 and ¢ > 1 with (k+71)g > p+r.

(i) If T belongs to class F(py, 7o, q0) for pg > 0, 1o > 0 and gy > 1, then T belongs to
class F(po,r,qo) for any v > r.

(ili) If T belongs to class F(pg, 7o, qo) for pg > 0, 7¢ > 0 and qo > 1, then T belongs to
class F(po,r0,q) for any q¢ > qo.

(iv) If T belongs to class F(p,r.q) forp > 0, r > 0 and q > 1, then T is (p,7,q)-
paranormal.

(v) If T is (po, 7o, o) -paranormal for py > 0, ro > 0 and qo > 0, then T is (po,To,q)-
paranormal for any q > qq.
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(vi) If T is (po, 7o, 1)-paranormal for py > 0 and ro > 0, then T is (py,r, 1)-paranaormal
for any r > 1.

(vil) If T is (p,r,1)-paranormal for p > 0 and r > 0, then T is max{p,r}-paranormal.
On the other hand, chaotic order is defined by log A > log B for positive and invertible
operators A and B. Chaotic order is weaker than usual order A > B since logt is

an operator monotone function. As a characterization of chaotic order, the following
Theorem B.1 was obtained by using Theorem F.

Theorem B.1 ([6][8][16][26]). Let A and B be positive invertible operators. Then the
following properties are mutually equivalent:

(i) log A > log B.
(ii) (B2APB%)z > BP for all p > 0.
(iii) (B3APB3)7% > B' for allp >0 and r > 0.

We remark that the equivalence between (i) and (ii) was shown in [4].

Noting that class F(p,r, ’%) equals class A(p, ), we can verify that class A(p,r) de-
rives from Theorem B.1. On class A(p, r) and absolute-(p, 7)-paranormality, the following
Theorem A.2 and Theorem A.3 were shown in [11] and [30], respectively. We remark
that Figure 2 expresses the inclusion relations shown in Theorem A.2 and Theorem A.3.

Theorem A.2 ([11]).

(i) T is log-hyponormal if and only if T belongs to class AI(p,r) for all p > 0 and
r>0.

(ii) If T belongs to class AI(py,ro) for po > 0 and ro > 0, then T belongs to class
Al(p,r) for any p > py and r > ry.

(iii) If T belongs to class A(po,To) for pp > 0 and ry > 0, then T belongs to class
A(po, 1) for any r > ry.

Theorem A.3 ([30]).

(i) T is log-hyponormal if and only if T is invertible and absolute-(p, r)—pamnormal
for allp >0 and r > 0.
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(ii) If T is absolute-(pg, To)-paranormal for py > 0 and ro > 0, then T is absolute-(p,r)-
paranormal for any p > py and r > 1y.

(iii) If T belongs to class A(p,r) for p > 0 and r > 0, then T is absolute-(p,r)-
paranormal.

(iv) If T is absolute-(p,r)-paranormal for p > 0 and r > 0, then T is normaloid, i.e.,
IT|| = r(T) where r(T) is the spectral radius of T

normaloid

(p,7)

absolute-(p, r)-paranormal

(p,7)

paranormal | class A(p,r)

{ class A

(0,0)
log-hyponormal

e quasihyponormal

p-quasihyponormal

p-hyponormal

FIGURE 2

Theorem A.2 and Theorem A.3 state that the families of class Al(p,r) determined by
operator inequalities and absolute-(p, 7)-paranormality determined by norm inéqualities
have monotonicity on p > 0 and r > 0, and log-hyponormality regarded as class AI(0, 0)
or absolute-(0, 0)-paranormality, namely they constitute two increasing lines whose origin
is log-hyponormality.

3 Inclusion relations

In this section, we discuss monotonicity of class F(p,r,q) and (p, r, ¢)-paranormality.
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In section 2, we verified that class A(p,r) derives from Theorem B.1, and also we
explained that Theorem A.2 and Theorem A.3 state that the families of class Al(p,r)
and absolute-(p, r)-paranormality constitute two increasing lines on p > 0 and 7 > 0
whose origin is log-hyponormality.

On the other hand, as a parallel result to Theorem B.1, Theorem F also leads to the
following Theorem B.2.

Theorem B.2 ([9][10]). For positive operators A and B, A’ > B for a fited § > 0 if
and only if

(BEAPB3)sr > Botr
holds for all p > 6 and r > 0.

Considering these matters, it seems natural that we rewrite class F(p,r,¢q) and

(p, 7, q)-paranormality by class F(p, ,fs’i:) and (p,r, & 2+ _paranormality when we discuss

monotonicity of class F(p,r, q) and (p, r, ¢)-paranormality on p and r. In fact, we obtain

the following results on monotonicity of class F(p,r, 51%) and (p,r, &5 )-paranormality.

And also the following Figure 3 represents the inclusion relations shown in this section.

Proposition 3. The following assertions hold for each p > 0 and r > 0:

(i) T is p-quasihyponormal if and only if T belongs to class F(p,r,1) if and only if T
is (p,r, 1)-paranormal.

(ii) T is p-quasihyponormal if and only if T is (p, 0, 1)-paranormal.

Theorem 4. Let T be a class F(py, ro, ‘:H—T”’) operator for pg > 0, rg > 0 and —rg < 6 <

po- Then the following assertions hold:
(i) T belongs to class F(po,r, ") for any r > 7.

(ii) If T is invertible and 0 < 6 < py, then T belongs to class F(p,, f;ir) for any p > pg

and r > T1g.

Theorem 5. Let T be a (pg,ro,%)—pamnormal operator for pg > 0, 7¢ > 0 and
0 > —rg. Then the following assertions hold:

(i) If —=ro < 6 < po, then T is (po, T, ’;"jr )-paranormal for any r > rq.

(i) If 0 <6, then T is (p, 7o, § pr 2 )-paranormal for any p > po.

(iii) If0 <6 < po, then T is (p, 1, 55 21 _paranormal for any p > po and T > 1.
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(p,7)

¥ paranormal

(p,7)

paranormal (p,7)

log- (0,0) : (p, , B4L)-paranormal
(p,7)

ess F(p, 7, B25)

§-hyponormal

FIGURE 3

Proposition 3, Theorem 4 and Theorem 5 assert that invertible class F(p, r, %) and

(p,, fslj:—:)-paranormality for 6 > 0 constitute two increasing lines for p > § > 0 and
r > 19 > 0 which have §-quasihyponormality as the origin since §-quasihyponormality
equals class F(8,79,1) or (4,7, 1)-paranormality. And also, in case § = 0, (i) and (ii) of
Theorem 4 means (iii) and (ii) of Theorem A.2, respectively, and Theorem 5 means (ii)
of Theorem A.3. Therefore monotonicity of invertible class F(p,r, %) and (p,r, %’—j—t—:)-
paranormality for § > 0 is parallel to monotonicity of class Al(p,r) and absolute-(p, )-
paranormality since invertible -quasihyponormality (i.e., -hyponormality) approaches

log-hyponormality as § — +0.

Remark. We remark that Proposition 1 does not hold for 7 = 0 and ¢ = 1 since (2.1)
holds for p > 0, r =0 and ¢ = 1, i.e., H\T\pxl‘ > H|T* Ipx” for every unit vector z € H if
and only if T is p-hyponormal, but T is (p, 0, 1)-paranormal for p > 0 if and only if T is
p-quasihyponormal by (ii) of Proposition 3.
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4 Log-hyponormality

As a characterization of log-hyponormal operators, the following Theorem D.1 was
obtained.

Theorem D.1 ([11][29][30]). Let T be an invertible operator. Then the following as-
sertions are mutually equivalent:

(i) T is log-hyponormal.
(ii) T belongs to class A(p,p), i.e., class Al(p,p) fof all p> 0.
(iii) T belongs to class A(p,r), i.e., class AI(p,r) for all p > 0 and r > 0.
(iv) T is p-paranormal for all p > 0.
(v) T s absolute-(p,r)-paranormal for all p > 0 and r > 0.
(i)¢>(il) < (iii) was obtained in [11], and élso (i) (iv) and (i)<(iv)e(v) were ob-
tained in [29] and [30], respectively.

As an extension of Theorem D.1 via class F(p,r,q) and (p,r, ¢)-paranormality, we
have the following Theorem 6.

Theorem 6. Let T be an invertible operator. Then the following assertions are mutually
equivalent for any fized a € (0,1]:

(1) T is log-hyponormal.

(ii) T belongs to class F(p,p, %) for all p > 0.

)
)
'(iii) T belongs to class F(p,r, %) for allp >0 and r > 0.
(iv) T is (p,p, 2)-paranormal for all p > 0.

)

(v) T is (p,, z%)—pamnormal forallp >0 and r > 0.

We remark that Theorem 6 ensures Theorem D.1 by putting oo = 1.
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5 Powers of class F(p,r, q) operators

On powers of p-hyponormal and log-hyponormal operators, Aluthge-Wang [1] and
Yamazaki [27] showed the following results (see also [19][20][23]). '

Theorem E.1 ([1]). Let T be a p-hyponormal operator for 0 < p < 1. Then T" is
B_hyponormal for all positive integer n.

Theorem E.2 ([27]). Let T be a log-hyponormal operator. Then T" is also log-
hyponormal for all positive integer n.

On the other hand, on powers of class A(p,r) operators, Yamazaki [28] showed the
following Theorem E.3 (see also [22]).

Theorem E.3 ([28]). Let T be a class AI(p,r) operator for 0 <p<1land0<r <1.
Then T™ belongs to class AI(E, L) for all positive integer n.

T
n
In this section, we obtain the following result on powers of class F(p,r, q) operators.

Theorem 7. Let T be an invertible class F(p,r,q) operator for 0 <p<1,0<7r <1
and ¢ > 1 with rq < p+r. Then T™ belongs to class F(2, L, q) for all positive integer n.

Theorem 7 interpolates Theorem E.1 and Theorem E.3 in case T is invertible. In
fact, Theorem 7 yields Theorem E.1 by putting ¢ = 1 and r = 0, and also Theorem 7
yields Theorem E.3 by putting ¢ = ’%T—.
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