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INEQUALITIES FOR SEMIBOUNDED OPERATORS
AND LOG-HYPONORMAL OPERATORS
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1. INTRODUCTION

Let X be a linear operator on a Hilbert space . Then R(X) and N(X)
stand respectively for the range and the null space of X. Throughout this
paper, both A and B represent bounded selfadjoint operators and also H and
K do semi-bounded selfadjoint operators.

A > B means (Az,z) > (Bz,z) for every z, by definition. It is well-known
that A > B > 0 implies

A*>B* (0<a<l1), log(A+p)>log(B+p8) (0<p);

the first inequality is called Léwner-Heinz inequality.
The following inequality was found by Hansen [8]:
if P is a projection, and if A > 0, then

(PAP)* > PA*P (0<a<l). (1)

Let H and K be both bounded below with spectral families {A;} and {I';}
respectively. Then we write H > K if

/ td(Az, z) > / td(I'iz,z) for everyz € 9.
It is known that for any real number A\, H + A > K + A follows from H > K
and that if H > K > 0 and if N(K) = {0} then K~! > H™! > 0. If H and
K are both bounded above, we denote H > K if —K > —H.

Let A be a bounded self-adjoint operator with the spectral family {F:}.
If A >0 and if N(A) = {0}, then {0} is a null set with respect to d(E;z, )
for every x # 0. Hence log A is well-defined by the functional calculus and
bounded above. The following fact is obvious but important in this paper, so
we give a proof for the completeness:

A>B>0, N(B)={0}=logA>logB. 2)

To see this, by multiplying both A and B by a constant, we may assume that
1/2>A>B>0. Hence we have 1 > A+ e¢> B+e>efor1/2 > ¢ > 0.



Let {E;} and {F;} be the spectral families of A and B respectively. Since
log(A + €) > log(B + ¢€), — log(B + €) > —log(A + ¢€). This implies

1/2 1/2
/ log(t + ) d(F, ) > / —log(t + € d(Biz,7) (v € $).
0 0 ' :
€ tending to 0, by Lebesgue’s theorem, we get
1/2 1/2
/ —logtd(Fz,z) > / —logtd(Fz,z) (z € 9).
0 0

This implies — log B > —log A, and hence log A > log B.
Furuta ([5] and [6]) proved that if A> B >0, then for 0 <r,1 <t

(BEA'BS)HF > BI*r,  AM" > (AEB'AR)HT

and moreover, for 0 <r,0<s<1t

atr

(BEIA'BY)#+ > BYA°B?, ATB°A? > (ATB'A%)H, (3)

As inequalities related to these inequalities the following were shown (see [3] 4]
and [12]) :

if A> B, then forr,t >0 ,
(erB/ZetAerB/2)r/(t+r) > erB, erA > (erA/ZetBerA/Z)r/(t+r). (4)
We will establish these inequalities for semibounded operators H and K in

Section 2. In Section 3, we will modify the definition of log—hyponormahty
and show that if T" is log-hyponormal then

(T*eTm)Yn < (TR EHD) - (p = 1,2, 0.

In Section 4, we will prove that if T' is log-hyponormal and if |T'|* = |T™| for
some n > 3, then the polar decomposition of T is commutative, that is, T" is a
quasi-normal operator. :

2. SEMI-BOUNDED OPERATOR INEQUALITY

In this section we establish exponential inequalities for semi-bounded op-
erators in the same way that we have shown (4) in [12]. For convenience, we
first consider selfadjoint operators bounded below.

THEOREM 2.1. Let H and K be bounded below and suppose H > K.
Then forO<r, 0<s <t

(e 5He gH);i: > e~ tHe—sKe—5H
e 5KemHo=5K > (o~ 3Kg—tH ~5K)HT (5)
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Proof. 1t is clear that (1 + K/n)~! and (1 + H/n)™! are both bounded for
sufficiently large n and that (1+ K/n)~! > (14 H/n)™! > 0. Therefore, from
(3) it follows that

H
n

K )="t(1 + %)-%r}::iﬁl

H, _a» K H, _x
1 N5 > \—ns 7,
(14— F L+ )1+ )8

{0+=)"F1+

n

v

Since the sequence of functions (1 + A/n)™" of A converges uniformly to e~
on v < A < 00 as n — 0o, where ~ is a lower bound of K, (1 + H/n)~""/2 and
(14 K/n)~™ converges to e~ "#/2 and e~"¥ in the norm sense, respectively.
Thus the above inequality yields

(e—gﬂe-me—gﬂ)%{-} > e FHesK—5H
One can see the second inequality of the theorem as well. [

THEOREM 2.2. Let H and K be bounded above and suppose H > K.
Then for0<r, 0<s<t

T r s+r T T r r T r s+7
In particular,
r r -t z r P
(eiKetHe'z'K)Hr > erK, e™d > (ezHetKezH)tw, (7)

Proof. Since both —H and —K are bounded below, and since —K > —H, (5)
yields (6). Put s =0 in (6) to get (7). O

THEOREM 2.3. Let A and B be bounded non-negative operators such
that N'(A) = N(B) = {0}, and suppose log A > log B. Then for 0 < r, 0 <
s<t

(BEA'B%)#r > BEA*BY, ATB°AT > (ATBIAR)HE.  (8)
In particular,
(B3 A'B%)¥F > B, A" > (AZBIAR)F.  (9)

Proof. log A is a selfadjoint operator bounded above, and

et logA _ At

(see Section 128 of [9]). Thus (8) follows clearly from (6), and (9) is obvious.
0O

3. LOG-HYPONORMAL OPERATOR
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From now on, T represents a bounded operator. T is said to be subnormal
if T has a normal extension, quasi-normal if T(T*T) = (T*T)T, hyponormal if
T*T > TT* and paranormal if |T2z|| ||z]| > |Tz||? (z € ) (see [7],]2]). The
relations among these classes of operators are follows:
normal = quasi-normal = subnormal = hyponormal = paranormal.

For a subspace £ C §) and the projection P onto £, we call PT|,3 the
compression of T to £. Ando [3] showed that if

N( ) CN(T*) and logA> 1ogB (10)

where A and B are compressions of T*T and TT™* to W, then T is a para-
normal. ‘ ‘ v

Recently in many papers ([1],[4], [10] and so on) T is called a log-hyponormal
if T is invertible and logT*T > logT'T*; the invertibility of T' is necessary
for logT*T to be bounded. According to this definition, the class of log-
hyponormal operators does not contain all hyponormal operators; in fact, there
are many hyponormal operators which are not invertible. Therefore, we remove
the condition of the invertibility from the definition of the log-hyponormality.

DEFINITION. T is said to be log-hyponormal if it satisfies (10).

According to this definition, we have the following relation:
hyponormal = log-hyponormal = paranormal.
In[11] it was shown that a subnormal operator T satisfies

|T| S |T2|1/2 S e S ITnll/n S

Yamazaki [13] showed that if (T*T")* > (T'T*)* for some s > 0 or if T is an
invertible log-hyponormal operator, then :

T*nm S (T*n+1Tn+1)"L+1 TT*n > (Tn+1T*ﬂ+1),,—'.:.T (n — 1, 2, . )’
T*T < (T*2T2)1/2 <...< (T*nTn)l/n
TT* > > (T2T*2)1/ 2 Z

(TnT*n)l/ > .
An operator T satisfying T*T' < (T*2T?)'/? is paranormal: indeed, in this
case, by Jensen’s inequality, for = # 0

|T2|* = (T*Tz,3) < (TT*)"*2,2) < (T*T*2,2)"*|o] = |T*z]]<].

This says that the result of Yamazaki is a partial extension of that of Ando.
We will show the inequalities of Yamazaki without assuming the invertibility
of T, which induce a complete extension of the result of Ando. We first state
a simple lemma needed later.
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LEMMA. Let T = U|T| be the polar decomposition of a bounded operator
T and f(t) a continuous function on [0, 00) with f(0) = 0. Then for any A > 0

F(UIT|AIT|U®) = f(TAT") = Uf(IT|AIT)HU",
FUT*|AIT*|U) = f(T"AT) = U f(IT"|A|T*|)U.

Proof. Since T' = U|T| = |T*|U and T* = |T|U* = U*|T*|, calculation
shows that the equalities hold in case f is a polynomial which vanishes at ¢ = 0.
Then for general f, we need only to take a sequence {p,} of polynomials with
pn(0) = 0 which converges uniformly to f on [0, || T]|?| 4] ]. O

THEORM 3.1. If T is log—hyponormal, then
T*nT'n < (T*n+1T'n+l)ﬁl- (11)

Proof. Let T = U|T| be the polar decomposition of T" and P the orthogonal
projection onto R(T). We denote the compression of an operator X to R(T)
by [X]. Then the log-hyponormality of T means log[T*T] > log[T'T*]. Thus,
by the first inequality of (9) we get

([T V2T T[T ) > [T,
which is equivalent to |
{(PTT*P)V3(PT*TP)(PTT*P)"/*}"/? > PTT*P.
Since fT*(l — P) =0, this gives
'{(TT*)1/2PT*TP‘(TT*)1/2}1/2 > TT*,

and hence , .
U*(|IT*|PT*TP|T*|)"/*U > U*TT*U.

In view of the lemma, the left hand side equals (T* PT*TPT)Y/2. Since PT = T
and U*TT*U = T*T, from the above inequality we get

(T*2T2)l/2 2 T*T.

This means (11) holds for n = 1. _
Assume that (11) holds for n < m — 1. Therefore,

Tl < (YR (12)
T*T < (T*™T™)

3=
—

—

W
~

(13) implies
PT*TP < P(T*™T™)= P < (PT*™T™P)~,
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here the last inequality is due to (1). Thus [T*T] < [T*™T mm. Since
N(T*T]) = 0 because R(T) is orthogonal to N(T') by definition of log-
hyponormality of T', by (2) we have

log[T*T] < log[T*™T™|.

Since T' is log-hyponormal, this gives

3=

log[TT*] < log[T*™T™|=.
By the first inequality of (8), we obtain
[TT T 5 TT 2 < (TT AT R [T
which is equivalent to

(PTT*P)Y*(PT*™T™P)" (PTT*P)"/?
< {(PTT*P)V*(PT*™T™P)(PTT*P)Y/?*}=+.

Since PT =T and T*P = T*, this gives
(| (P77 P) ST < (T |(PTTP)|T* ). (14)
From (12) it follows that

"™ = TN < T T™) % T

U*|T*| P(T*™T™) " P|T*|U
U*|T*|(PT*™T™P) 5= |T*|U  (by (1))
U{|T*|(PT*"T™P)|T*|}=+1U  (by (14))
(U*|T*|PT*™T™P|T*|U)=+  (by Lemma3.1)
(T*m+1 Tm+1 ) Py ) )

VANVAN

I

This completes the proof. [
Note that (11) implies that N(T) = N(T?) =--- = N(T") =---.
THEOREM 3.2. If for a natural number m

N(T)CN(T*) and log[T"T], 2 log[TT"], (1 <n<m), (15)

where [X], means the compression of X to R(T™), then

n

" > (TP (n=1,2,...,m). (16)
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Proof. We prove this by the mathematical induction of m. Suppose (15)
hold for m = 1. Since then T is log-hyponormal, from the second inequality
of (9) it follows that

[Ty > {[T* T[T [T T2,
Denoting the projection to _(7"7 by P, the above shows
PT*TP > {(PT*TP)Y*(PTT*P)(PT*TP)"/?*}'/2,
Let TP = U|TP| be the polar decomposition of T'P. Then the above leads to
TP[? > {|TP|(PTT" P)|TP[},

and hence

U|TP|*U* > U{|TP|(PTT*P)|TP|}/?U".

By the lemma, we obtain
|PT** > {TP(PTT*P)(TP)*}"
Since PT = T, the righthand side equals (T27*2)'/2, Thus we get
TT* > TPT* > (T*T*)'2.

Consequently (16) holds for m = 1.

Assume that the theorem is valid for m — 1. To show that it is valid for
m, suppose (15) hold for n = 1,2,--. ,m. From the inductive assumption (16)
holds for n = 1,2,...,m — 1; therefore, we have

Tt > (T™T*™) " and TT* > (T™T*™)Y™, (17)
The second inequality yields
[TT*)m > [T 3™,

and hence:
log[TT™|m > log([T"‘T*"‘]},{m).

Therefore, by (15) with n = m we obtain
log[T*T )y, > log([T™T*™]X™).
Applying this to the second inequality of (8) we get

[T T ™ T T1 > ([ T[T T ) [T T2y et



89

Denote the projection to R(T™) by @, and rewrite the above as

* 1/2 (rpmrpmy =L * 1/2 .*1 1/2 mrpem ' ) 1/27 ZLEL
QU TQA(T™T™) % QT'TQ? > {(QTTQA(T™T™™)(QT*TQ)V2) 54
Now let TQ = V|T'Q| be the polar decomposition of T'Q). Then we have

m—1+1

ITQII™T*™)*= |TQ| > {|TQ|(T™T™)|TQ|} "

Multiplying this inequality by V' and V*, in virtue of the lemma, yields
TQ(T™T*™) ™= QT* > {TQ(T™T*™)QT*} "= .
From this it follows that

m-—1

m 1 2 {T(TmT*m)T*}mm;'Hi — (Tm—}-lT*m-}-l)mL_H

for Q(T™T*™) = T™T*™ = (I™T*™)Q. This in conjunction with the first
inequality of (17) gives

m—1

TmT*m — T(Tm—lT*m—l)T* Z T(TrmT*m) —

T > (Tn+1T*m+l),—n’-"_|-_-i-.
This shows that (16) holds for n = m. Thus, we conclude the proof. O

As mentioned in the proof, (15) with m = 1 is satisfied for a log-hyponormal

operator. Therefore,
T > (TZT*2)%

is valid for a log-hyponormal operator T. The condition (15) is technical.
We do not know if (15) follows from the log-hyponormality of T. However,
one can easily see that (15) holds for every m if T' is hyponormal. Moreover,
N(T*) = N(T*™) for every m if N(T*) = 0 or N(T*) = N(T*?), so that we
get:

COROLLARY 3.3. IfT is a log-hyponormal operator and if N(T*) =0
or N(T*) = N(T*?), then for every n

™" > (7m+lT*n+1)"L+1l

4. NORMALITY

Recall the definition of the quasi-normality of T stated in the previous
section. Then we can see that T is quasi-normal if and only if the polar de-
composition of T" is commutative, so that a quasi-normal operator 7' is normal
it N(T) = N(T™).

In this section, we give a few conditions which guarantee quasi-normality
or normality of a log-hyponormal operator.



THEOREM 4.1. If a log-hyponormal operator T satisfies |T|™ = |T™| for
some n > 3, then T is quasi-normal.
Proof. By Theorem 3.1, we get

T < TP < ST <
Thus the assumption implies that
(T*T)? = T*T* and (T*T)* =T+T°. (18)

From the first equality of (18) it follows that T*(T'T* —T*T)T = 0, and hence,
for the projection P onto R(T')

PT*TP =PTT*P =TT". (19)
By (18) and (19)
| T*(TT*)?T = (T*T)* = TT* = T*(T**TH)T = T*(T*T)*T,
from which it follows that
P(TT*)ZP = P(T*T)*P.
Since the left hand side equals (7'T*)?, this and (19) yield
(PT*TP)? = (TT*)? = P(TT*)*P = P(T*T)*P.

Consequently,

v PT*T(i - P)T*TP =0 and hence T*TP = PT*TP.
From this and (19) we derive

(T*T\T = (I*TP)T = (PT*TP)T = (TT*)T = T(T"T).

This means T is quasi-normal. U

The above theorem does not hold for the condition n = 2: see for a counter
example p.199 of [11].

THEOREM 4.2. If a log-hyponormal operator T satisfies
|T*|" = |T""| for some n > 2,

then T is normal.
Proof. The assumption implies T"T™" = (T'T*)" and hence

N(T™™) = N(T"T*") = N((TT™)") = N(TT*) = N(T7),
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from which N(T%*2) = N(T*) follows. By Corollary 3.3
(TmT*m)l/m > (Tm+1T*(m+1))1/(m+l) for every m.
Therefore, by assumption, we have

TT* = (TZT*Z)I/Z — . — (TnT*n)l/n,

which implies 72T*? = (T'T*)?. Denoting the projection onto R(1*) by Q, this
implies that
QTT*Q = QT*TQ = T*T.

On the other hand, since N'(T') C N(T*) by assumption and since 1 — @ is the
projection to N(T), we have T*(1 — Q) = 0, which implies TT* = QTT"Q.
Consequently, we obtain TT* = QTT*Q =T*T. O

THEOREM 4.3. A log-hyponormal operator T is normal if T*" is log-
hyponormal for some natural number n.
Proof. As we mentioned after the proof of Theorem 3.1,

N(T*) D N(T) =N(T™) for everym.
On the other hand,
N(T*) CN(T™) C .. CN(T*™) S N(T™)

since T*" is log-hyponormal. Thus we have N'(T') = N(T*™) form = 1,2,... ,n.
Denote the compression of X to R(T") by [X]. By Theorems 3.1 and 3.2 we
get

[T*T] < [T*nTn]l/n’ [TnT*n]I/n < [TT*]

Since log(AY") = Llog A for A > 0 with N'(A) = 0, and since ™" is log-
hyponormal,

log[T*T] < %log[T*"T"] < %log[T”T*”] < log[TT"].

Therefore the log-hyponormality of T yields log[T*T’] = log[T'T*]. This implies
™Tr=TT* 0

References

[1] A. Aluthge, D. Wang, An operator inequalty which implies paranormality,
Math. Inequal. Appl., 2 (1999), 113-119.

[2] T. Ando, Opertors with a norm condition, Acta Sci. Math.,33(1972), 169-
178.



92

[3] T. Ando, On some operator inequalities, Math. Ann., 279(1987), 157-159.

[4] M. Fujii, T. Furuta, E. Kamei, Furuta’s inequality and its application to
Ando’s theorem, Linear Alg. Appl 179(1883), 161-169.

[5] T. Furuta, A > B > 0 assures (B"A?B")Y4 for r > 0,p > 0,q > 1 with
(1+2r)q >p+27" Proc. Amer. Math. Soc., 101(1987) 85-88.

[6] T. Furuta, Two operator functions with monotone property, Proc. Amer.
‘Math. Soc , 111(1991), 511-516.

[7] P.R. Halmos, Hilbert space problem book, Springer verlag, New york, 1982.
[8] F. Hansen, An operator inequality, Math. Ann., 246(1980), 249-250.
[9] F. Riesz, B. Sz.,-Nagy, functional analysis, New York 1955.

[10] K. Tanahashi, On log-hyponormal operators, Integral Equation Operator
Theory, 34(1999), 364-372.

[11] M. Uchiyama, Operators which have commutative polar decompositions,
Operator Theory: Advances and Appl. 62(1993), 197-208.

[12] M. Uchiyama, Some exponential operator inequalities, Math. Inequal.
Appl., 2(1999), 469-471.

[13] T. Yamazaki, Extension of the results on p- hyponormal and log-
hyponormal operators by Althuge and Wang, SUT jour. Math. 35(1999),
139-148.



