INEQUALITIES FOR SEMIBOUNDED OPERATORS AND LOG-HYPONORMAL OPERATORS

福岡教育大学 内山 充 (Mitsuru Uchiyama)
Department of Mathematics, Fukuoka University of Education
Munakata, Fukuoka, 811-4192

1. INTRODUCTION

Let X be a linear operator on a Hilbert space \mathfrak{H} . Then $\mathcal{R}(X)$ and $\mathcal{N}(X)$ stand respectively for the range and the null space of X. Throughout this paper, both A and B represent bounded selfadjoint operators and also H and K do semi-bounded selfadjoint operators.

 $A \ge B$ means $(Ax, x) \ge (Bx, x)$ for every x, by definition. It is well-known that $A \ge B \ge 0$ implies

$$A^{\alpha} \ge B^{\alpha} \quad (0 < \alpha < 1), \quad \log(A + \beta) \ge \log(B + \beta) \quad (0 < \beta);$$

the first inequality is called Löwner-Heinz inequality.

The following inequality was found by Hansen [8]: if P is a projection, and if $A \geq 0$, then

$$(PAP)^{\alpha} \ge PA^{\alpha}P \quad (0 < \alpha < 1). \tag{1}$$

Let H and K be both bounded below with spectral families $\{\Lambda_t\}$ and $\{\Gamma_t\}$ respectively. Then we write $H \geq K$ if

$$\int_{-\infty}^{\infty} t \, d(\Lambda_t x, x) \ge \int_{-\infty}^{\infty} t \, d(\Gamma_t x, x) \quad \text{for every } x \in \mathfrak{H}.$$

It is known that for any real number λ , $H + \lambda \geq K + \lambda$ follows from $H \geq K$ and that if $H \geq K \geq 0$ and if $\mathcal{N}(K) = \{0\}$ then $K^{-1} \geq H^{-1} \geq 0$. If H and K are both bounded above, we denote $H \geq K$ if $-K \geq -H$.

Let A be a bounded self-adjoint operator with the spectral family $\{E_t\}$. If $A \geq 0$ and if $\mathcal{N}(A) = \{0\}$, then $\{0\}$ is a null set with respect to $d(E_t x, x)$ for every $x \neq 0$. Hence $\log A$ is well-defined by the functional calculus and bounded above. The following fact is obvious but important in this paper, so we give a proof for the completeness:

$$A \ge B \ge 0$$
, $\mathcal{N}(B) = \{0\} \Rightarrow \log A \ge \log B$. (2)

To see this, by multiplying both A and B by a constant, we may assume that $1/2 \ge A \ge B \ge 0$. Hence we have $1 \ge A + \epsilon \ge B + \epsilon \ge \epsilon$ for $1/2 \ge \epsilon > 0$.

Let $\{E_t\}$ and $\{F_t\}$ be the spectral families of A and B respectively. Since $\log(A+\epsilon) \ge \log(B+\epsilon)$, $-\log(B+\epsilon) \ge -\log(A+\epsilon)$. This implies

$$\int_0^{1/2} -\log(t+\epsilon)\,d(F_tx,x) \geq \int_0^{1/2} -\log(t+\epsilon)\,d(E_tx,x) \quad (x\in\mathfrak{H}).$$

 ϵ tending to 0, by Lebesgue's theorem, we get

$$\int_0^{1/2} -\log t \, d(F_t x, x) \ge \int_0^{1/2} -\log t \, d(E_t x, x) \quad (x \in \mathfrak{H}).$$

This implies $-\log B \ge -\log A$, and hence $\log A \ge \log B$.

Furuta ([5] and [6]) proved that if $A \ge B \ge 0$, then for $0 < r, 1 \le t$

$$(B^{\frac{r}{2}}A^tB^{\frac{r}{2}})^{\frac{1+r}{t+r}} \ge B^{1+r}, \quad A^{1+r} \ge (A^{\frac{r}{2}}B^tA^{\frac{r}{2}})^{\frac{1+r}{t+r}},$$

and moreover, for $0 < r, 0 \le s \le t$

$$(B^{\frac{r}{2}}A^{t}B^{\frac{r}{2}})^{\frac{s+r}{t+r}} \ge B^{\frac{r}{2}}A^{s}B^{\frac{r}{2}}, \quad A^{\frac{r}{2}}B^{s}A^{\frac{r}{2}} \ge (A^{\frac{r}{2}}B^{t}A^{\frac{r}{2}})^{\frac{s+r}{t+r}}. \tag{3}$$

As inequalities related to these inequalities the following were shown (see [3],[4] and [12]):

if $A \geq B$, then for r, t > 0

$$(e^{rB/2}e^{tA}e^{rB/2})^{r/(t+r)} \ge e^{rB}, \quad e^{rA} \ge (e^{rA/2}e^{tB}e^{rA/2})^{r/(t+r)}.$$
 (4)

We will establish these inequalities for semibounded operators H and K in Section 2. In Section 3, we will modify the definition of log-hyponormality and show that if T is log-hyponormal then

$$(T^{*n}T^n)^{1/n} \le (T^{*n+1}T^{n+1})^{1/(n+1)} \quad (n=1,2,\cdots).$$

In Section 4, we will prove that if T is log-hyponormal and if $|T|^n = |T^n|$ for some $n \geq 3$, then the polar decomposition of T is commutative, that is, T is a quasi-normal operator.

2. SEMI-BOUNDED OPERATOR INEQUALITY

In this section we establish exponential inequalities for semi-bounded operators in the same way that we have shown (4) in [12]. For convenience, we first consider selfadjoint operators bounded below.

THEOREM 2.1. Let H and K be bounded below and suppose $H \ge K$. Then for 0 < r, $0 \le s \le t$

$$(e^{-\frac{r}{2}H}e^{-tK}e^{-\frac{r}{2}H})^{\frac{s+r}{t+r}} \ge e^{-\frac{r}{2}H}e^{-sK}e^{-\frac{r}{2}H},$$

$$e^{-\frac{r}{2}K}e^{-sH}e^{-\frac{r}{2}K} \ge (e^{-\frac{r}{2}K}e^{-tH}e^{-\frac{r}{2}K})^{\frac{s+r}{t+r}}.$$
(5)

Proof. It is clear that $(1 + K/n)^{-1}$ and $(1 + H/n)^{-1}$ are both bounded for sufficiently large n and that $(1 + K/n)^{-1} \ge (1 + H/n)^{-1} \ge 0$. Therefore, from (3) it follows that

$$\begin{aligned} &\{(1+\frac{H}{n})^{-\frac{nr}{2}}(1+\frac{K}{n})^{-nt}(1+\frac{H}{n})^{-\frac{n}{2}r}\}^{\frac{ns+nr}{nt+nr}} \\ &\geq (1+\frac{H}{n})^{-\frac{nr}{2}}(1+\frac{K}{n})^{-ns}(1+\frac{H}{n})^{-\frac{n}{2}r}. \end{aligned}$$

Since the sequence of functions $(1 + \lambda/n)^{-n}$ of λ converges uniformly to $e^{-\lambda}$ on $\gamma \leq \lambda < \infty$ as $n \to \infty$, where γ is a lower bound of K, $(1 + H/n)^{-nr/2}$ and $(1 + K/n)^{-nt}$ converges to $e^{-rH/2}$ and e^{-tK} in the norm sense, respectively. Thus the above inequality yields

$$(e^{-\frac{r}{2}H}e^{-tK}e^{-\frac{r}{2}H})^{\frac{s+r}{t+r}} \ge e^{-\frac{r}{2}H}e^{-sK}e^{-\frac{r}{2}H}.$$

One can see the second inequality of the theorem as well. \Box

THEOREM 2.2. Let H and K be bounded above and suppose $H \ge K$. Then for 0 < r, $0 \le s \le t$

$$(e^{\frac{r}{2}K}e^{tH}e^{\frac{r}{2}K})^{\frac{s+r}{t+r}} \ge e^{\frac{r}{2}K}e^{sH}e^{\frac{r}{2}K}, \quad e^{\frac{r}{2}H}e^{sK}e^{\frac{r}{2}H} \ge (e^{\frac{r}{2}H}e^{tK}e^{\frac{r}{2}H})^{\frac{s+r}{t+r}}. \tag{6}$$

In particular,

$$(e^{\frac{r}{2}K}e^{tH}e^{\frac{r}{2}K})^{\frac{r}{t+r}} \ge e^{rK}, \qquad e^{rH} \ge (e^{\frac{r}{2}H}e^{tK}e^{\frac{r}{2}H})^{\frac{r}{t+r}}.$$
 (7)

Proof. Since both -H and -K are bounded below, and since $-K \ge -H$, (5) yields (6). Put s = 0 in (6) to get (7). \square

THEOREM 2.3. Let A and B be bounded non-negative operators such that $\mathcal{N}(A) = \mathcal{N}(B) = \{0\}$, and suppose $\log A \ge \log B$. Then for 0 < r, $0 \le s \le t$

$$(B^{\frac{r}{2}}A^{t}B^{\frac{r}{2}})^{\frac{s+r}{t+r}} \ge B^{\frac{r}{2}}A^{s}B^{\frac{r}{2}}, \qquad A^{\frac{r}{2}}B^{s}A^{\frac{r}{2}} \ge (A^{\frac{r}{2}}B^{t}A^{\frac{r}{2}})^{\frac{s+r}{t+r}}. \tag{8}$$

In particular,

$$(B^{\frac{r}{2}}A^tB^{\frac{r}{2}})^{\frac{r}{t+r}} \ge B^r,$$
 $A^r \ge (A^{\frac{r}{2}}B^tA^{\frac{r}{2}})^{\frac{r}{t+r}}.$ (9)

Proof. log A is a selfadjoint operator bounded above, and

$$e^{t \log A} = A^t$$

(see Section 128 of [9]). Thus (8) follows clearly from (6), and (9) is obvious. \Box

3. LOG-HYPONORMAL OPERATOR

From now on, T represents a bounded operator. T is said to be *subnormal* if T has a normal extension, *quasi-normal* if $T(T^*T) = (T^*T)T$, *hyponormal* if $T^*T \geq TT^*$ and *paranormal* if $||T^2x|| ||x|| \geq ||Tx||^2$ ($x \in \mathfrak{H}$) (see [7],[2]). The relations among these classes of operators are follows: normal \Rightarrow quasi-normal \Rightarrow subnormal \Rightarrow hyponormal \Rightarrow paranormal.

For a subspace $\mathfrak{L} \subseteq \mathfrak{H}$ and the projection P onto \mathfrak{L} , we call $PT|_{\mathfrak{L}}$ the compression of T to \mathfrak{L} . Ando [3] showed that if

$$\mathcal{N}(T) \subseteq \mathcal{N}(T^*)$$
 and $\log A \ge \log B$, (10)

where A and B are compressions of T^*T and TT^* to $\overline{\mathcal{R}(T)}$, then T is a paranormal.

Recently in many papers ([1],[4], [10] and so on) T is called a log-hyponormal if T is *invertible* and $\log T^*T \geq \log TT^*$; the invertibility of T is necessary for $\log T^*T$ to be bounded. According to this definition, the class of log-hyponormal operators does not contain all hyponormal operators; in fact, there are many hyponormal operators which are not invertible. Therefore, we remove the condition of the invertibility from the definition of the log-hyponormality.

DEFINITION. T is said to be log-hyponormal if it satisfies (10).

According to this definition, we have the following relation: hyponormal \Rightarrow log-hyponormal \Rightarrow paranormal. In [11] it was shown that a subnormal operator T satisfies

$$|T| \le |T^2|^{1/2} \le \cdots \le |T^n|^{1/n} \le \cdots$$

Yamazaki [13] showed that if $(T^*T)^s \ge (TT^*)^s$ for some s > 0 or if T is an *invertible* log-hyponormal operator, then

$$T^{*n}T^{n} \leq (T^{*n+1}T^{n+1})^{\frac{n}{n+1}}, \quad T^{n}T^{*n} \geq (T^{n+1}T^{*n+1})^{\frac{n}{n+1}} \quad (n = 1, 2, \cdots),$$

$$T^{*}T \leq (T^{*2}T^{2})^{1/2} \leq \cdots \leq (T^{*n}T^{n})^{1/n} \leq \cdots,$$

$$TT^{*} \geq (T^{2}T^{*2})^{1/2} \geq \cdots \geq (T^{n}T^{*n})^{1/n} \geq \cdots.$$

An operator T satisfying $T^*T \leq (T^{*2}T^2)^{1/2}$ is paranormal: indeed, in this case, by Jensen's inequality, for $x \neq 0$

$$||Tx||^2 = (T^*Tx, x) \le ((T^{*2}T^2)^{1/2}x, x) \le (T^{*2}T^2x, x)^{1/2}||x|| = ||T^2x|||x||.$$

This says that the result of Yamazaki is a partial extension of that of Ando. We will show the inequalities of Yamazaki without assuming the invertibility of T, which induce a complete extension of the result of Ando. We first state a simple lemma needed later.

LEMMA. Let T = U|T| be the polar decomposition of a bounded operator T and f(t) a continuous function on $[0, \infty)$ with f(0) = 0. Then for any $A \ge 0$

$$f(U|T|A|T|U^*) = f(TAT^*) = Uf(|T|A|T|)U^*,$$

$$f(U^*|T^*|A|T^*|U) = f(T^*AT) = U^*f(|T^*|A|T^*|)U.$$

Proof. Since $T = U|T| = |T^*|U$ and $T^* = |T|U^* = U^*|T^*|$, calculation shows that the equalities hold in case f is a polynomial which vanishes at t = 0. Then for general f, we need only to take a sequence $\{p_n\}$ of polynomials with $p_n(0) = 0$ which converges uniformly to f on $[0, ||T||^2||A||]$. \square

THEORM 3.1. If T is log-hyponormal, then

$$T^{*n}T^n \le (T^{*n+1}T^{n+1})^{\frac{n}{n+1}} \tag{11}$$

Proof. Let T = U|T| be the polar decomposition of T and P the orthogonal projection onto $\overline{\mathcal{R}(T)}$. We denote the compression of an operator X to $\overline{\mathcal{R}(T)}$ by [X]. Then the log-hyponormality of T means $\log[T^*T] \geq \log[TT^*]$. Thus, by the first inequality of (9) we get

$$([TT^*]^{1/2}[T^*T][TT^*]^{1/2})^{1/2} \ge [TT^*],$$

which is equivalent to

$$\{(PTT^*P)^{1/2}(PT^*TP)(PTT^*P)^{1/2}\}^{1/2} \ge PTT^*P.$$

Since $TT^*(1-P)=0$, this gives

$$\{(TT^*)^{1/2}PT^*TP(TT^*)^{1/2}\}^{1/2} \ge TT^*,$$

and hence

$$U^*(|T^*|PT^*TP|T^*|)^{1/2}U \ge U^*TT^*U.$$

In view of the lemma, the left hand side equals $(T^*PT^*TPT)^{1/2}$. Since PT = T and $U^*TT^*U = T^*T$, from the above inequality we get

$$(T^{*2}T^2)^{1/2} \ge T^*T.$$

This means (11) holds for n = 1.

Assume that (11) holds for $n \leq m-1$. Therefore,

$$T^{*m-1}T^{m-1} \leq (T^{*m}T^m)^{\frac{m-1}{m}}, \tag{12}$$

$$T^*T \leq (T^{*m}T^m)^{\frac{1}{m}}. (13)$$

(13) implies

$$PT^*TP \le P(T^{*m}T^m)^{\frac{1}{m}}P \le (PT^{*m}T^mP)^{\frac{1}{m}},$$

here the last inequality is due to (1). Thus $[T^*T] \leq [T^{*m}T^m]^{\frac{1}{m}}$. Since $\mathcal{N}([T^*T]) = 0$ because $\mathcal{R}(T)$ is orthogonal to $\mathcal{N}(T)$ by definition of loghyponormality of T, by (2) we have

$$\log[T^*T] \le \log[T^{*m}T^m]^{\frac{1}{m}}.$$

Since T is log-hyponormal, this gives

$$\log[TT^*] \le \log[T^{*m}T^m]^{\frac{1}{m}}.$$

By the first inequality of (8), we obtain

$$[TT^*]^{1/2}[T^{*m}T^m]^{\frac{m-1}{m}}[TT^*]^{1/2} \le ([TT^*]^{1/2}[T^{*m}T^m]^{\frac{m}{m}}[TT^*]^{1/2})^{\frac{m-1+1}{m+1}},$$

which is equivalent to

$$(PTT^*P)^{1/2}(PT^{*m}T^mP)^{\frac{m-1}{m}}(PTT^*P)^{1/2} \le \{(PTT^*P)^{1/2}(PT^{*m}T^mP)(PTT^*P)^{1/2}\}^{\frac{m}{m+1}}.$$

Since PT = T and $T^*P = T^*$, this gives

$$|T^*|(PT^{*m}T^mP)^{\frac{m-1}{m}}|T^*| \le \{|T^*|(PT^{*m}T^mP)|T^*|\}^{\frac{m}{m+1}}.$$
 (14)

From (12) it follows that

$$T^{*m}T^{m} = T^{*}(T^{*m-1}T^{m-1})T \leq T^{*}(T^{*m}T^{m})^{\frac{m-1}{m}}T$$

$$= U^{*}|T^{*}|P(T^{*m}T^{m})^{\frac{m-1}{m}}P|T^{*}|U$$

$$\leq U^{*}|T^{*}|(PT^{*m}T^{m}P)^{\frac{m-1}{m}}|T^{*}|U \quad (by \ (1))$$

$$\leq U^{*}\{|T^{*}|(PT^{*m}T^{m}P)|T^{*}|\}^{\frac{m}{m+1}}U \quad (by \ (14))$$

$$= (U^{*}|T^{*}|PT^{*m}T^{m}P|T^{*}|U)^{\frac{m}{m+1}} \quad (by \ Lemma \ 3.1)$$

$$= (T^{*m+1}T^{m+1})^{\frac{m}{m+1}}.$$

This completes the proof. \Box

Note that (11) implies that $\mathcal{N}(T) = \mathcal{N}(T^2) = \cdots = \mathcal{N}(T^n) = \cdots$.

THEOREM 3.2. If for a natural number m

$$\mathcal{N}(T) \subseteq \mathcal{N}(T^*)$$
 and $\log[T^*T]_n \ge \log[TT^*]_n$ $(1 \le n \le m),$ (15)

where $[X]_n$ means the compression of X to $\overline{\mathcal{R}(T^n)}$, then

$$T^n T^{*n} \ge (T^{n+1} T^{*n+1})^{\frac{n}{n+1}} \quad (n = 1, 2, \dots, m).$$
 (16)

Proof. We prove this by the mathematical induction of m. Suppose (15) hold for m = 1. Since then T is log-hyponormal, from the second inequality of (9) it follows that

$$[T^*T]_1 \ge \{[T^*T]_1^{1/2}[TT^*]_1[T^*T]_1^{1/2}\}^{1/2}.$$

Denoting the projection to $\overline{\mathcal{R}(T)}$ by P, the above shows

$$PT^*TP \ge \{(PT^*TP)^{1/2}(PTT^*P)(PT^*TP)^{1/2}\}^{1/2}.$$

Let TP = U|TP| be the polar decomposition of TP. Then the above leads to

$$|TP|^2 \ge \{|TP|(PTT^*P)|TP|\}^{1/2},$$

and hence

$$U|TP|^2U^* \ge U\{|TP|(PTT^*P)|TP|\}^{1/2}U^*.$$

By the lemma, we obtain

$$|PT^*|^2 \ge \{TP(PTT^*P)(TP)^*\}^{1/2}.$$

Since PT = T, the righthand side equals $(T^2T^{*2})^{1/2}$. Thus we get

$$TT^* \ge TPT^* \ge (T^2T^{*2})^{1/2}$$
.

Consequently (16) holds for m = 1.

Assume that the theorem is valid for m-1. To show that it is valid for m, suppose (15) hold for $n=1,2,\cdots,m$. From the inductive assumption (16) holds for $n=1,2,\ldots,m-1$; therefore, we have

$$T^{m-1}T^{*m-1} \ge (T^mT^{*m})^{\frac{m-1}{m}}$$
 and $TT^* \ge (T^mT^{*m})^{1/m}$. (17)

The second inequality yields

$$[TT^*]_m \geq [T^m T^{*m}]_m^{1/m},$$

and hence

$$\log[TT^*]_m \ge \log([T^m T^{*m}]_m^{1/m}).$$

Therefore, by (15) with n = m we obtain

$$\log[T^*T]_m \ge \log([T^m T^{*m}]_m^{1/m}).$$

Applying this to the second inequality of (8) we get

$$[T^*T]_m^{1/2}([T^mT^{*m}]_m^{1/m})^{m-1}[T^*T]_m^{1/2} \geq \{[T^*T]_m^{1/2}([T^mT^{*m}]_m^{1/m})^m[T^*T]_m^{1/2}\}^{\frac{m-1+1}{m+1}}.$$

Denote the projection to $\overline{\mathcal{R}(T^m)}$ by Q, and rewrite the above as

$$(QT^*TQ)^{1/2}(T^mT^{*m})^{\frac{m-1}{m}}(QT^*TQ)^{1/2} \ge \{(QT^*TQ)^{1/2}(T^mT^{*m})(QT^*TQ)^{1/2}\}^{\frac{m-1+1}{m+1}}.$$

Now let TQ = V|TQ| be the polar decomposition of TQ. Then we have

$$|TQ|(T^mT^{*m})^{\frac{m-1}{m}}|TQ| \ge \{|TQ|(T^mT^{*m})|TQ|\}^{\frac{m-1+1}{m+1}}.$$

Multiplying this inequality by V and V^* , in virtue of the lemma, yields

$$TQ(T^mT^{*m})^{\frac{m-1}{m}}QT^* \ge \{TQ(T^mT^{*m})QT^*\}^{\frac{m-1+1}{m+1}}.$$

From this it follows that

$$T(T^mT^{*m})^{\frac{m-1}{m}}T^* \ge \{T(T^mT^{*m})T^*\}^{\frac{m-1+1}{m+1}} = (T^{m+1}T^{*m+1})^{\frac{m}{m+1}},$$

for $Q(T^mT^{*m}) = T^mT^{*m} = (T^mT^{*m})Q$. This in conjunction with the first inequality of (17) gives

$$T^{m}T^{*m} = T(T^{m-1}T^{*m-1})T^{*} \ge T(T^{m}T^{*m})^{\frac{m-1}{m}}T^{*} \ge (T^{m+1}T^{*m+1})^{\frac{m}{m+1}}.$$

This shows that (16) holds for n=m. Thus, we conclude the proof. \square

As mentioned in the proof, (15) with m = 1 is satisfied for a log-hyponormal operator. Therefore,

$$TT^* \geq (T^2T^{*2})^{\frac{1}{2}}$$

is valid for a log-hyponormal operator T. The condition (15) is technical. We do not know if (15) follows from the log-hyponormality of T. However, one can easily see that (15) holds for every m if T is hyponormal. Moreover, $\mathcal{N}(T^*) = \mathcal{N}(T^{*m})$ for every m if $\mathcal{N}(T^*) = 0$ or $\mathcal{N}(T^*) = \mathcal{N}(T^{*2})$, so that we get:

COROLLARY 3.3. If T is a log-hyponormal operator and if $\mathcal{N}(T^*) = 0$ or $\mathcal{N}(T^*) = \mathcal{N}(T^{*2})$, then for every n

$$T^n T^{*n} \ge (T^{n+1} T^{*n+1})^{\frac{n}{n+1}}.$$

4. NORMALITY

Recall the definition of the quasi-normality of T stated in the previous section. Then we can see that T is quasi-normal if and only if the polar decomposition of T is commutative, so that a quasi-normal operator T is normal if $\mathcal{N}(T) = \mathcal{N}(T^*)$.

In this section, we give a few conditions which guarantee quasi-normality or normality of a log-hyponormal operator. THEOREM 4.1. If a log-hyponormal operator T satisfies $|T|^n = |T^n|$ for some $n \geq 3$, then T is quasi-normal.

Proof. By Theorem 3.1, we get

$$|T| \le |T^2|^{1/2} \le \dots \le |T^n|^{1/n} \le \dots$$

Thus the assumption implies that

$$(T^*T)^2 = T^{*2}T^2$$
 and $(T^*T)^3 = T^{*3}T^3$. (18)

From the first equality of (18) it follows that $T^*(TT^*-T^*T)T=0$, and hence, for the projection P onto $\overline{\mathcal{R}(T)}$

$$PT^*TP = PTT^*P = TT^*. (19)$$

By (18) and (19)

$$T^*(TT^*)^2T = (T^*T)^3 = T^{*3}T^3 = T^*(T^{*2}T^2)T = T^*(T^*T)^2T,$$

from which it follows that

$$P(TT^*)^2P = P(T^*T)^2P.$$

Since the left hand side equals $(TT^*)^2$, this and (19) yield

$$(PT^*TP)^2 = (TT^*)^2 = P(TT^*)^2P = P(T^*T)^2P.$$

Consequently,

$$PT^*T(1-P)T^*TP = 0$$
 and hence $T^*TP = PT^*TP$.

From this and (19) we derive

$$(T^*T)T = (T^*TP)T = (PT^*TP)T = (TT^*)T = T(T^*T).$$

This means T is quasi-normal. \square

The above theorem does not hold for the condition n=2: see for a counter example p.199 of [11].

THEOREM 4.2. If a log-hyponormal operator T satisfies

$$|T^*|^n=|T^{*n}|\quad \textit{for some}\quad n\geq 2,$$

then T is normal.

Proof. The assumption implies $T^nT^{*n} = (TT^*)^n$ and hence

$$\mathcal{N}(T^{*n}) = \mathcal{N}(T^nT^{*n}) = \mathcal{N}((TT^*)^n) = \mathcal{N}(TT^*) = \mathcal{N}(T^*),$$

from which $\mathcal{N}(T^{*2}) = \mathcal{N}(T^*)$ follows. By Corollary 3.3

$$(T^m T^{*m})^{1/m} \ge (T^{m+1} T^{*(m+1)})^{1/(m+1)}$$
 for every m .

Therefore, by assumption, we have

$$TT^* = (T^2T^{*2})^{1/2} = \cdots = (T^nT^{*n})^{1/n}$$

which implies $T^2T^{*2}=(TT^*)^2$. Denoting the projection onto $\overline{\mathcal{R}(T^*)}$ by Q, this implies that

$$QTT^*Q=QT^*TQ=T^*T.$$

On the other hand, since $\mathcal{N}(T) \subseteq \mathcal{N}(T^*)$ by assumption and since 1-Q is the projection to $\mathcal{N}(T)$, we have $T^*(1-Q)=0$, which implies $TT^*=QTT^*Q$. Consequently, we obtain $TT^*=QTT^*Q=T^*T$. \square

THEOREM 4.3. A log-hyponormal operator T is normal if T^{*n} is log-hyponormal for some natural number n.

Proof. As we mentioned after the proof of Theorem 3.1,

$$\mathcal{N}(T^*) \supseteq \mathcal{N}(T) = \mathcal{N}(T^m)$$
 for every m .

On the other hand,

$$\mathcal{N}(T^*) \subseteq \mathcal{N}(T^{*2}) \subseteq \cdots \subseteq \mathcal{N}(T^{*n}) \subseteq \mathcal{N}(T^n)$$

since T^{*n} is log-hyponormal. Thus we have $\mathcal{N}(T) = \mathcal{N}(T^{*m})$ for $m = 1, 2, \ldots, n$. Denote the compression of X to $\overline{\mathcal{R}(T)}$ by [X]. By Theorems 3.1 and 3.2 we get

$$[T^*T] \leq [T^{*n}T^n]^{1/n}, \quad [T^nT^{*n}]^{1/n} \leq [TT^*].$$

Since $\log(A^{1/n}) = \frac{1}{n} \log A$ for $A \geq 0$ with $\mathcal{N}(A) = 0$, and since T^{*n} is loghyponormal,

$$\log[T^*T] \le \frac{1}{n} \log[T^{*n}T^n] \le \frac{1}{n} \log[T^nT^{*n}] \le \log[TT^*].$$

Therefore the log-hyponormality of T yields $\log[T^*T] = \log[TT^*]$. This implies $T^*T = TT^*$. \square

References

- [1] A. Aluthge, D. Wang, An operator inequalty which implies paranormality, Math. Inequal. Appl., 2 (1999), 113–119.
- [2] T. Ando, Opertors with a norm condition, Acta Sci. Math.,33(1972), 169–178.

- [3] T. Ando, On some operator inequalities, Math. Ann., 279(1987), 157–159.
- [4] M. Fujii, T. Furuta, E. Kamei, Furuta's inequality and its application to Ando's theorem, Linear Alg. Appl., 179(1883), 161–169.
- [5] T. Furuta, $A \ge B \ge 0$ assures $(B^r A^p B^r)^{1/q}$ for $r \ge 0, p \ge 0, q \ge 1$ with $(1+2r)q \ge p+2r$, Proc. Amer. Math. Soc., 101(1987), 85–88.
- [6] T. Furuta, Two operator functions with monotone property, Proc. Amer. Math. Soc., 111(1991), 511–516.
- [7] P. R. Halmos, Hilbert space problem book, Springer verlag, New york, 1982.
- [8] F. Hansen, An operator inequality, Math. Ann., 246(1980), 249-250.
- [9] F. Riesz, B. Sz.,-Nagy, functional analysis, New York 1955.
- [10] K. Tanahashi, On log-hyponormal operators, Integral Equation Operator Theory, 34(1999), 364–372.
- [11] M. Uchiyama, Operators which have commutative polar decompositions, Operator Theory: Advances and Appl. 62(1993), 197–208.
- [12] M. Uchiyama, Some exponential operator inequalities, Math. Inequal. Appl., 2(1999), 469–471.
- [13] T. Yamazaki, Extension of the results on p-hyponormal and log-hyponormal operators by Althuge and Wang, SUT jour. Math. 35(1999), 139–148.