<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>$GL_n(F_q)$のブロックにおける圏同値の組合わせ論的記述 qとの独立性と分解定数について 組合せ論的表現論をめぐる話題</td>
</tr>
<tr>
<td>作成者</td>
<td>Miyachi, Hyohe</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 2001年2月号</td>
</tr>
<tr>
<td>発行年月</td>
<td>2001-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/64739</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>京都大学</td>
</tr>
</tbody>
</table>
GL_n(F_q)のブロックにおける圏同値の組合せ論的
記述、qとの独立性と分解定数について

宮地 兵衛 (Hyohe Miyachi)

(千葉大・自然科

1 Notation

The result of this paper is a joint work with Akihiko Hida. Let
G be a finite group, and (K, O, k) be a splitting \ell-modular system for G.
Here char(K) = 0, char(k) = \ell > 0. For R \in \{O, k\}, let B_0(RG) be the
principal block of RG.
S_n denotes the symmetric group on n letters. \mathbb{F}_q denotes a field with q
elements with \ell \nmid q. Let natural numbers e(q) and r(q) be as follows:

\[e(q) := \min \{ i \in \mathbb{N} \mid q^i \equiv 1 \pmod{\ell} \}, \]

\[r(q) := \max \{ r \in \mathbb{N} \mid \ell^r \mid q^{e(q)} - 1 \} : \text{the } \ell\text{-part of } q^{e(q)} - 1. \]

Let A and B be blocks ideals. "A \sim_M B" means that A is Morita
(Puig) equivalent to B. "A \sim_d B" means that A is derived (splendid
Rickard) equivalent to B (see [34],[35]).
We use results on representation theory of finite general linear groups
in non-defining characteristic due to Fong-Srinivasan and Dipper-James
(see [14], [15], [9],[10],[11],[12],[13],[19]).

2 Motivations

We wish to prove the following conjectures:

Conjecture 2.1 (Broué). [2],[3],[4] Let B be an \ell-block ideal of G with
abelian defect group D. Then B and its Brauer correspondent in \mathcal{N}_G(D)
are derived equivalent?

0The detailed version of this paper will be submitted for "Doctor thesis at Chiba
Univ., Japan".
1Hida's address is "Department of Mathematics, Faculty of Education, Satitama
University, Urawa city 338, Japan E-mail: ahida@post.saitama-u.ac.jp"
Conjecture 2.2 (James). [20] Suppose that $\text{char}(k) = \ell > n$ and $e(q) = \ell$. Let ζ be a primitive e-th root of unity in \mathbb{C}. Then, the decomposition matrix of Dipper-James Schur algebra $S_\zeta(n, r_\mathbb{C})$ over \mathbb{C} is equal to that of Dipper-James Schur algebra $S_q(n, r)_{\mathbb{k}}$ over \mathbb{k}?

Let G be a connected reductive algebraic group over \mathbb{F}_q with a Frobenius map F. We assume that the centre of G is connected. Let ℓ be a prime number with $\ell \nmid q$.

Lusztig series

The following is so-called Lusztig series:

$$ E(G^F, \{s\}) := \bigcup_{(T, \theta)} \{ \chi \in \hat{G}^F | \langle \chi, R_T^G(\theta) \rangle \neq 0 \}. $$

Here, the above pair (T, θ) runs $s_1 \in \{s\}$ and $\theta \in \widehat{T}^F \leftrightarrow s_1 \in T^F$, and $R_T^G(\theta)$ is a generalized Deligne-Lusztig character.

Its modular version is given as follows:

For a semisimple ℓ'-element $s \in G'^F$, let

$$ E_\ell(G^F, \{s\}) := \bigcup_{t} E(G^F, \{st\}), \quad t \in (C_{G^*}(s)^F)^*_F. $$

Theorem 2.3 (Broué-Michel). [5] Each set $E_\ell(G^F, \{s\})$ is a union of ℓ-block of G^F.

Definition 2.1. An ℓ-block B as an algebra is unipotent, if there exists $\chi \in E_\ell(G^F, \{1\})$ such that χ belongs to B. In particular, $B_0(OG^F)$ is unipotent.

Theorem 2.4 (Bonnafé-Rouquier). [1] Suppose that the centre of G is connected and $C_{G^*}(s)^F$ is a Levi subgroup of G. Then:

$$ E_\ell(G^F, \{s\}) \sim \mathcal{M} E_\ell(C_{G^*}(s)^F, \{1\}) $$

as ℓ-block ideals. (i.e. If a block B_s belongs to $E_\ell(G^F, \{s\})$, then there exists a unipotent block B'_s of $C_{G^*}(s)^F$ such that B_s and B'_s are Morita equivalent.)
Remark 1. The Morita equivalence in the above theorem is not a Puig equivalence in general.

In particular, for finite general linear groups we may concentrate unipotent blocks by Bonnafé-Rouquier theorem.

We want to classify the block ideals of $kG(F_q)$ up to Morita equivalence, and recover its structure as algebras from some small subgroups. So, we wish to prove the following conjecture:

Conjecture 2.5. If $e(q) = e(q'), r(q) = r(q')$ then for any unipotent block ideal B of $G(F_q)$ there exists a unipotent block ideal B' of $G(F_{q'})$ such that $B \sim_M B'$ by an exact ℓ-permutation (B, B')-bimodule. This equivalence preserves the natural indices of modules.

In this article we deal the special case concerning these three conjectures for finite general linear groups.

3 Abacus and $[w:k]$-pairs

Definition 3.1. For a k-core τ and a non-negative integer w, let $\Lambda_{k,w,\tau}$ be the set of partitions of $kw + |\tau|$ whose k-core is τ.

Given partition $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_r)$, define $\beta = (\beta_1, \beta_2, \ldots)$ as follows:

$$\beta_i := r - i + \lambda_i (1 \leq i \leq r).$$

We call this β an r-element β-set for λ.

Definition 3.2 (Scopes). For a non-negative integer m and an m-core $\tau = (\tau_1, \ldots, \tau_r)$, let Γ be the r-element β-set for τ, and suppose that when Γ is displayed on an abacus with m-runners there are k more than beads in the i-th column than in the $(i - 1)$-th column. Let m-core $\overline{\tau}$ be displayed by an r-element β-set $\overline{\Gamma}$ satisfying

$$\overline{\Gamma}_j = \Gamma_j \quad \text{for } j \neq i, i - 1$$

$$\overline{\Gamma}_i = \Gamma_{i - 1}$$

$$\overline{\Gamma}_{i - 1} = \Gamma_i,$$

where Γ_j is the number of beads on the j-th runner in the abacus configuration for Γ. In these situation, we shall say that $\Lambda_{m,w,\tau}$ and $\Lambda_{m,w,\overline{\tau}}$ form a Scopes $[w:k]$-pair.
<table>
<thead>
<tr>
<th>τ</th>
<th>$\overline{\tau}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i-1$</td>
<td>$i-1$</td>
</tr>
<tr>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>\Rightarrow</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Scopes proved the following:

Theorem 3.1 (Scopes). [37] If $\Lambda_{p,w,\tau}$ and $\Lambda_{p,w,\nu}$ form a $[w : k]$-pair with $k \geq w$, then p-blocks $B^{w,\tau}$ and $B^{w,\nu}$ of symmetric groups are Morita equivalent.

By Jost we also know the following:

Theorem 3.2 (Jost). [23] If $\Lambda_{e,w,\tau}$ and $\Lambda_{e,w,\nu}$ form a $[w : k]$-pair with $k \geq w$, then unipotent ℓ-blocks $B_{w,\tau}$ and $B_{w,\nu}$ are Morita equivalent.

Example 1. If B is a unipotent block of $GL_n(q)$ with e-weight 2, then one of the following holds:

1. $B \cong B_0(kGL_{2e}(q))$.
2. (B, \overline{B}) forms $[2:1]$-pair for some unipotent block \overline{B} of $kGL_{n-1}(q)$. (Actually, these blocks are derived equivalent to its Brauer correspondent of the ℓ-local subgroup. (Hida-Miyachi(1999)) (The method we used is different from J. Chuang’s for S_n)
3. $B \sim_M B'$ for some unipotent block B' of $kGL_m(q)$ with $m < n$.

4 A core ρ and results of J. Chuang and R. Kessar

Definition 4.1 (Chuang-Kessar-Rouquier). [8] Let ρ be the e-core which satisfies the following property: ρ has an abacus configuration in which each runner other than the leftmost one (the 0-th runner) has at least $w - 1$ more beads than the runners to its immediate left.
Chuang and Kessar considered the following setting up:

\[e = p > w. \]

\[r := |\rho|. \]

\[G := S_{pw+r}. \]

\(B^{w,\rho} \): the \(p \)-block of \(kG \) with \(p \)-weight \(w \) and \(p \)-core \(\rho \).

\[D := \text{a defect group of } B^{w,\rho}. \]

\[N := S_p \ltimes S_w \supset D. \]

\[L := S_p \times \cdots \times S_p \times S_r. \]

\[H := (S_p \ltimes S_w) \times S_r \supset N_G(D). \]

\[\mathcal{O}Hf := \text{the Brauer correspondent of } B^{w,\rho} \text{ in } H. \]

Let \(X \) be the Green correspondent of \(B^{w,\rho} \) in \(G \times H \) with respect to \((G \times G, \Delta(D), G \times H)\). Chuang and Kessar proved the following:

Theorem 4.1 (Chuang-Kessar). [8] Suppose that \(p > w \). Then, we get an isomorphism

\[\mathcal{O}Hf \cong \text{End}_G(X) \]

by checking \(\text{rank}_\mathcal{O}(\text{End}_\mathcal{O}(X)) \leq w! \cdot \text{rank}_\mathcal{O}(\mathcal{O}Lf) \). In particular, \(\mathcal{O}Hf \) is Morita equivalent to \(B^{w,\rho} \).

Remark 2.

1. \(X \) is exact.
2. \(\mathcal{O}Hf \to \text{End}_\mathcal{O}(X) \) is a split \((\mathcal{O}Hf, \mathcal{O}Hf)\)-monomorphism.
3. \(w! \text{rank}_\mathcal{O}(\mathcal{O}Lf) = \text{rank}_\mathcal{O}(\mathcal{O}Hf) \).
4. By Marcus [27] \(\mathcal{O}Hf \sim_d B_0(ON) \).
5. \((D^\lambda \otimes_{B^{w,\rho}} X) \downarrow_L \) is known, but \(D^\lambda \otimes_{B^{w,\rho}} X \) is not known.
5 A theorem of Chuang-Kessar type

We assume that $\text{char}(k) = \ell > w$. Choose a prime power q with $e(q) = e$. Just mimicking Chuang and Kessar’s setting up, we consider the following:

$r := |\rho|.$

$G(q) := GL_{ew+r}(q).$

$B^{w,\rho}(q):$ the unipotent ℓ-block of $kG(q)$ with e-weight w and e-core ρ.

$D(q) :=$ a defect group of $B^{w,\rho}.$

$N(q) := GL_e(q) \wr S_w \supset D(q).$

$L(q) := GL_e(q) \times \cdots \times GL_e(q) \times GL_r(q).$

$H_w(q) := (GL_e(q) \wr S_w) \times GL_r(q) \supset \mathcal{N}_G(D(q)).$

$\mathcal{O}H_w(q)f_q :=$ the Brauer correspondent of $B_{w,\rho}(q)$ in $H_w(q)$.

Once we believe that an analogy of Chuang-Kessar theorem holds for finite general linear groups, we can easily prove the following:

Proposition 5.1. (An analogy of Chuang-Kessar theorem) Let $X(q)$ be the Green correspondent of $B^{w,\rho}(q)$ in $G(q) \times H_w(q)$ with respect to $(G(q) \times G(q), \Delta(D(q)), G(q) \times H_w(q))$. Then, we get an isomorphism

$$\mathcal{O}H_w(q)f_q \cong \text{End}_{G(q)}(X_{\mathcal{O}}(q))$$

by checking $\text{rank}_{\mathcal{O}}(\text{End}_{G(q)}(X_{\mathcal{O}}(q))) \leq w! \cdot \text{rank}_{\mathcal{O}}(\mathcal{O}L(q)f_q)$. In particular, $\mathcal{O}H_w(q)f_q$ is Morita equivalent to $B_{w,\rho}(q)$.

Remark 3. One must consider not only unipotent characters but also characters indexed by semisimple ℓ-elements. We can know these characters by [9]. We also need some results by [15] in order to mimic Chuang and Kessar’s argument.
6 Indices of $B_0(GL_e(q) \wr S_w)$-modules

In this section we reformulate indices of the simple $B_0(GL_e(q) \wr S_w)$-modules to fit that of $B_{w,\rho}(q)$ via the equivalence in Proposition 5.1. For $i = 1, 2, \ldots, e$ let $\nu_i = (i, 1^{e-i}) \vdash e$. The principal block $B_0(kGL_e(q))$ has e non-isomorphic irreducible modules

$$\{ D_{k,q}(\nu_i) \mid i = 1, 2, \ldots, w \}.$$

Fix $R \in \{K, k\}$. Let n be an e-tuple non-negative integer of w. i.e. $\sum_{i=1}^{e} n_i = w$. $S_{R,q}(n) := \bigotimes_{i}(S_{R,q}(\nu_i)^{\otimes n_i})$ is an $R[GL_e(q)^\times w]$-module.

In particular, $S_{K,q}(n)$ is a simple $K[GL_e(q)^\times w]$-module. The parabolic subgroup S_n act on $S_{R,q}(n)$. So, $S_{R,q}(n)$ is an $R[L(e^w) \rtimes S_n]$-module. Ind_{L(e^w) \rtimes S_n}^{GGL(e^w)} S_{R,q}(n)$ is decomposed into $\bigoplus_{\lambda \vdash n} (S_{R,q}(n) \otimes_R (\dim_R S_{R}^\lambda) \cdot S_{R}^\lambda)$ where S_{R}^μ means the Specht module of $R[\mathfrak{S}_{|\mu|}]$ corresponding to μ. $S_{R}^\lambda = \bigotimes_{\lambda_i} S_{R}^{\lambda_i}$ and $S_{R,q}(n) \otimes_R S_{R}^\lambda$ is the inner tensor product of $R[L(e^w) \rtimes S_n]$-modules $S_{R,q}(n)$ and S_{R}^λ. Let

$$T_{R}^\lambda = \begin{cases} S_{R}^{\lambda_i} & \text{if } i + e \text{ is even,} \\ S_{R}^{\lambda_i'} & \text{if } i + e \text{ is odd.} \end{cases}$$

Here, λ_i' is the conjugate partition of λ_i. Let $T_{R}^\lambda = \bigotimes_{\lambda} T_{R}^\lambda_i$.

For $\lambda \vdash n$ let $U_{R,q}(\lambda)$ be Ind_{L(e^w) \rtimes S_n}^{GGL(e^w)} (S_{R,q}(n) \otimes T_{R}^\lambda)$, and let $U_{k,q}(\lambda)^\rho$ be the $R[H_w(q)]$-module $U_{R,q}(\lambda) \otimes_R S_{R,q}(\rho)$.

Moreover, one can construct modules by using

$$\{ D_{k,q}(\nu_i) \mid i = 1, 2, \ldots, e \}$$

instead of $k(GL_e(q))$-modules $\{ S_{k,q}(\nu_i) \mid i = 1, 2, \ldots, e \}$. We denote it by $V_{k,q}(\lambda)^\rho$.

7 Results

Now we can state our main results of this article as follows:

Theorem 7.1 (Hida-Miyachi). [18] For any simple $B_{w,
ho}(q)$-module $D_{k,q}(\lambda)$, the Green correspondent $D_{k,q}(\lambda) \otimes_{KG} X(q)$ of $D_{k,q}(\lambda)$ is independent of q in the following sense:

Assume that $e(q) = e(q')$ and $r(q) = r(q')$. Let $M_{q,q'}$ be the canonical $(kH_w(q)f_q,kH(q')f_{q'})$-bimodule which induces $kH_w(q)f_q \sim_{M} kH(q')f_{q'}$, due to A. Marcus. Then

$$D_{k,q}(\lambda) \otimes_{B_{w,q}(q)} X(q) \otimes_{kH_w(q)f_q} M_{q,q'} \otimes_{kH(q')f_{q'}} X(q')^\vee \cong D_{k,q'}(\lambda).$$

Actually, $D_{k,q}(\lambda) \otimes_{B_{w,q}(q)} X(q) \cong V_{k,q}(\bar{\lambda})^\rho$. Here, $\bar{\lambda}$ is the e-quotient of λ. Moreover, we know the decomposition numbers corresponding to the e-core ρ:

$$d_{\lambda,\mu} = d_{\bar{\lambda},\bar{\mu}} = [U_{k,q}(\bar{\lambda}) : V_{k,q}(\bar{\mu})].$$

(The other parts of $B_{w,q}(q)$ can be calculated by Dipper-James theory.)

Remark 4. First we can determine the Green correspondents of simple $B_{2,\rho}(q)$-modules in $H_2(q)$, finding two trivial source modules of $B_{2,\rho}(q)$, using the decomposition numbers for Hecke algebras of type A by [33] and [22], chasing the image of Mullineux-Kleshchev map [29, p.120], the property of Specht modules [19] and induction on $\Lambda_{e,2,\rho}$.

Next we can determine the Green correspondents of simple $B_{w,\rho}(q)$-modules in $H_w(q)$ using induction on w and some commutative diagrams among $B_{w,q}(q),B_0(GL_w(q)) \otimes B_{w-1,q}(q)$ and their Brauer correspondents.

In order to prove $B_{w,q}(q) \sim_{M} B_{w,q}(q')$ with the property in the above theorem we use [14],[27], and [36].

Corollary 7.2. [18] If there exist a sequence of e-cores

$$\rho = \tau^0,\tau^1, \ldots, \tau^s$$

such that Λ_{e,w,τ^i} and $\Lambda_{e,w,\tau^{i+1}}$ form a $[w : k_i]$-pair with $k_i \geq w-1$, Broué's conjecture is true for $B_{w,\tau^s}(q)$.

Theorem 7.3 (Hida-Miyachi). [18] Assume that $e = e(q) = e(q')$ and $r(q) = r(q')$. If there exist a sequence of e-cores
\[\rho = \tau^0, \tau^1, \ldots, \tau^s \]
such that Λ_{e,w,τ^i} and $\Lambda_{e,w,\tau^{i+1}}$ form a $[w:k_i]$-pair with $k_i \geq w - 1$, then
\[B_{w,\tau^i}(q) \sim_{M} B_{w,\mathcal{T}\theta}(q') \]
Here, each $[w:w-1]$-pair is a derived (splendid) equivalence between two unipotent blocks. Moreover, the above Morita equivalence preserves natural indices (partitions) of modules. (i.e. The simple module $D_{k,q}^{(\mu)}$ (resp. the "Specht"like module $S_{k,q}^{(\mu)}$, the Young module $X_q^{(\mu)}$, PIM $P_q^{(\mu)}$) indexed by a partition μ corresponds to $D_{k,q'}^{(\mu)}$ (resp. $S_{k,q'}^{(\mu)}$, $X_{q'}^{(\mu)}$, $P_{q'}^{(\mu)}$).)

Remark 5. Just mimicking an argument in [7], constructing a generalization of [38] and using Theorem 7.1, we deduce the above results. (see also [32]).

8 A conjecture

8.1 The theory of Lascoux-Leclerc-Thibon

Let v be an indeterminate over \mathbb{Q}. Let $U_v(\widehat{sl_n})$ be the quantized enveloping algebra over $\mathbb{Q}(v)$ corresponding to the Dynkin diagram $A_{e-1}^{(1)}$.

The so-called "Fock space"
\[\mathcal{F}_v = \bigoplus_{\lambda} \mathbb{Q}(v)|\lambda\rangle \]
is the $\mathbb{Q}(v)$-vector space with basis $|\lambda\rangle$ indexed by the set of all partitions. In [24] Lascoux, Leclerc and Thibon introduced an algorithm to compute the canonical basis of the basis representation $M_v(\Lambda_0)$ and conjectured that it also compute the decomposition matrix of the Iwahori-Hecke algebras of type A at a root of unity over \mathbb{C}. This is so called the LLT conjecture.

The LLT conjecture is now a theorem (see, for example, [29, Chap. 6] and the references of Chapter 6).
In [25], Leclerc and Thibon define a canonical basis of the \(v \)-deformed Fock space representation \(\mathcal{F}_v \) of the affine Lie algebra \(\widehat{\mathfrak{g}}_\ell \). They conjectured that the entries of the transition matrix between these bases and \(\{ |\lambda \rangle \}_{\lambda} \) are also crystalized decomposition numbers of the Dipper-James' Schur algebra for \(\zeta \) specialized at a primitive \(e \)-th root of unity.

This LT conjecture is now a theorem over \(\mathbb{Q}(\zeta) \) where \(\zeta \) is a primitive \(e \)-th root of unity over \(\mathbb{C} \), due to Varagnolo and Vasserot [39].

Leclerc and Thibon showed that

Theorem 8.1 (Leclerc-Thibon). There exist bases \(\{ G(\lambda) \} \) and \(\{ G^{-}(\lambda) \} \)

of \(\mathcal{F}_v \) characterized by:

1. \(\overline{G(\lambda)} = G(\lambda), \overline{G^{-}(\lambda)} = G^{-}(\lambda) \)
2. \(G(\lambda) \equiv |\lambda \rangle \mod vL, \quad G^{-}(\lambda) \equiv |\lambda \rangle \mod v^{-1}L^{-} \).

Here, \(L \) (resp. \(L^{-} \)) denotes the \(\mathbb{Z}[v] \) (resp. \(\mathbb{Z}[v^{-1}] \))-lattice in \(\mathcal{F}_v \) with basis \(\{ |\lambda \rangle \} \).

Let

\[
G(\mu) = \sum_{\lambda} d_{\lambda,\mu}(v) |\lambda \rangle, \quad G^{-}(\lambda) = \sum_{\lambda} e_{\lambda,\mu}(v) |\mu \rangle.
\]

and \(D_{m,e,0}(v) = [d_{\lambda,\mu}(v)]_{\lambda,\mu=m} \).

Theorem 8.2 (Leclerc-Thibon, Varagnolo-Vasserot). The matrix \(D_{m,e,0}(1) \) is equal to the decomposition matrix \(D_{m,\zeta,0} \).

Remark

If both \(\zeta \) and \(\zeta' \) are primitive \(e \)-th roots of unity in \(\mathbb{C} \), then \(D_{m,\zeta,0} = D_{m,\zeta',0} \). So, we may write \(D_{m,e,0} \) instead of \(D_{m,\zeta,0} \).

8.2 Our hope

Let \(l_{k,q}(\lambda) \) be the Loewy length of \(S_{k,q}(\lambda) \). For \(\ell > w \), we define \(rad_{\lambda,\mu}(v) \in \mathbb{N}[v] \) as follows:

\[
rad_{\lambda,\mu}(v) = \sum_{k=0}^{l_{k,q}(\lambda)-1} \frac{[\text{Rad}^k(U_{k,q}(\overline{\lambda})/ \text{Rad}^{k+1}(U_{k,q}(\overline{\lambda})): V_{k,q}(\overline{\mu})]} v^k.
\]
Remark 6. Note that $\text{rad}_{\lambda,\mu}(v)$ is given explicitly by some products of Littlewood-Richardson coefficients and v. Moreover, an explicit formula for $\text{rad}_{\lambda,\mu}(v)$ will be written in [30].

By the construction of the Loewy series of $S_{k,q}(\lambda)$ for $\lambda \in \Lambda_{e,w,\rho}$, we also know

$$\text{Rad}^i(S_{k,q}(\lambda))/\text{Rad}^{i+1}(S_{k,q}(\lambda)) \cong \text{Soc}^k(\lambda)-i(S_{k,q}(\lambda))/\text{Soc}^{k(\lambda)-i}(S_{k,q}(\lambda)).$$

Theorem 8.3 (Geck). [16] There exists a square lower unitriangular matrix A such that each entry of A is non-negative and $D_{m,q,\ell} = D_{m,e,0} \cdot A$.

By the above theorem and Theorem 7.1, we deduce

Corollary 8.4. If $\text{rad}_{\lambda,\mu}(v) = 0$, then $d_{\lambda,\mu}(v) = 0$ for any $\lambda, \mu \in \Lambda_{e,w,\rho}$.

Not only do we want to show that James' conjecture is true, but we want to know an explicit formula for $d_{\lambda,\mu}(v)$ which is now known to be a certain parabolic Kazhdan-Lusztig polynomial.

According to James conjecture and Rouquier-Leclerc-Thibon conjecture [29, 6.33 (see also 6.27)] on Jantzen filtrations over \mathbb{C}, we hope the following:

Conjecture 8.5. $d_{\lambda,\mu}(v) = \text{rad}_{\lambda,\mu}(v)$ for any $\lambda, \mu \in \Lambda_{e,w,\rho}$.

The first announcement of this was stated in the author's lecture "On the unipotent blocks of finite general linear groups" at a conference "Algébres de Hecke affines et groupes réductifs (CIRM,Luminy,16-20 octobre 2000)" organized by M. Geck and R. Rouquier.

Acknowledgments

The author would like to thank M. Geck, B. Leclerc, and R. Rouquier for stimulating discussions on James' conjecture and canonical bases.

参考文献

