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Continuous, Discrete, Ultradiscrete Waves
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1 Introduction to Ultradiscretization

‘Ultradiscretization’ is a technique to discretize dependent variable of differ-

ence equations. Using this technique, we can obtain universal mathematical

structure among differential equations, difference equations and digital equa-

tions. The following is one example on the diffusion equation,
9t = Gzz-
We have a difference analogue to the above equation,
1
f}”l = 5( ?+1 + f;'q—l)'
If we use the following transformation,
fi = exp(F}/e),
we obtain from (2),
an+1 = slog(eF;’H/s + eFJ'"—l/E) —elog 2.
Taking ¢ — +0 and using an identity

lim Elog(eA/s—l-eB/e—}—---) = max(A4, B,--+),

e—+40

(1)
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we obtain
Fr¥ = max(Fly, FI). (6)

Note that F* are always integer if initial F' are all integer. In this meaning,
we discretize a dependent variable in (2) and obtain (6). |
In the above discretizing process, we only use a transformation of variable
(3) and an identity (5). Therefore, this technique can be applied to other
equations including nonlinear ones. We call this kind of discretizing process
on dependent variable ‘ultradiscretization’. '
The second example is Burgers equation. It is well known Burgers equa-

tion can be linearized through Cole-Hopf transformation.

9t = Yux (diffusion eq.) 7
I v=(logg), (Cole-Hopf trans.) (7)

vy = 2005 + Uy (Burgers eq.)

We can obtain a difference analogue to the above system,

( 1
f;?‘"l = -2-( T+ i) (difference diffusion eq.)

) 1 . n. . :
) I u;‘ = Z;(log [ —log f}) (dlﬁereqce Cole-Hopf traps.)
1 n n
u7}+1 — " + __{log(e—Aa:u] _i_veAzqu.)

J T Az .
- —.logt(e-Am;'l-ll + A7) (difference Burgers eq.)

(8)
Moreover, if we use the following transformations of variables,

= exp(Fr/e), A:cu;"f:(‘u;w_%)/é,‘t R
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and take a limit £ — 40, we obtain
(F;"'l = max(F},,, FT,) (ultradiscrete diffusion eq.)

1 Ur=Fy, —F'+1/2 (ultradiscrete Cole-Hopf trans.)
UJTL+1 =Ur+ Hﬁn(U}L_l, 1-— UJ") — min(U7, 1 — Uly)

(ultradiscrete Burgers eq.)
(10)
If all initial U’s are integer in u-Burgers eq, U’s at any time become integer.
(In this case, F' may be half integer but is also discretized.)
Moreover, assuming that initial U’s are all 0 or 1, we can easily show
U’s at any time also become 0 or 1. Under this restriction of values, we can
consider that u-Burgers equation is a cellular automaton (CA) with state

values 0 and 1. This CA follows a time evolution rule,

Ur,UPUZ; 000 001 010 011 100 101 110 111

= : — 11
U;+1 0O 0 o 1 1 1 o0 1° (11)

and it is equivalent to the rule-184 elementary CA after Wolfram. Note
that there is a common linearization structure among Burgers, d-Burgers
and u-Burgers equations, we can propose their explicit solutions through
diffusion equation, even to u-Burgers equation. Especially, we can easily
show a pattern selection mechanism of rule-184 CA using the linearization.

We have already obtained various ultradiscretizable nonlinear equations
and interesting results. Ultradiscretization gives a universal view on systems
from continuous to digital, and proposes a new approach to analyze their

mathematical structure.

2 Max—-Plus Equation on Pattern Formation

In the previous section, we introduced successful examples of ultradiscretiza-
tion method. However, there is a weak point in the method. We usually use
transformation of variables like (3) in the ultradiscretization. Then, ‘posi-

tivity’ of dependent variable is necessary for difference equations and not all
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of difference equations can be automatically ultradiscretized. When we meet
this difficulty, one of possible solutions is ‘back-ultradiscretization’, that is,
to make a CA or ultradiscrete equation first, follow the reverse path of ultra-
discretization, and obtain a continuous (differential or difference) equation.

There occurs another difficulty in this approach though back-ultradiscre-
tization is always easy. Because the continuous equation obtained often be-
comes trivial. However, when there is no clue to digitalize a system, this
approach is always valuable to try.

In this section, we show a digital equation relevant to pattern formation
system. This equation is expressed by max and addition operators. Since
ultradiscrete equations are always expressed by max and addition, they are
called ‘max-plus equation’ after max—plus algebra. Since we have not yet
obtained a successful back-ultradiscretization of the digital equation shown
below, we call it max—plus equation, not ultradiscrete equation.

The equation is

ut+1

a= max(uf_l_lj,ut ufj_l_l,ut ul) —ul, — ulsl (12)

1—139 717 Yij i 1]

where ¢ and j are space lattices and ¢ is integer time. This equation is second

order in time and we can rewrite the above equation to a system of equations

t—1

of first order using vf; = u;; ",

(13)

t+1

ij

41 _ t t t t tN ot ot
U;; = max(ui-(-ljaui—lja uij+1auij—1’uij) Uj; — Uy
v

ot
“uij

In this form, we may consider that it is an activator-inhibitor system. The
reason is as follows:(i) u has a diffusion effect by max term. (ii) u decreases
by v. (iii) v is equal to u at a previous time step, that is, v increases if u
increases. (iv) Thus u is activator and v is inhibitor.

Figure 1 shows two numerical results, Fig. 1 (a) shows a target pattern and
(b) a spiral pattern. This pattern is often observed in some of typical pattern
formation systems, for example, reaction-diffusion systems. However, there

are two remarkable features different from usual reaction-diffusion systems.
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One is that (12) is reversible in time and the other is that if u is a solution,
C u is also. Therefore, we consider that a usual reaction-diffusion system
can not be obtained by back-ultradiscretization of (12). Thus there occurs a
question ‘What is a continuous system corresponding to (12)7’

We have not yet succeeded non-trivial back-ultradiscretization of (12),
we can not answer this question now. However, the above system has a
remarkable feature. Let us prepare a family of curves shown in Fig. 2 (a)
and (b) corresponding to Fig. 1 (a) and (b). Each curve is labeled with
an integer as shown in figures. Then, assume values of u’s on curve n are
the same and f! denotes the value on curve n at time ¢. Then, from a
symmetry of (12), (12) reduces to the following one-dimensional equation for

both patterns:

f:z+1 =max( 'rtl.-l-l’f:l,’ :L—l)_f'/tl._f:l,_l' (14)

Note that
ot =max(fg, fi) — fo— fo~ (15)
is applied for n = 0 as a boundary condition in the target pattern and

n becomes a periodic lattice with period 4 in the spiral pattern. Under
this difference on boundary condition, both patterns satisfy the same one-
dimensional equation exactly.

Moreover, both patterns become a traveling wave solution in (14). There-
fore, we can make a reduction further. If we set a traveling wave form

ft = gn—t, we obtain

In41 = max(gn+lagmvgn—l) — 9n — Gn-1 (16)

from (14). We would emphasize the followings:(i) Such exact reduction is very
difficult in continuous reaction-diffusion systems. (ii) The families of curves
in. Fig. 2 can be considered to be digital analogues to circles and spirals in
a continuous. coordinate system.: These points suggest (12) is related to a
solvable, continuous pattern model. It is an interesting future problem to

find a continuous correspondence. .
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1 1 1.1..1..1 o1 1 1 1
1 1 1 1., 1.1 1 1..1
1 1 1 1 1. 1..1 1.1 1..1
1 1 1.1 1..1 .1 1 1 1
1 1 1 1 L1001 1 1 1
1 1 1 1..1 1..1 1.1 1 1
1 1 1.1 1..1 S | 1 1 1
1 1.1.1..1 1.1 1 1 1
1 1 1.1..1..1 .. 1 i 1 1
1 1 1 1 1 1..1 1.1 1 1
1 1 1 1.. .1..1 1 1 1
1 1 1.1 1..1 .1 1 1 1
1 1 1 1 1 1..1 1.1 1 1
1 1 1..1 .1..1 1 1 1
1 1 1.1..1..1 1 1 1 1
t t+1

i+ 2

Figure 1 (a) : Target pattern. ‘" and ‘a’ denote;:0 and —1 respectively. This

solution is periodic with.a period of 3 time steps.
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1 1..... 1 1...1 1 1

1 1 1 1 .. 1. 1.1 1
1 1.1 1. .1, 1 1 1
1 1 1 .1 .1 1..... 1

1 1..... 1.. 1. 1 1 1

1 1 1 A 1 1.1 1
1 1.1 . 1. 1 1 1 1
1 1 1 .1 1...1..... 1
1 1 1 . . 1. 1.1 1

1 1..... 1 .1 A | 1 1

1 1 1 1 1...1..... 1 1
1 1.1 1 10001 1 1
1 1 1.... . 1. 1.1 1

1 1..... 1 .1 1 1 1

1 1 1 . 1. 1 1..... 1 1

t t4+1

1 1.1 . 1. 1 1 1 1
1 1 1 .1 .1 1..... 1

1 1..... 1 1...1 1 1

1 1 1 1 .1 1.1 1
1 1.1 1. . 1. 1 1 1
1 1 1 .1 .1 1..... 1

1 1..... 1.. 1. 1 1 1

1 1 1 N R 1 1.1 1

1 1 1...1. 1 1..... 1 1
1 1.1 . 1. 1...1 1 1
1 1 1 . 1. 1.1 1

1 1..... 1 .1 B | 1 1

1 1 1...1 1. 1..... 1 1
1 1.1 . 1. 1...1 1 1
1 1 1 . 1. 1.1 1

t+2 t+3

Figure 1 (b) :-Spiral pattern. ‘.’ denotes 0. This solution is periodic
with a period of 4 time steps.
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Figure 2: Family of curves. (a) and (b) correspond to patterns

in Fig. 1 (a) and (b) respectively.



