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Traffic flow on no-passing freeways has been extensively studied using

the car-following models. Here, let us investigate two car-following mod-

els. One is Newell-Whitham type model (NWM) $[1, 2]$ . NWM is one of the

traditional car-following model. It has been studied in the field of traffic en-

gineering for a long time. The other is Optimal Velocity model $(\mathrm{O}\mathrm{V}\mathrm{M})[3]$ .

OVM is a new mode of the car-following model. It was proposed in 1994 by

a group of particle theorists. The fundamental concept of the car-following

model is the assumption that the driving behavior of car is affected only

the preceding car. Both NWM and OVM have common structure that the

effect of the preceding car is expressed only by an velocity function $V(h)$ ,

depending the headway. It’s sometimes called the optimal velocity. $V(h)$

is the most desirable velocity for the driver at given headway. Generally

speaking, when the headway is longer, the velocity is larger. Driver tries

to adjust its velocity to be the optimal one.

NWM is given by a first-order difference-differential equation:

$\dot{x}_{n}(t+\tau)=V(X_{n-1}(t)-xn(t))$ $(n=1,2, \ldots N)$ .

$x_{n}$ is the position of the n-th car. The time lag $\tau$ represents a delay of the

velocity adjustment. On the other hand, OVM is described by a second
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order differential equation:

$\ddot{x}_{n}(t)=a[V(X_{n-1}(t)-xn(t))-\dot{X}_{n}(t)]$ $(n=1,2, \ldots N)$ .

The acceleration of car is proportional to the difference between the present

velocity and the optimal one. A constant $a$ is the sensitivity of driver. For

skillful drivers, $a$ become large.

By truncating the Taylor expansion of $\dot{x}_{n}(t+\tau)$ as

$\dot{x}_{n}(t+\tau)\simeq\dot{x}_{n}(t)+\tau\ddot{x}_{n}(t)$ ,

NWM is formally reduced to OVM. Then we know $a$ essentially corre-

sponds to inverse of $\tau$ . Actually, NWM and OVM are quite similar in their

qualitative behavior, especially with regard to the generation of density

waves. Numerical simulations with a hyperbolic tangent optimal velocity

function,

$V(h)= \xi+\eta\tanh(\frac{h-\rho}{2\sigma})$ ,

show that these models give rise to the spontaneous generation of traffic

congestion.

For $N$ cars on a circuit of length $L$ , the uniform flow with headway

$h(=L/N)$ and velocity $V(h)$ ,

$x_{n}^{(0)}(t)=V(h)t-hn$ ,

is a trivial solution of both models. It describes an equal spacing row of

cars moving with same velocity on a circuit. If $\tau$ is small enough, the
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uniform flow is linearly stable for any headway. However, when $\tau$ exceeds

a critical value $\tau_{C}=\sigma/\eta$ , the uniform flow becomes linearly unstable on a

intermediate range of headway;

In this case, we can observe the spontaneous generation of density wave in

the simulation. For OVM, $\tau$ is substituted by inverse of the sensitivity.

Then we assume that NWM has the traveling wave solution of following

$\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}[4]$ :

$x_{n}(t)=c_{t-}nh+A \ln\frac{\theta_{0}(u-\beta+\delta,q)}{\theta_{0}(u-\beta-\delta,q)}$.

Here, $q$ is the modulus parameter of the theta function and $u=\nu t-2\beta n$ .

The headway $\triangle x_{n}(t)\equiv x_{n-1}(t)-xn(t)$ is given as

$\triangle x_{n}(t)=h+A\ln\frac{\theta_{0}^{2}(u)\theta 2(0\delta+\beta)-\theta 21(u)\theta_{1}2(\delta+\beta)}{\theta_{0}^{2}(u)\theta^{2}0(\delta-\beta)-\theta_{1}^{2}(u)\theta 21(\delta-\beta)}$.

It is logarithm of a rational expression of $\theta_{0}^{2}(u)$ and $\theta_{1}^{2}(u)$ . If and only if

the Whitham condition $v\tau=\beta[2]$ is satisfied, the velocity at $t+\tau$ is also

written in a rational expression of $\theta_{0}^{2}(u)$ and $\theta_{1}^{2}(u)$ as

$..|_{\backslash },\cdot.’.:_{i^{\mathrm{i}}}$ . ノ.‘
$\sim..’\dot{x}_{n}(t+\tau)=^{c}+A\mathcal{U}\frac{\theta_{0}^{2}(u)(\theta^{2}(0\delta));2u-\theta_{1}()(\theta^{2}(1\delta))\prime}{\theta_{0}^{2}(u)\theta \mathrm{o}(2\delta)-\theta_{1}2(u)\theta 2(1\delta)}$ .

In this case, we can eliminate $\theta_{0}^{2}(u)$ and $\theta_{1}^{2}(u)$ from the above two expres-
,.

sions and $\dot{x}_{n}(t+\tau)$ is expressed by a single-valued function of $\triangle x_{n}(t)$ . We

find that the Jresulting optimal velocity function is given by a hyperbolic

tangent. Thus, we find the relations between the ansatz parameters and
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the coefficients of the model:

$\xi=C+\frac{\sigma\beta}{2\tau}\frac{\partial}{\partial\beta}\ln\frac{\theta_{1}(2\delta+\beta,q)}{\theta_{1}(2\delta-\beta,q)}$,

$\eta=\frac{\sigma\beta}{2\tau}\frac{\partial}{\partial\beta}\ln\frac{\theta_{1}^{2}(\beta,q)}{\theta_{1}(2\delta+\beta,q)\theta 1(2\delta-\beta,q)}$ ,

$\rho=h-\sigma\ln\frac{\theta_{1}(2\delta-\beta,q)}{\theta_{1}(2\delta+\beta,q)}$ ,

$\sigma=A$ .

The original OVM, which has a constant sensitivity and a single-valued

optimal velocity function, can not solved by the theta function ansatz,

because $\theta_{0_{}}(u)\theta_{1}(..u)..\theta_{2}(u)\theta 3(u_{J})..-$ter.m$\mathrm{S}\mathrm{a}\mathrm{P}\mathrm{p}\mathrm{e}\mathrm{a}\mathrm{r}$bo:$..$ .t. $\mathrm{h}$

. in
$\dot{x_{n}\backslash }.\cdot$

.
and

$\mathrm{i}\mathrm{n}\ddot{x}_{n}*\cdot..\mathrm{H}_{\mathrm{o}\mathrm{W}}.\cdot..\mathrm{e}\mathrm{V}’\iota \mathrm{e}\mathrm{r}$

,

if we allow the sensitivity $a$ to be headway-dependent, these terms can

cancel out. Thus, we find that OVM

$\ddot{x}_{n}=a(\triangle x_{n})[V(\triangle xn)-\dot{X}_{n}]\mathrm{t}$

with the headway-dependent sensitivity

$a(h)= \alpha\cosh(\frac{h-\rho}{2\sigma})$

is solved by the the theta function. ansatz. The headway-depende.nt sen-

sitivity $a(h)$ becomes small in the intermediate $\mathrm{h}\mathrm{e}\mathrm{a}\mathrm{d}\mathrm{W}\mathrm{a}\mathrm{y}\backslash \cdot$ Since the car

bunching occurs first in this range, this model is $i$ easier to generate conges-

tion than the original OVM.
$\backslash$

. : $-_{\sigma}j.$ .
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Figure 1:

Now, let us investigate spectrum of the solution of NWM. Under the

cyclic boundary condition

$X_{n+N}(t)=xn(t)-L$ ,

the mean headway of the solution must be given by $h=L/N$ , and $\beta$ must

be one of the discrete values:

$\beta=\frac{1}{2N},$ $\frac{2}{2N}$ ... , $\frac{n_{\mathrm{b}}}{2N}$

For given mean headway $h$ , we can obtain the spectrum for the possible $n_{\mathrm{b}}$

and $q$ . Once $n_{\mathrm{b}}$ and $q$ is determined, we can calculate all other parameter of

the ansatz and concretely construct the multibunch $\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}[5]$ . In Figure

1, we show a result of a numerical simulation with $N=20,$ $\tau=$ 0.58228

and $V(h)=\tanh(h-2)+\tanh 2$ after a sufficient relaxation time, $t\simeq 6\mathrm{x}$

$10^{4}$ . The curve plotted by the dots represents the results of the numerical

simulation, while the solid line represents the analytic one-bunch solution

with $q=0.70792140328755$ .
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Figure 2:

During the simulation, we observe a cascade of transitions of multibunch

states. Until $t\simeq 4\mathit{0}\mathit{0}$ , three-bunch configuration was formed. It gradually

became distorted, with one of the bunches moving closer to a neighboring

bunch. At $t\simeq 468\mathit{0}$ , the fusion of these bunches occurred. The two-bunch

configuration existed about ten times longer than the three-bunch one.

However, eventually, one of the bunches began to shrink. This bunch was

finally absorbed by the other at $t\simeq$ 51560. The simulation was contin-

ued until $t=2\cross 10^{5}$ , with the one-bunch solution continuing to survive,

unchanged in form.

In Figure 2, we show the spectrum of the multibunch solution for $N=$

$20,$ $\tau=\mathit{0}.\mathit{5}8228$ and $V(\triangle x)=\tanh(\triangle x-2)+\tanh 2$ . In this case, maxi-

mally five bunch solution can exists. The dashed line indicates the bound-

ary of linear stability. We can see that one- and two-bunch solution can

stay in the linear stable region. It means that there are coexistence phases
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Figure 3:

of uniform and congested flow. Thus, we find that there are three different

phase. One is the uniform flow phase, where a stable uniform flow only

exists. Next is the congested flow phase, where a stable congested flow and

an unsta.ble uniform flow exist. The third is the coexistence phase, where a

stable congested flow and a stable uniform flow exist. In this phase, an un-

stable congested flow also exists. If we prepare an unstable congested flow

in the coexistence phase as an initial configuration of numerical simulation,

it $\mathrm{t}\mathrm{r}\mathrm{a}_{\iota}\mathrm{n}\mathrm{s}\mathrm{f}_{\mathrm{o}\mathrm{r},i}\mathrm{m}\mathrm{s}$ into a stable congested fl.ow or a uniform flow.

In, the numerical simulation, we observe a hysteresis phenomena on the

phase transition between the uniform flow phase and the congested flow

$\mathrm{p}\mathrm{h}.\mathrm{a}\mathrm{s}\mathrm{e}[6]$ (Figure 3). It exhibits the
,

$\mathrm{f}\mathrm{e}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}$ of the “subcritical Hopf bifur-

cation” Taking the velocity amplitude $\triangle \mathrm{v}$ as an order parameter, we find
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that the numerical result agrees quite well with the values expected from

the analytical solution. We prepare a stable uniform configuration in the

uniform flow phase (V). When we increase $h$ , the uniform flow survives in

the coexistence phase (IV). Ajump from a uniform flow to a congested flow

occurs at the boundary between the coexistence phase and the congested

flow phase (III). The congested flow continues to realize even in the coex-
$r\}$

istence phase (II). It jumps into a uniform flow at the boundary between

the coexistence phase and the uniform flow phase (I).

Now I summarize the results. First, We find that NWM and OVM with

headway-depending sensitivity have a set of solutions described by elliptic

theta functions. They represents the multibunch traveling wave. By the

numerical simulation, we observe the cascade of transitions of multibunch

states. The series of transitions from a multi-bunch configuration to the

next observed here, suggests that each multi-bunch solution $\mathrm{c}\mathrm{o}\dot{\mathrm{r}}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{s}$

to a heteroclinic point of the system. ’ However, no flow out of the one-

bunch solution was $\mathrm{o}\mathrm{b}_{\mathrm{S}}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{d},$

.
which

$\mathrm{s}\mathrm{u}\mathrm{g}\mathrm{g}\mathrm{e}_{\mathrm{i}}\mathrm{s}\mathrm{t}\mathrm{s}$ th.at it is $\mathrm{a}_{}\mathrm{n}$ attractor. It is

also possible that each of the $\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}’ \mathrm{i}-\dot{\mathrm{b}}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{h}\mathrm{S}\mathrm{o}\dot{\mathrm{l}}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$ is a
,

$\mathrm{k}^{\backslash }\mathrm{i}\mathrm{n}\mathrm{d}$ of $\dot{\mathrm{M}}$ ilnor

$\mathrm{a}\mathrm{t}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}[7]$, which is unstable with respect to any small $\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{b}^{\backslash }\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\prime j$ , but

globally attracts orbits. To fully understand the situation we must inves-

tigate the stability and the attracting domain of the multi-bunch solutions

more precisely. Second, There are coexistence phase of uniform flow and

congested flow, which are separated by an unstable congested solution.

We also find an hysteresis phenomenon on the phase transition between
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uniform flow and congested flow. It exhibits the feature of the subcritical

Hopf bifurcation.
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