Coefficient Inequalities for Ceratin Analytic Functions

JUNICHI NISHIWAKI and SHIGEYOSHI OWA

Abstract．For real $\alpha(\alpha>1)$ ，subclasses $M(\alpha)$ and $N(\alpha)$ of analytic fuctions $f(z)$ with $f(0)=0$ and $f^{\prime}(0)=1$ in U are introduced．The object of the present paper is to consider the coefficient inequalities for functions $f(z)$ to be in the classes $M(\alpha)$ and $N(\alpha)$ ．Further，the bounds of α for functions $f(z)$ to be starlike in U are considered．

1 Introduction

Let A denote the class of functions $f(z)$ of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

which are analytic in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$ ．Let $M(\alpha)$ be the subclass of A consisting of functions $f(z)$ which satisfy

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<\alpha \quad(z \in U)
$$

for some $\alpha(\alpha>1)$ ．And let $N(\alpha)$ be the subclass of A consisting of functions $f(z)$ which satisfy

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}<\alpha \quad(z \in U)
$$

for some $\alpha(\alpha>1)$ ．Then，we see that $f(z) \in N(\alpha)$ if and only if $z f^{\prime}(z) \in M(\alpha)$ ．Let us give examples of functions $f(z)$ in the classes $M(\alpha)$ and $N(\alpha)$ ．

Remark For $1<\alpha \leq \frac{4}{3}$ ，the classes $M(\alpha)$ and $N(\alpha)$ were introduced by Uralegaddi， Ganigi and Sarangi［2］．

Example (i) $f(z)=z(1-z)^{2(\alpha-1)} \in M(\alpha)$
(ii) $g(z)=\frac{1}{2 \alpha-1}\left\{1-(1-z)^{2 \alpha-1}\right\} \in N(\alpha)$

Proof. Since $f(z) \in M(\alpha)$ if and only if

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<\alpha
$$

we can write

$$
\frac{\alpha-\frac{z f^{\prime}(z)}{f(z)}}{\alpha-1}=\frac{1+z}{1-z}
$$

which is equivalent to

$$
\frac{f^{\prime}(z)}{f(z)}-\frac{1}{z}=\frac{2(\alpha-1)}{1-z}
$$

Integrating both sides of the above equality, we have

$$
f(z)=z(1-z)^{2(\alpha-1)} \in M(\alpha)
$$

Next, since $g(z) \in N(\alpha)$ if and only if $z g^{\prime}(z) \in M(\alpha)$,

$$
z g^{\prime}(z)=z(1-z)^{2(\alpha-1)}
$$

for function $g(z) \in N(\alpha)$.It follows that

$$
\begin{aligned}
g(z) & =\frac{-1}{2 \alpha-1}(1-z)^{2 \alpha-1}+\frac{1}{2 \alpha-1} \\
& =\frac{1}{2 \alpha-1}\left\{1-(1-z)^{2 \alpha-1}\right\} \in N(\alpha) .
\end{aligned}
$$

2 Coefficient inequalities for the classes $M(\alpha)$ and $N(\alpha)$

We try to derive sufficient conditions for $f(z)$ which are given by using coefficient inequalities.

Theorem 1. If $f(z) \in A$ satisfies

$$
\sum_{n=2}^{\infty}\{(n-1)+|n-2 \alpha+1|\}\left|a_{n}\right| \leq 2(\alpha-1)
$$

for some $\alpha(\alpha>1)$, then $f(z) \in M(\alpha)$.
Proof. Let us suppose that

$$
\sum_{n=2}^{\infty}\{(n-1)+|n-2 \alpha+1|\}\left|a_{n}\right| \leq 2(\alpha-1)
$$

for $f(z) \in A$.
It sufficies to show that

$$
\left|\frac{\frac{z f^{\prime}(z)}{f(z)}-1}{\frac{z f^{\prime}(z)}{f(z)}-(2 \alpha-1)}\right|<1 \quad(z \in U)
$$

We have

$$
\begin{aligned}
\left|\frac{\frac{z f^{\prime}(z)}{f(z)}-1}{\frac{z f^{\prime}(z)}{f(z)}-(2 \alpha-1)}\right| & \leq \frac{\sum_{n=2}^{\infty}(n-1)\left|a_{n}\right||z|^{n-1}}{2(\alpha-1)-\sum_{n=2}^{\infty}|n-2 \alpha+1|\left|a_{n}\right||z|^{n-1}} \\
& <\frac{\sum_{n=2}^{\infty}(n-1)\left|a_{n}\right|}{2(\alpha-1)-\sum_{n=2}^{\infty}|n-2 \alpha+1|\left|a_{n}\right|}
\end{aligned}
$$

The last expression is bounded above by 1 if

$$
\sum_{n=2}^{\infty}(n-1)\left|a_{n}\right| \leq 2(\alpha-1)-\sum_{n=2}^{\infty}|n-2 \alpha+1|\left|a_{n}\right|
$$

which is equivalent to our condition

$$
\sum_{n=2}^{\infty}\{(n-1)+|n-2 \alpha+1|\}\left|a_{n}\right| \leq 2(\alpha-1)
$$

of the theorem. This completes the proof of the theorem.
By using Theorem1, we have

Corollary 1. If $f(z) \in A$ satisfies

$$
\sum_{n=2}^{\infty} n\{(n-1)+|n-2 \alpha+1|\}\left|a_{n}\right| \leq 2(\alpha-1)
$$

for some $\alpha(\alpha>1)$, then $f(z) \in N(\alpha)$.
Proof. From $f(z) \in N(\alpha)$ if and only if $z f^{\prime}(z) \in M(\alpha)$, replacing a_{n} by $n a_{n}$ in Theorem1 we have the corollary.

In view of Theorem1 and Corollary1, if $1<\alpha \leq 2$, then $n-2 \alpha+1 \geq 0$ for all $n \geq 2$.
Thus we have
Corollary 2. (i) If $f(z) \in A$ satisfies

$$
\sum_{n=2}^{\infty}(n-\alpha)\left|a_{n}\right| \leq \alpha-1
$$

for some $\alpha(1<\alpha \leq 2)$, then $f(z) \in M(\alpha)$.
(ii) If $f(z) \in A$, satisfies

$$
\sum_{n=2}^{\infty} n(n-\alpha)\left|a_{n}\right| \leq \alpha-1
$$

for some $\alpha(1<\alpha \leq 2)$, then $f(z) \in N(\alpha)$.

3 Starlikeness for functions in $M(\alpha)$ and $N(\alpha)$

By Silverman [1], we know that if $f(z) \in A$ satisfies

$$
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq 1
$$

then $f(z) \in S^{*}$, where S^{*} denotes the subclsses of A consisting of all univalent and starlike functions $f(z)$ in U. Thus we have

Theorem 2. If $f(z) \in A$ satisfies

$$
\sum_{n=2}^{\infty}(n-\alpha)\left|a_{n}\right| \leq \alpha-1
$$

for some $\alpha\left(1<\alpha \leq \frac{4}{3}\right)$, then $f(z) \in S^{*} \cap M(\alpha)$, therefore, $f(z)$ is starlike in U. Further, if $f(z) \in A$ satisfies

$$
\sum_{n=2}^{\infty} n(n-\alpha)\left|a_{n}\right| \leq \alpha-1
$$

for some $\alpha\left(1<\alpha \leq \frac{3}{2}\right)$, then $f(z) \in S^{*} \cap N(\alpha)$, therefore, $f(z)$ is starlike in U.
Proof. Let us consider α such that

$$
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq \sum_{n=2}^{\infty} \frac{n-\alpha}{\alpha-1}\left|a_{n}\right| \leq 1
$$

Then we have $f(z) \in S^{*} \cap M(\alpha)$ by means of Theorem1. This inequality holds true if

$$
n \leq \frac{n-\alpha}{\alpha-1} \quad(n=2,3,4, \cdots)
$$

Therefore, we have

$$
1<\alpha \leq 2-\frac{2}{n+1} \quad(n=2,3,4, \cdots)
$$

which shows $1<\alpha \leq \frac{4}{3}$. Next, considering α such that

$$
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq \sum_{n=2}^{\infty} \frac{n(n-\alpha)}{\alpha-1}\left|a_{n}\right| \leq 1
$$

we have

$$
n \leq \frac{n(n-\alpha)}{\alpha-1} \quad(n=2,3,4, \cdots)
$$

which is equivalent to

$$
1<\alpha \leq \frac{n+1}{2} \quad(n=2,3,4, \cdots)
$$

This implies that $1<\alpha \leq \frac{3}{2}$.

Finally, by virtue of the result for convex functions by Silverman [1], we have if $f(z) \in A$ satisfies

$$
\sum_{n=2}^{\infty} n^{2}\left|a_{n}\right| \leq 1
$$

then $f(z) \in K$, where K denotes the subclass of A consisting of all univalent and convex functions $f(z)$ in U. Using the same manner as in the proof of Theorem2, we derive

Theorem 3. If $f(z) \in A$ satisfies

$$
\sum_{n=2}^{\infty} n(n-\alpha)\left|a_{n}\right| \leq \alpha-1
$$

for some $\alpha\left(1<\alpha \leq \frac{4}{3}\right)$, then $f(z) \in K \cap N(\alpha)$, therefore, $f(z)$ is convex in U.

4 Bounds of α for starlikeness

Note that the sufficient for $f(z)$ to be in the class $M(\alpha)$ is given by

$$
\sum_{n=2}^{\infty}\{(n-1)+|n-2 \alpha+1|\}\left|a_{n}\right| \leq 2(\alpha-1)
$$

Since, if $f(z) \in A$ satisfies

$$
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq 1
$$

then $f(z) \in S^{*}$ (cf. [1]), it is interesting to find the bounds of α for starlikeness of $f(z) \in M(\alpha)$.

To do this, we have to consider the following inequality

$$
\begin{aligned}
\sum_{n=2}^{\infty} n\left|a_{n}\right| & \leq \frac{1}{2(\alpha-1)} \sum_{n=2}^{\infty}\{(n-1)+|n-2 \alpha+1|\}\left|a_{n}\right| \\
& \leq 1
\end{aligned}
$$

which is equivalent to

$$
\sum_{n=2}^{\infty}\{|n-2 \alpha+1|+(3-2 \alpha) n\}\left|a_{n}\right| \geq 0
$$

Let us define

$$
F(n)=|n-2 \alpha+1|+(3-2 \alpha) n \quad(n \geq 2)
$$

Then, if $F(n)$ satisfies

$$
\sum_{n=2}^{\infty} F(n)\left|a_{n}\right| \geq 0
$$

then $f(z)$ belongs to S^{*}.
Theorem 4. Let $f(z) \in A$ satisfy

$$
\sum_{n=2}^{\infty}\{(n-1)+|n-2 \alpha+1|\}\left|a_{n}\right| \leq 2(\alpha-1)
$$

for some $\alpha>1$. Further, let δ_{k} be defined by

$$
\delta_{k}=\sum_{n=k}^{\infty} F(n)\left|a_{n}\right|
$$

Then,
(i) if $1<\alpha \leq \frac{3}{2}$, then $f(z) \in S^{*}$,
(ii) if $\frac{3}{2} \leq \alpha \leq \min \left(\frac{13}{8}, \frac{3+\delta_{3}}{2}\right)$, then $f(z) \in S^{*}$,
(iii) if $\frac{8}{3} \leq \alpha \leq \min \left(\frac{17}{10}, \frac{12-\delta_{4}+\sqrt{\delta_{4}^{2}+48 \delta_{4}+48}}{12}\right)$, then $f(z) \in S^{*}$.

Proof. For $1<\alpha \leq \frac{3}{2}$, we know that

$$
n-2 \alpha+1 \geq 3-2 \alpha \geq 0 \quad(n \geq 2)
$$

that is that $F(n) \geq 0(n \geq 2)$. Therefore, we have

$$
\sum_{n=2}^{\infty} F(n)\left|a_{n}\right| \geq 0
$$

If $\frac{3}{2} \leq \alpha \leq \frac{13}{8}$, then $F(2)=3-2 \alpha \leq 0$ and

$$
\begin{aligned}
F(n) & =2 n(2-\alpha)+1-2 \alpha \\
& \geq 13-8 \alpha \\
& \geq 0
\end{aligned}
$$

for $n \geq 3$. Further, we know that

$$
\left|a_{n}\right| \leq \frac{2(\alpha-1)}{(n-1)+|n-2 \alpha+1|} \quad(n \geq 2)
$$

which given us that $\left|a_{2}\right| \leq 1$. therefore, we obtain that

$$
\begin{aligned}
\sum_{n=2}^{\infty} F(n)\left|a_{n}\right| & =F(2)\left|a_{2}\right|+\sum_{n=3}^{\infty} F(n)\left|a_{n}\right| \\
& \geq 3-2 \alpha+\delta_{3} \geq 0
\end{aligned}
$$

for

$$
\frac{3}{2} \leq \alpha \leq \min \left(\frac{13}{8}, \frac{3+\delta_{3}}{2}\right)
$$

Furthermore, if $\frac{13}{8} \leq \alpha \leq \frac{17}{10}$, then

$$
\begin{aligned}
& F(2)=3-2 \alpha \leq 0 \\
& F(3)=|4-2 \alpha|+3(3-2 \alpha) \\
&=13-8 \alpha \\
& \leq 0,
\end{aligned}
$$

and

$$
\begin{aligned}
F(n) & =|n-2 \alpha+1|+(3-2 \alpha) n \\
& =4 n+1-2(n+1) \alpha \\
& \geq \frac{3(n-4)}{5} \\
& \geq 0
\end{aligned}
$$

for $n \geq 4$. Noting that $\left|a_{2}\right| \leq 1$ and $\left|a_{3}\right| \leq \frac{\alpha-1}{3-\alpha}$, we conclude that

$$
\begin{aligned}
\sum_{n=2}^{\infty} F(n)\left|a_{n}\right| & =F(2)\left|a_{2}\right|+F(3)\left|a_{3}\right|+\sum_{n=4}^{\infty} F(n)\left|a_{n}\right| \\
& \geq(3-2 \alpha)+(13-8 \alpha) \frac{\alpha-1}{3-\alpha}+\delta_{4} \\
& \geq 0
\end{aligned}
$$

for α which satisfies

$$
6 \alpha^{2}-\left(12-\delta_{4}\right) \alpha+4-3 \delta_{4} \leq 0
$$

This shows that

$$
\frac{8}{3} \leq \alpha \leq \min \left(\frac{17}{10}, \frac{12-\delta_{4}+\sqrt{\delta_{4}^{2}+48 \delta_{4}+48}}{12}\right)
$$

This completes the proof of Theorem4.
Finally, by virtue of Theorem4, we may supporse Conjecture. If $f(z) \in A$ satisfies

$$
\sum_{n=2}^{\infty}\{(n-1)+|n-2 \alpha+1|\}\left|a_{n}\right| \leq 2(\alpha-1)
$$

for some $1<\alpha<2$, then $f(z) \in S^{*}$.

References

[1] H.Silverman, Univalent functions with negative coefficients,Proc. Amer. Math. Soc. 51(1975),109-116.
[2] B.A.Uralegaddi, M.D.Ganigi and S.M.Sarangi, Univalent functions with positive coefficients,Tamkang J. Math. 25(1994),225-230.

> Department of Mathematics
> Kinki University
> Higashi-Osaka, Osaka 577-8502
> Japan

