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FRACTIONAL AND OTHER DERIVATIVES IN UNIVALENT
FUNCTION THEORY

H.M. SRIVASTAVA

Abstract

A considerably large variety of linear operators (such as the
familiar operators of fractional derivatives, the Ruscheweyh
derivative, the Saldgean derivative, and so on) can be found
to have been applied rather frequently in the theory of analytic
and univalent functions. The main purpose of this lecture is to
present several instances of wusefulness of some of the
aforementioned derivative operators in univalent function
theory.

1. Introduction and Definitions

Let A (p, k) denote the class of functions f normalized by

f(z)=2"+ Zanz" (p<k; pkeN:={1,23,...}), (1.1)
n=k
which are analytic in the open unit disk
Uu:=u(),
where, for latter convenience,
U(r):={z:2€C and |z|<r (r>0)}. (1.2)
(See, for details, [8], [11], and [33].) Also let
Ap)=Ap,p+1), A:=A(1), and A :=A(1,k+1). (1.3)
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For analytic functions f and g given by

f(z Zanz and g¢(z Zb 2" (1.4)

n=0 n=0

we denote by f * g the Hadamard product (or convolution) of f and g, defined
(as usual) by

(f*9)(z Zanb 2" x f)(2). (1.5)

Fora;eC(j=1,...,l)and
B;eC\Z; (j=1,...,m; Zy :=={0,-1,-2,...}),
the generalized hypergeometric function
1 (0, .o yan; Bry ooy B; 2)
(with | numerator and m denommator parameters) is defined here by the
infinite series:
1Fo (a1, oo yau; By ooy B 2)

n

L& (), o),
=2 (5. B (16)

(<m+1; I,meN :;NU{O}; z€eU),
where ()),, is the Pochhammer symbol defined, in terms of the familiar Gamma

functions, by

_'(A+n) [1 (n=0)
()‘)n"w_{)\()\+1)---(>\+n—1) (neN). (1.7)

Corresponding to a function
hy (0, ... yau; Biyooo s B 2)
=2 Fp(oa, ... ap By, B 2), (1.8)
we first consider here a linear operator

Hy (e, 005 By Br) < Alp) — Alp),



which is defined by the Hadamard product (or convolution) (see, for details,
Dziok and Srivastava [9, p. 3 et seq.]):

H}(’l,m) (al,--- » QL3 181)“' aﬂm)f(z)

= hp(Q1,... 005 Bry-oo By 2)* f(2)- (1.9)
Thus, for a function f of the form (1.1), it is easily observed that
Hz(f’m) (a1, yau; Bryee s Bm) (2) (1.10)
=P+ ZP" a,z",
n=k

where, for convenience,
N O N Cr
» (n—p)!(ﬂl)n—p...(ﬁm)n—p
Furthermore, after some calculations, we find from the definition (1.9) that
Oéng’m) (051 +1,a9,...,00 ﬂl, L 7/8m) f (Z)

= z% {ngl,m) (a1, yai; By s Bm) f(2)} (1.12)

+ (041 _p) H,Sl’m) (ala AN /817 ‘o 7/6m)f (Z) N
The linear (convolution) operator :

lm .
Hz() Va1, ... ai; Biyeer s Bim)
includes, as its special cases, various other linear operators which were

considered in many earlier works on the subject of analytic and univalent
functions. Some of these special cases are being presented here.

(1.11)

I. The linear operator F (c, _ﬂ,fy) :

FleB,7) f (2) = H*V (0, 67) £ (2), (1.13)
which was considered by Hohlov [12].

II. The linear opefator L(a,7):
L(a,y) f(2) = H*Y (0, 1;9) f (2) = F (a,1;9) f (2), (1.14)

which was considered by Carlson and Shaffer [5].
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II1. The Ruscheweyh derivative operator ®*: A — .A defined by the Hadamard
product (or convolution) (cf. [23]):

@{f@)::aifsﬂq*f(a==H?”(A+1J;nf(@ (1.15)
(A2 -1 fea),
which readily implies that
D"f (2) = w =H® (n+1,1;1) f (2) (1.16)
(71 € Np; f (S A)

IV. The generalized Bernardi-Libera-Livingston linear integral operator
J,: A— A, defined by (cf. [4], [16], and [17])

24 =0 [ 0a=E v L9 £ ) )
(v>-1; feA.

V. The Srivastava-Owa fractional derivative operator Q* : A — A, defined by
(cf., e.g., [31]; see also [28], [29], and [30])
Qf (2) =T (2= X 2D}f (2) = H* (2,12 - N) f (2)
=L(2,2-)) f(2) (1.18)
(AEN\ {1}; fe A,

where D} f (z) denotes the fractional derivative of f (z) of order A, which is
defined as follows (see, for example, [18] and [32]).

Definition 1. The fractional integral of order X is defined, for a function f,
by

A _ 1 f@©
D> () ._F(A)/O s d¢ (A<0), (1.19)

where f (z) is an analytic function in a simply-connected region of the complex
z-plane containing the origin (z = 0), and the multiplicity of (z — ¢)*! is
removed by requiring log (z — ¢) to be real when z — ¢ > 0.
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Definition 2. The fractional derivative of order A is defined, for a
function f, by :

1 d [
Dif(z).—ma/o S 05A<), (1.20)

where f is constrained, and the multiplicity of (z —¢ )_’\ is removed, as in
Definition 1 above.

Definition 3. Under the hypotheses of Definition 2, the fractional
derivative of order n + A is defined, for a function f, by
dn

D™ f(2) == zi—z;D;\f(z) (0SXA<1; neNy. (1.21)

Yet another useful derivative operator, which we shall require in our
presentation here, is the Saldgean derivative operator D™ of order n, which is
defined by (¢f. [25])

Df (2):=f(2) (z€U; fE A, (1.22)
Df(2) =Df (2) :=zf (2) (z€U; fe A, (1.23)

and (in general)
D'f(z) =D (D" 'f(z)) (2€U;neN; feA). (1.24)

2. Applications Involving Subclasses of Analytic
and Multivalent Functions

Various applications of several special cases of the convolution operator [cf.
Equation (1.9)]:

Hz(,”m) (a1, ya; Byyoeo s B

in the study of many interesting subclasses of the class A (p, k) , introduced in
Section 1, can be found to be scattered throughout the literature on Geometric
Function Theory. The recent works of (among others) Saitoh [24], Owa et
al. [19], Chen et al. [7], Fukui et al. [10], Li et al. [15], and Srivastava
et al. (cf., e.g., [28], [29], [30], and [31]) may be cited in this connection. In
particular, motivated essentially by the work of Kim and Srivastava [14], Dziok
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and Srivastava [9] introduced and studied systematically a class V{ (I, m; A, B)
of functions f of the form [¢f. Equation (1.1)]:

fR)=2=) a2 (2.1)
n=k

(p<k;pkeN; a, 20, n=kk+1,k+2,...),
which also satisfy the following condition:
Hl(’l,m) (041 + 1,0{2, ey 1617 o 7ﬁm) f (Z)

(e31 m +p_al
B (o o P B 1 2
1+ Az
-B<LA<B;0<B< -1 ’
1+ Bz (-BsA<B; 0=sB=-1) -

in terms of subordination between analytic functions.

From among many interesting properties and characteristics of the general
class VP (I,m; A, B), we choose to recall here the following results (see, for
details, [9]).

Theorem 1. A function f of the form (2.1) belongs to the class Vi (I,m; A, B)
if and only if

icn an S M (2.3)

n=k

(Co={(B+1)n—(A+1)p}Ta; M :=(B—A)p),
where T',, is defined by (1.11).

Theorem 2. Let a function f of the form (2.1) belong to the class Vi (I,m; A, B).
If the sequence {C,} is nondecreasing, then

_M_
Cy —
Furthermore, if the sequence {%ﬂ} 1s nondecreasing, then

PRSI Sr gt mldized)  @4)

k kM
o - Ml st el e, @)

where C,, and M are defined with (2.3). Each of these results is sharp, with
the extremal function fi given by

fu(2) = 2P — C%kzk (zelU). (2.6)
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Theorem 3. Let C, and M be defined with (2.3) and let us put
fi1(2) =2° and fo(2) =2F — CMz" n=kk+1k+2,...). (27)

Then a function f belongs to the class VE (I, m; A, B) if and only if it is of the
form:

F@) =) bz (zeU), (2.8)
n=k—1
where
> V=1 (20 n=k-1Lkk+1,..). (2.9)
n=k—1

Theorem 4. The radii of starlikeness and convexity for the class VE (I,m; A, B)

are given by
inf P & Ve and inf ﬁ % Ve
n M nzk \n?2 M ’

respectively, where C,, and M are defined with (2.3). The result is sharp.

3. Univalence Criteria Involving Ruscheweyh
and Salagean Derivatives '

Making use of some known results due to Pommerenke [21] involving the
Lowner chain:

L(z,t)=A1(t)z+ A )22+ A3 (t) 2 + -+ (AL (t) #0) (3.1)
and the Lowner differential equation:
0L (z,t) p 0L (z,t)

t 2

ot 5z 2= (3.2)

where ¢ (z,t) is a function regular in U for each ¢ € [0, 00) such that
R(d(2,t) >0 (z€lU; 0=t < o0),

Kanas and Srivastava [13] gave several criteria for univalence involving the
Ruscheweyh derivative operator ®* defined by (1.15) and the Séalagean




derivative operator D™ defined by (1.22), (1.23), and (1.24). Some of these
univalence criteria are presented here in Theorem 5 and Theorem 6 below.

Theorem 5. Let o be a complex number such that |a| S1(a# Fl), and
suppose that f € A. If each of the inequalities:

f'(2) 1 1
7@ 1val =T+l (33
and
e PO N (22 @)
= (o) gy 1) + 00 gy )| 51 @9

holds true for z € U, then the function f is univalent in U.

Theorem 6. Let a be a complex number such that |a| £ 1 (o # —1), and
suppose that f € A. If each of the inequalities:

MO
Df (=] T+a

|22 ((1 +a) [D—ff%f - 1) +(1-12%) (%)’ <1 (3.6)

holds true for z € U, then the function [ is univalent in U.

1
~ [1+aqf

(3.5)

and

Each of these results (Theorem 5 and Theorem 6) would simplify
considerably when we set n =1 (¢f. Kanas and Srivastava [13, p. 268,
Corollary 2.2]). Furthermore, in view of the relationships exhibited by (1.16)
and (1.22), a familiar univalence criterion due to Lars Valerian Ahlfors (1907-
1996) [1] follows immediately from Theorem 5 as well as Theorem 6 in their
special case when n = 0.

4. Analytic Function Classes Using the Salagean Derivative

For a function f € A given by (1.1) with (of course) p = 1 and k replaced
by k + 1, it follows from the definition in (1.22), (1.23), and (1.24) that

D'f(2)=z+ Y j"a;2 (neNy). (4.1)

j=k+1
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With the help of the Silagean derivative operator D", we say that a function
f € Ay is in the class A) , (a,8,7) if and only if
Fox(2) —
: < 4.2
’yFn’,y(z)-l-l——(l—l—’y)a B (42)
(zeU; neN; 0SAS105a<];0<BS1,0S5951),
where, for convenience,
(1=2)2[D"f () + A2 [D"f (2)) _ ¢up (2)
(L=X)D"f (2) + AD**1f (2) Y (2)
Let 7 denote the subclass of A, consisting of functions of the form [cf.
Equation (2.1)]:

Foy(2) =

fR)=2=Y a7 (4.3)
j=k+1
(a; 20, j=k+1,k+2,k+3,...; keN)

and define the class 7\, (a, 3,7) by

7:1),\14: (aaﬂa ’Y) = A;\z,k (aaﬂ,f)/) n 77&:

We note that, by specializing the parameters k, A, «, 3, 7, and n, we can
obtain the following subclasses studied by various authors.

(i) Ty (@, 1,1) = P (k,A\,a)  (Altintas [2])

(ll) 7;)(,)1 (av L, 1) =T (a) and 7;)}1 (av L, 1) = 7—1(,)1 (a7 L, 1) =C (CM)
(Silverman [27])

(iii) %Ok (e, 1, 1) =7, (k) and 7:)119 (0‘7 1, 1) = Tl(,)k (aa L1)=Ca (k)
(Chatterjea [6] and Srivastava et al. [34])

(iv) 7Y (e, 1,1) = P (k, A\,a,n)  (Aouf and Srivastava [3]),
where P (k, A, &, n) represents the class of functions f € Ay which satisfy the
inequality [3, p. 763, Equation (1.5)]:

((1 — ) 2[D"f (2)] + Az [P f ()]
R >a
(1=X)Df(2) + AD"*f (2) )
(zeU;neNy; 0SASL; 05 a< ).
For the general analytic function class 7.\, (c, 3,7) defined by (4.4), we now

present several coefficient (and distortion) inequalities and many other basic

properties (and characteristics), which were proven recently by Srivastava et
al. [35].
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Theorem 7. Let the function f be defined by (4.3). Then f € 72,c (a, B,7) if
and only if

DA =A+MM{G - +B)+B(1+7)(1-a)}a

Jj=k+1
S+ (1-a). (4.4)
The result is sharp, the extremal function being given by
s B+ (1-a)
A=A A{ -1 A+ 87 +B(1+7) (1 -a)}
(j2k+1; keN).

Zl (4.5)

Corollary 1. Let the function f defined by (4.3) be in the class 7:{\k (e, B,7) -
Then

B(1+7)(1-a)
A=A+ {G-1) A+ By +B(1+v) (L -a)}
(j2k+1; keN).

The equality in (4.6) is attained for the function f given by (4.5).

(4.6)

A

a;

Remark 1. Since
1=A+ X S1—p+pj (G2k+L EeN; 0SAsps1),
we have the inclusion property:
T5 (2, 3,7) C T (@, 8,7) (0SASp<S1). (4.7)
Furthermore, for 0 < oy < ay < 1, it is easily verified that

G-DA+N+BA+y)(A-a) G-I +B7)+B(A+7)(1—ay)
1—a - 1—an

b

so that, with the aid of Theorem 7, we obtain the inclusion property:
ILA,k (a2,B8,7) € 7:{\,k (,0,7) (0= Sap<). (4.8)

Theorem 8. For each n € Ny,

Tn/\—i—l,k (aa /8, 7) C ’Z:zi\k (57 6)7) ’ (49)
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where
(148 k+a)+B(1+7)(1—-a)
= 1+8)(k+1)+B(1+7)(1-a) (4.10)
The result is sharp, the extremal function being given by
fz)=2- B(l+7)(1-a) A+ (4.11)

(k+1)" 1+ M) {1+ 87 k+B(1L+7) (1)}

Remark 2. Since £ > «, it follows from Remark 1 that

T (€,8,7) C T\ (,8,7) (neNy)
and hence that

Zél—l,k (a7ﬁ? ’7) C Zik (6) ﬂa 7) C 7:1),\k (a7ﬁ7 7) (’fl € NO) )
where £ is defined by (4.10).

Theorem 9. Let 0S a; <1 (j=1,2) and 0< 3, <1 (j =1,2). Then
J 7

,Z:z),\k (011,,81,1) = Zzl}k (&2,,82,1) ('I’L GVN()) (412)
if and only if
Bi(l—a1)  By(l—a)

= . 4.13
1+ 6, 1+ 8, (4.13)

In particular, if 0 S a<1and 0 < <1, then

) (LB N () 1= B+28

Zz,lc(avﬂ71)_7;},k< 1+,8 71a1 =P k,>‘1 1+,8 ) (414)

(n € N()) .

Theorem 10. Let 0S5 a<1,0<f;S1,and 0= v; =1 (j =1,2). Then
Tow (@, B1,71) = Ty (@, B, 72) - (n € No) (4.15)
if and only if ‘
B (1+m) _ B (L4 17,)
1-p5 1-p5,
In particular, if 0 <3< 1and 0 < v £ 1, then

A A B(1+7)
(8 =T (a5

1) (n € Np). (4.16)



Let f (z) be defined by (4.3) and let

g(2)=z; Z b2

j=k+1
(b; 20; j=k+1,k+2,k+3,...; keN). (4.17)

Then the modified Hadamard product (or convolutlon) of f(z) and ¢(z) is
deﬁned here by

(feg)(2)i=2— ) ajb;?! (4.18)

j=k+1
(@a;20; 0,20, j=k+1,k+2,k+3,...; keN).

In terms of the modified Hadamard product (or convolution), by employing
the technique used earlier by Schild and Silverman [26], we have

Theorem 11. Let the function f defined by (4.3) and the function g defined by
(4.17) belong to the class T\ (n,5,7). Then the modified Hadamard pmduct

f ® g defined by (4.18) belongs to the class T (1, 8,7) , where

(k+1)" (L+ M) {1+ By k+B(1+7) (1 —a)}?
B+ (1-a)’{Q+87)k+B(1+17)}

T ) R+ AR+ B (-} — (B (1 o
The result is sharp, the extremal function being given by
f(z)=g(2)

. F+)(1-a)

R U Ve T Vo (F R L R T s P (6411)))

Theorem 12. If each of the functions f and g belongs to the same class
T (@, 8,7), then (f o g) (2) belongs to the class T.), (p,1,1) or, equivalently,
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P (k,\,n), where
(k+ 1" 1+ XE) {1+ BNk +B(1+7) (1 —a)}’
- (k+ D {81+ (1-a)}®
(k+1)" 1A+ M) {1+ 8NEk+B(L+7)1-a) —{B(1+7) (1 -a)}

pi=

The result is the best possible for the functions f (z) and g (z) defined by (4.20).

Theorem 13. Let the function f defined by (4.3) and the function g defined
by (4.17) be in the same class T\ (o, B,7) . Then the function h(z) defined

by

oo

h(z):=z— Z (a5 +b2) 27 (4.21)

j=k+1

belongs to the class ’I;;\k (0,8,7), where

k+D)" A+ M) {QA+ BN k+B(1+7)(1—a))
_ —28(1+7) (1= )" {(1+87) k+B(1+7)} .
(k+1)" L+ M) {1+ B k+B(1L+7)(1—a)}) —2{8(1L+7)(1-a)}

The result is sharp for the functions f (z) and g (z) defined by (4.20).

Theorem 14. Let the function f defined by (4.3) be in the class ’1;"k (o, 3,7),
and let ¢ be a real number such that ¢ > —1. Then the function F (z) defined
by [cf. Equation (1.17)]

F(2) = "’“/ EUE @) dE (c> —1; f € Ay (4.22)

ZC

belongs to the class szk (k,B,7), where
_ A4kt (c+l)a}+B8(1+7y)(1—a)
1+By)(k+c+)+B(1+y)(1—a)
The result is sharp for the function f(z) defined by (4.11).

Theorem 15. If f € Z;Ak (a, B,7), then the function F (z) defined by (4.22)

belongs to the class ’];;\k (i, 1,1) or, equivalently, P (k, A, u,n) , where
(4B (cHk+ ) —cBl+r)(1-a)
I+8Y)(c+k+D)+B(1+7)(1-a)’

(4.23)
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The result is sharp, the extremal function f (z) being given by (4.11).

Theorem 16. Let the function F (z) given by

F(z)=2- Y di# (d4;20; j=k+1Lk+2,k+3,...; k€N) (424)
j=k+1
be in the class T, (a,3,7) , and let c be a real number such that ¢ > —1. Then
the function f (z) defined by (4.22) is univalent in |z| < R, where

A=A+ G-+ B+ (L —a)}f (et 1))1/0—”
B(L+7)(L—a)(c+y) :

R:= inf (
j2k+1
(4.25)

The result is sharp, the extremal function being given by

BA+7)(1-a)(c+])

JE) =2 i X+ A G- D+ B+ (- e+ 1)
(4.26)

2

(j2k+1; keN).

Each of the following distortion inequalities (Theorem 17, Theorem 18,
Corollary 2, and Corollary 3) involves the fractional calculus operators which
we introduced in Section 1 by means of Definitions 1, 2, and 3.

Theorem 17. Let the function f defined by (4.3) be in the class T,y (o, 8, 7) -
Then

) plta
|Dz_“ (D'f (3))| 2 TE+n
'<1_ B4+ (A-a)T(k+2)T(2+p) ,,,k)
(k+1)n_z(1+>\k){(1+ﬁ7)k+5(1+7)(1—a)}F(k+2+u% )
4.27

(lz|]=r<1; p>0; i €{0,1,... ,n})



and

D (PF @) = v |

-(1+ B+ (A=) (k+2)T(2+4) Tk>
(k+1)"" (L+ M) {1+ B k+B(L+7) (1 - )} T (k+2+p)

(4.28)
(lz]=r<1; p>0; i €{0,1,...,n}). ’

FEach of the assertions (4.27) and (4.28) is sharp, the extremal function being

given by
Dif(z) =2 Bl+y)1-0) k+1

T {4 BN kB (A=) A+ M)
(4.29)

By setting ¢ = 0 in Theorem 17, we obtain

Corollary 2. Let the function f defined by (4.3) be in the class ’Z:;\k (o, B,7) .
Then

|Dz_“f (Z)l 2 m o
'<1_ Bl+7)(1—a)T (k+2)T(2+p) rk)
(k+1)"(1+>\k){(1+ﬁv)k+5(1+7)(1—a)}F(k+2+u)(430)
(Jzl=r<1; p>0)
and
plth
D747 (9] £ g

BA+7)1—a)T(k+2)T(2+ u)

k
'(1+(k+1)"(1+>\k){(1+ﬂ'y)k+ﬂ(1+'y)(1—a)}F(k+2—l—,u):4>31>

(Jz2| =r <1; p>0).
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The estimates in (4.30) and (4.31) are sharp, the extremal function being given
by (4.29) with © = 0, that is, by
1 _ .
O o cuat, Lol 41, (432)
R+ {0+ b+ BT a1+ M)

Theorem 18. Let the function f defined by (4.3) be in the class 7;;\,c (o, B,7) -
Then

.|Dlzt (Dif (2))| 2 m
,<1_ BA+7)(1-e)T(k+2)(2+ p) rk>
k+D)""A+M){Q+8NEk+BA+7)(1-a)}T(k+2+p)

(4.33)
(lzl=r<1; 08 u<1;i€{0,1,... ,n—1})

and

|D5 (Dif(z))l < m
BA+9)(1-a)T(k+2)T(2+ )

.(14_ (k+1)"_i(1+)\k){(1+ﬁ7)k‘+ﬂ(1+7)(1—a)}I‘(k+2+u)(::21)

(Jzl=r<1; 08 u<1;i€{0,1,... ,n—1})

FEach of the assertions (4.33) and (4.34) is sharp, the extremal function being
given by (4.29).

plHa

By letting ¢ = 0 in Theorem 18, we have

Corollary 3. Let the function f defined by (4.3) be in the class T, (e, 8,7) .
Ther: . e
|DEf (2)] 2 m
(- B(1+7) (1= )T (k+2)T @~ p) )
(k+ D" 1A+ {1+ B Ek+B(1+7)(1 —a)}l“(k+2—u)( |
4.35

(Jz2l=r<1;, 05 p<1)
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and

|DES (2)] =

ri-p

I'(2-p)
‘<1+ BA+7y)(1-a)T(k+2)T(2—p) Tk)
(k+1D)" A+ {1 +BNE+BL+7)(1—a)} T (k+2—p) %)

(Jzl=r<1; 05 p<l).

The estimates in (4.35) and (4.36) are sharp, the extremal function being given
by (4.32).

Remark 3. Many of the results of this section can suitably be extended
to hold true for such generalized fractional calculus operators as those with
the Gauss hypergeometric function kernel, which were considered earlier by
Srivastava et al. [36] (see also [3], [22], and [32]).
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