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ABSTRACT. By means of coefficient inequalities, the authors introduce a certain family
of normalized analytic.functions in the open unit disk. Applying the concepts of extreme
points, fractional calculus, and subordination between analytic functions, several inte‐
graI means inequalities are obtained heoe for higher‐order and fractional derivatives of

functions belonging to this general family. Relevant connections of the  ret.sults presented
in this paper with those given in earlier works are also  consi\dot{d}ered.

1. Introduction, Definitions, and Preliminaries

Let  A denote the class of functions  f(z) normalized by

(1.1)  f(z)=z+ \sum_{k=0}^{\infty}a_{k}z^{k} ,
which  a\tau e analytic in the open unit disk

 \mathcal{U}:= {  z:z\in \mathbb{C} and  |z|<1 }.

Denote by  A(n) the subclass of  A consisting of all functions  f(z) of the form:

(1.2)  f(z)=z- \sum_{k=n+1}^{\infty}a_{k}z^{k}
 (a_{k}\geqq 0;k=n+1, n+2, n+3, \ldots ; n\in N:=\{1,2,3, \ldots\}) .

We denote by  \mathcal{T}(n) the subclass of  A(n) of functions which are also univalent in  \mathcal{U} , and
by  \mathcal{T}_{\alpha}(n) and  C_{\alpha}(n) the subclasses of  \mathcal{T}(n) consisting of functions which are, respectively,
starlike of order  \alpha(0\leqq\alpha<1) and convex of order  \alpha(0\leqq\alpha<1) .

The classes  \mathcal{T}(n),  \mathcal{T}_{\alpha}(n) , and  C_{\alpha}(n) , introduced by Chatterjea [1], were investigated
systematically by Srivastava et al. [12]. In fact, the following special cases of these classes
when  n=1 :

(1.3)  \mathcal{T}:=\mathcal{T}(1) ,  \mathcal{T}^{*}\}\alpha):=\mathcal{T}_{\alpha}(1) , and  C(\alpha):=C_{\alpha}(1)

were considered earlier by Silverman [8]. And, as already remarked by Srivastava et al. [12,
p. 117], the necessary and sufficient conditions for a function  f(z) of the form (1.2) to be
in the classes  \mathcal{T}_{\alpha}(n) and  C_{\alpha}(n) would follow immediately from those given by Silverman [8,
p. 110, Theorem 2; p. 111, Corollary 2] for the classes  \tau*(\alpha) and  C(\alpha) by merely setting

 (1.4)’  a_{k}=0  (k\in N\backslash \{1\}) .
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INTEGRAL MEANS FOR GENERALIZED SUBCLASSES・ OF ANALYTIC 

FUNCTIONS 

TADAYUKI SEKINE, KAZUYUKI TSURUMI, AND H.M.SRIVASTAVA 

ABSTRACT. By means of coeffjcient inequalities, the authors introduce a certain family 
of normalized analytic-functions in the open unit disk. Applying the concepts of extreme 
points, fractional calculus, and subordination between analytic functions, several inte-
gral means inequalities are obtained here for higher-order and fractional derivatives of 
functiims belonging to this general family. Relevant connections of the results presented 
in this paper with those given in earlier works are also considered. 

1. Introduction, Definitions, and Preliminaries 

Let A denote the class of functions f (z) normalized by 
00 

(1.1) f (z) = z十Lakえ
k=O 

which are analytic in the open unit disk 

U := {z: z E (C and lzl < l}. 

Denote by A (n) the subclass of A consisting of all functions f (z) of the form: 
00 

(1.2) f (z) = z —区保 Zk
k=n+l 

(ak ~ 0; k = n + l, n + 2, 11 + 3,... ; n EN:= {1, 2, 3,... }). 

We denote by T (n) the subclass of A (n) of functions which are also univalent in U, and 
by Ta (n) and Ca (n) the subclasses of T (n) consisting of functions which are, respectively, 
starlike of order a (0 ~a< l) and convex of order a (0 ~a< l). 

The classes T (n), Ta (n), and Ca (n), introduced by Chatterjea (l], were investigated 
systematically by Srivastava et al. (12). In fact, the following special cases of these classes 
when n = 1: 

(1.3) T := T(l), T* (a) := Ta(l), and C (a) := C。(1)

were considered earlier by Silverman [8]. And, as already remarked by Srivastava et al. [12, 
p. 117], th e necessary and sufficient conditions for a function f (z) of the form (1.2) to be 
in the classes冗 (n)and Ca (n) would follow immediately from those given by Silverman [8, 
p. 110, Theorem 2; p. 111, Corollary 2] for the classes T* (a) and C (a) by merely setting 

(1.4) ak = 0 (k EN ¥ {1}). 
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Next, following the work of Sekine and Owa [7], we denote by  A(n, \theta) the subclass of  A

consisting of  a\Pi functions  f(z) of the form [cf. Equation  (1.2) ]  \vee.

(1.5)  f(z)=z- \sum_{k=n+1}^{\infty}e^{i(k-1)\theta}a_{k}z^{k}
 (\theta\in R;a_{k}\geqq 0;k=n+1, n+2, n+3, \ldots ; n\in N) ,

so that, obviously,

(1.6)  A(n, O)=A(n)  (n\in N) .

Thus, if we define the subclasses

 \mathcal{T}(n, \theta) ,  \mathcal{T}_{\alpha}^{*}(n, \theta) , and  C_{\alpha}(n, \theta)

of the class  A(n, \theta) in the same way as we defined the subclasses

 \mathcal{T}(n) ,  \mathcal{T}_{\alpha}(n) , and  C_{\alpha}(n)

of the class  A(n) , it is easily observed that

(1.7)  \mathcal{T}(n, O)=\mathcal{T}(n) ,  \mathcal{T}_{\alpha}^{*}(n, 0)=\mathcal{T}_{\alpha}(n) , and  C_{\alpha}(n, O)=C_{\alpha}(n)  (n\in N) ,

together with (cf.,  e.g. , Silverman [8, p. 111, Corollary]).

 \mathcal{T}=\mathcal{T}^{*}(0) and  \mathcal{T}(n)=\mathcal{T}_{0}(n) .

The following coefficient inequalities for functions  f(z) of the form (1.5) were proven
recently by Sekine and Owa [7].

Lemma 1. A function  f\in A(n, \theta) of the form (1.5) is in the class  \mathcal{T}_{\alpha}^{*}(n, \theta) if and only
if

(1.8)   \sum_{k=n+1}^{\infty}(k-\alpha)a_{k}\leqq 1-\alpha  (n\in N;0\leqq\alpha<1) .

Lemma 2. A function  f\in A(n, \theta) of the form (1.5) is in the class  C_{\alpha}(n, \theta) if and only if

(1.9)   \sum_{k=n+1}^{\infty}k(k-\alpha)a_{k}\leqq 1-\alpha  (n\in N;0\leqq\alpha<1) .

We remark in passing that the coefficient inequalities (1.8) and (1.9) do not contain
the parameter  \theta (and, therefore, coincide essentially with the corresponding coefficient
inequalities considered earlier by Silverman [8], Chatterjea [1], and Srivastava et al. [12]  ) .
See also the aforementioned remark involving the coefficient specialization exhibited by
(1.4).

Motivated largely by the coefficient inequalities (1.8) and (1.9), we now introduce a
general family  A  (n;\{B_{k}\} , \theta) of functions  f\in A(n, \theta) of the form (1.5), which satisfy the
following inequality:

(1.10)   \sum_{k=n+1}^{\infty}B_{k}a_{k}\leqq 1
 (B_{k}>0;k=n+1, n+2, n+3, \ldots ; n\in N)

for every positive sequence  \{B_{k}\} of real numbers.

141

T.SEKINE, K.TSURUMI AND H.M.SRIVASTAVA 

Next, following the work of Sekine and Owa [7), we denote by A (n, 1'1) the subclass of A 
consisting of all functions f (z) of the form [ cf Equation (1.2)): 

00 

(1.5) f (z) = z —こ ei(K-1){} 保 Zk
k=n+l 

({) E恥 ak~ O; k = n + l, n + 2, n + 3,... ; n E Isl), 

so that, obviously, 

(1.6) A(n,O)=A(n) (nEN). 

Thus, if we define the subclasses 

T(n,fJ)，冗(n,fJ), and Ca(n,fJ) 

of the class A (n, fJ) in the same way as we defined the subclasses 

T(n), Ta(n), and Ca (n) 

of the class A (n), it is easily observed that 

(1.7) T(n,O)=T(n), T;(n,O)＝冗(n), and Ca (n,O) = Ca (n) (n EN), 

together with (cf., e.g., Silverman [8, p. 111, Corollary]). 

T=T*(O) and T(n)＝To (n). 

The following coefficient inequalities for functions f (z) of the form (1.5) were proven 
recently by Sekine and Owa [7]. 

Lemma 1. A function f EA (n, iJ)。fthe form (1.5) is in the class冗 (n,fJ) if and only 

if 

(1.8) f (k -a) ak ~ l -a (n E N; 0 ~ a < 1). 
k=n+l 

Lemma 2. A function f EA (n, iJ) of the form (1.5) is in the class C0 (n, fJ) if and only if 

00 

(1.9) L k (k -a) a,.~ l -a (n 訊；〇 ~a< 1). 
k=n+1 

We remark in passing that the coefficient inequalities (1.8) and (1.9) do not contain 
the parameter,,J (and, therefore, coincide essentially with the corresponding coefficient 
inequalities considered earlier by Silverman [8], Chatterjea [1], and Srivastava et al. [12]). 
See also the aforementioned remark involving the coefficient specialization exhibited by 

(1.4). 
Motivated largely by the coefficient inequalities (1.8) and (1.9), we now introduce a 

general family A (n; { Bk},,,J) of functions f E A (n,,,J) of the form (1.5), which satisfy the 

following inequality: 

(1.10) :恥 akこl
k=n+l 

(Bk > 0; k = n + l, n + 2, n + 3,... ; n EN) 

for every positive sequence {Bk} of real numbers. 
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The class  A(n;\{B_{k}\}) given by

(1.11)  A(n;\{B_{k}\}):=A(n;\{B_{k}\} , 0)
was studied earlier by Sekine [6] (and, subsequently, by Owa et al. [5]). As a matter of
fact, Sekine [6] presented an interesting (and useful) classification (cf. [6, pp. 3‐4]) of the
analytic functions in  A(n)(n\in N) by using the inequality (1.10). Indeed it is fairly easy
to verify each of the following classifications:

(1.12)  A(n;\{k\} , \theta)=\mathcal{T}_{0}^{*}(n, \theta)=:\mathcal{T}^{*}(n, \theta)=
\mathcal{T}(n, \theta)

(1.13)  A(n,   \{\frac{k-\alpha}{1-\alpha}\},  \theta)=\mathcal{T}_{\alpha}^{*}(n, \theta)  (0\leqq\alpha<1) ,

and

(1.14)  A(n; \{\frac{k(k-\alpha)}{1-\alpha}\},  \theta)=C_{\alpha}(n, \theta)  (0\leqq\alpha<1) .

It follows also from (1.10) that

(1.15)  A(n;\{B_{k}\}, \theta)\subseteq A(n;\{C_{k}\}, \theta)  (0<C_{k}\leqq B_{k}) ,

which readily yields the inclusion relations:

 C_{\alpha}(n, \theta)\subset\Gamma_{\alpha}(n, \theta)\subseteq \mathcal{T}^{*}
(n, \theta)

 (0\leqq\alpha<1,\cdot\theta\in R;n\in N) .

The main object of this paper is to apply the familiar concepts of extreme points, frac‐
tional calculus, and subordination between analytic functions with a view to obtaining
several integral means inequalities for higher‐order and fractional derivatives of functions in
the general class  A  (n;\{B_{k}\} , \theta) which we have introduced here. We also point out relevant
connections of the results presented in this paper with those given in earlier works by (for
example) Silverman [9], Kim and Choi [2], and others.

2. Basic Properties of the Class  A(n;\{B_{k}\}, \theta)

The proof of each of the following results (Theorem 1, Theorem 2, and Corollary 1 below)
is much akin to that of the corresponding result in Owa et al. [5], and we choose to omit
the details involved.

Theorem 1.  A(n;\{B_{k}\}, \theta) is the convex subfamily of the class  A(n, \theta) .

 Theore\ln 2 . Let

(2.1)  f_{1}(z)=z and  f_{k}(z)=z- \frac{e^{i(k-1)\theta}}{B_{k}}z^{k}
 (k=n+1, n+2, n+3, \ldots ; n\in N) .

Then  f\in A  (n;\{B_{k}\} , \theta) if and only  \dot{\iota}ff(z) can be expressed as

(2.2)  f(z)= \lambda_{1}f1(z)+\sum_{k=n+1}^{\infty}\lambda_{k}f_{k}(z) ,

wheoe

(2.3)   \lambda_{1}+\sum_{k=n+1}^{\infty}\lambda_{k}=1
 (\lambda_{1}\geqq 0;\lambda_{k}\geqq 0;k=n+1, n+2, n+3, \ldots ; n\in N) .
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The class A (n;｛恥｝） givenby 

(1.11) A(n;{Bk}) :=A(n;{Bk},O) 

was studied earlier by Sekine [6) (and, subsequently, by Owa et al. (5)). As a matter of 

fact, Sekine [6) presented an interesting (and useful) classification (cf [6, pp. 3-4)) of the 

analytic functions in A (n) (n EN) by using the inequality (1.10). Indeed it is fairly easy 

to verify each of the following classifications: 

(1.12) A(n;{k},,{})＝冗 (n,,{})=: T* (n,,{}) = T (n,,{}) 

(1.13) A（噌予｝，0)＝冗（n,fJ) (0丘く 1)'

::4) A (n; 「『—-;;'2},a) ~c. (n,O) (0 ~ o < 1). 

It follows also from (1.10) that 

(1.15) A (n; {Bk},,{))~ A (n; {Ck},,{)) (0 <Ck~ Bk), 

which readily yields the inclusion relations: 

Ca(n,f))c冗 (n,,{)）こ T*(n,,{)） 

(0 ~a< 1;,{) E股； nEN). 

The main object of this paper is to apply the familiar concepts of extreme points, frac-

tional calculus, and subordination between analytic functions with a view to obtaining 

several integral means inequalities for higher-order and fractional derivatives of functions in 

the general class A (n; {Bk},,{)) which we have introduced here. We also point out relevant 

connections of the results presented in this paper with those given in earlier works by (for 

example) Silverman [9], Kim and Choi [2], and others. 

2. Basic Properties of the Class A (n; {Bk},{)) 

The proof of each of the following results (Theorem 1, Theorem 2, and Corollary 1 below) 

is much akin to that of the corresponding result in Owa et al. [5], and we choose to omit 

the details involved. 

Theorem 1. A (n; {Bk},,{)) is the convex subfamily of the class A (n,,{)). 

Theorem 2. Let 

(2.1) 
e'(k-1){J 

Ji (z) = z and・ fk (z) = z -=----,:;---z k 

Bk 

(k = n + 1, n + 2, n + 3,... ; n EN). 

Then f EA (n; {Bk}, iJ) if and only if f (z) can be expressed as 
00 

(2.2) f (z)＝入山 (z)+I: ふfK(z)，
k=n+l 

where 
00 

(2.3) 入1＋区入k= l 
k=n+l 

（ふ~ O; ふ~ O; k = n + 1, n + 2, n + 3,... ; n EN). 
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Corollary 1. The extreme points of the class  A  (n, \{B_{k}\} , \theta) are the functions  f_{1}(z) and
 f_{k}(z)(k\geqq n+1) given by (2.1).

By means of the relationships exhibited by (1.12), (1.13), and (1.14), we can easily deduce
from Corollary 1 the extreme points of various other subclasses of the class  A(n, \theta) . Thus,
for example, we obtain Corollary 2 and Corollary 3 below.

Corollary 2. The extreme points of the class  \mathcal{T}_{\alpha}^{*}(n, \theta) are the functions  f_{1}(z) and  f_{k}(z)
 (k\geqq n+1) given by

(2.4)  f_{1}(z)=z and  f_{k}(z)=z-( \frac{1-\alpha}{k-\alpha})e^{i(k-1)\theta}z^{k}
 (k=n+1, n+2, n+3, \ldots ; n\in N) .

Corollary 3. The extreme points of the class  C_{\alpha}(n, \theta) ore the functions  f_{1}(z) and
 f_{k}(z)(k\geqq n+1)g_{l}ven by

(2.5)  f_{1}(z)=z and  f_{k}(z)=z-( \frac{1-\alpha}{k(k-\alpha)})e^{i(k-1)\theta}z^{k}
 (k=n+1, n+2, n+3, \ldots ; n\in N) .

A further special case of each of these last results (Corollary 2 and Corollary 3 above)
when

(2.6)  \theta=0 and  n=1

was given by Silverman [9, Theorem 9 (Corollary 1 and Corollary 2)] for the classes  \tau*(\alpha)
and  C(\alpha) investigated by him (see also [8]).

3.  R\cdot actional Calculus and Subordination Principle

We begin by recalling the following definitions of fractional calculus (that is, fractional
integrals and fractional derivatives) given by Owa [4] (see also Srivastava and Owa [10] and
[11]  ) .

Definition 1. The fractional integral of order  \lambda is defined, for a function  f(z) , by

(3.1)   D_{z}^{-\lambda}f(z):= \frac{1}{\Gamma(\lambda)}\int_{0}^{z}\frac{f(\zeta)}{(z
-\zeta)^{1-\lambda}}d\zeta  (\lambda>0) ,

where the function  f(z) is analytic in a simply‐connected region of the complex z‐plane
containing the origin and the multiplicity of  (z-\zeta)^{\lambda-1} is removed by requiring  \log(z-\zeta)
to be real when  z-(>0 .

Definition 2. The  fract\dot{\iota}onal derivative of order  \lambda is defined, for a function  f(z) , by

(3.2)   D_{z}^{\lambda}f(z):= \frac{1}{\Gamma(1-\lambda)}\frac{d}{dz}\int_{0}^{z}\frac
{f(()}{(z-()^{\lambda}}d\zeta  (0\leqq\lambda<1) ,

where the function  f(z) is constrained, and the multiplicity of  (z-\zeta)^{-\lambda} is removed, as in
Definition 1 above.
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Corollary 1. The extreme points of the class A (n; {Bk}, rJ) are the functions Ji (z) and 
fk (z) (k ~ n + 1) given by (2.1). 

By means of the relationships exhibited by (1.12), {1.13), and (1.14), we cane邸 ilydeduce 

from Corollary 1 the extreme points of various other subcl邸 sesof the cl邸 sA (n, rJ). Thus, 

for example, we obtain Corollary 2 and Corollary 3 below. 

Corollary 2. The eェtremepoints of the class冗 (n,rJ) are the functions Ji (z) and fk (z) 
(k ~ n+ 1) given by 

(2.4) fi(z)=z and fk(z)=z-(~) ei(k-l)t'J zk 
k-a 

(k = n + 1, n + 2, n + 3,... ; n E.N). 

Corollary 3. The extreme points of the class Ca (n,fJ) are the functions Ji (z) and 
fk (z) (k ~ n + 1) given by 

(2.5) Ji (z) = z and !k (z) = z -(kし二） ei(kー1)8zk 

(k = n + I, n + 2, n + 3,... ; n E f::I). 

A further special case of each of these last results (Corollary 2 and Corollary 3 above) 

when 

{2.6) iJ = 0 and n = I 

was given by Silverman (9, Theorem 9 (Corollary 1 and Corollary 2)] for the classes T* (a) 

and C (a) investigated by him (see also [8]). 

3. Fl・actional Calculus and Subordination Principle 

We begin by recalling the following definitions of fractional calculus {that is, fractional 

integrals and fractional derivatives) given by Owa [4] (see also Srivastava and Owa [10] and 

[11]). 

Definition 1. The fmctional integral of order入isdefined, for a function f (z), by 

{3.1) D;" f (z) ：＝ ~1z に /[:)1→必（入＞0),
where the function f (z) is analytic in a simply-connected region of the complex z-plane 

containing the origin and the multiplicity of (z―く）入ー1.
is removed by requiring log (z -() 

to be real when z -(> 0. 

Definition 2. The fractional derivative of order入isdefined, for a function f (z), by 

(3.2) D汀(z):= 
1 d {'f (() r(1 —入）石［に一（）入 d( (0 ~入 <1)'

where the function f (z) is constrained, and the multiplicity of (z -＜戸 isremoved, as in 

Definition 1 above 
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Definition 3. Under the hypotheses of Definition 2, the fractional derivative of order   n+\lambda

is defined, for a function  f(z) , by

(3.3)  D_{z}^{n+\lambda}f(z):= \frac{d^{n}}{dz^{n}}D_{z}^{\lambda}f(z)  (0\leqq\lambda<1;n\in N_{0}:=N\cup\{0\}) .

It readily follows from Definitions 1 and 2 that

(3.4)  D_{z}^{-\lambda}z^{\kappa}= \frac{\Gamma(\kappa+1)}{\Gamma(\kappa+\lambda+1)}z^
{\kappa+\lambda}  (\lambda>0;\Re(\kappa)>|-1)
and

(3.5)  D_{z}^{\lambda}z^{\kappa}= \frac{\Gamma(\kappa+1)}{\Gamma(\kappa-\lambda+1)}z^{
\kappa-\lambda}  (0\leqq\lambda<1;\Re(\kappa)>-1) .

Next we recall the concept of subordination between analytic functions. Given two
functions  f(z) and  g(z) , which are analytic in  \mathcal{U} , the function  f(z) is said to be subordinate
to  g(z) if there exists a function  w(z) , analytic in  \mathcal{U} with

 \langle 3.6)  w(0)=0 and  |w(z)|<1  (z\in \mathcal{U}) ,
such that

(3.7)  f(z)=g\langle w(z))  (z\in \mathcal{U}) .

We denote this subordination by

(3.8)  f(z)\prec g(z) ,

The following subordination theorem will be required in our present investigation.

Theorem 3 (Littlewood [3]). If the functions  f(z) and  g(z) are analytic in  \mathcal{U} with

 g(z)\prec f(z) ,

then

(3.9)   \int_{0}^{2\pi}|g(re^{i\theta})|^{\mu}d\theta\leqq\int_{0}^{2\pi}
|f(re^{i\theta})|^{\mu}d\theta  (\mu>0;0<r<1) .

4. Integral Means Inequalities Involving Higher‐Order Derivatives

The familiar Stirling numbers  s(m, l) of the first kind are usually defined by means of
the generating function:

(4.1)   \prod_{l=1}^{m}(z-l+1)=\sum_{l=0}^{m}s(m, l)z^{l}  (m\in N_{0}) ,

so that, obviously,

 s(m, 0)=\delta_{m,0} ,  s(m, 1)=(-1)^{m+1}(m-1)! , and  s(m, m)=1 ,

where  \delta_{m,n} denotes the Kronecker delta. Here (and in what follows) an empty product is
interpreted (as usual) to be 1.

Upon setting  z=n+1(n\in N) , we immediately obtain

(4.2)   \sum_{l=0}^{m}s(m, l)(n+1)^{l}=\prod_{l=1}^{m}(n-l+2)  (m\in N_{0;}n\in N) .

Making use of the relationships (4.1) and (4.2), we now prove
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Definition 3. Under the hypotheses of Definition 2, the froctional derivative of order n+入
is defined, for a function f (z), by 

炉
(3.3) n;＋入f(z) := -i-::;;n; f (z) (0 ~入 <l; n E No :=NU {O}). 

dzn 

It readily follows from Definitions 1 and 2 that 

r（,., + 1) 
(3.4) D;>.z" = ~z"＋入（入＞ O; 沢 (1,,) > -1) 

r(K,十入＋ 1)

and 

r(K+ 1) 
(3.5) D芦"=~z,.—入 (0 ~入 <1; 沢（1,,) >ー1).r（に一入＋ 1)

Next we recall the concept of subordination between analytic functions. Given two 
functions f (z) and g (z), which are analytic in U, the function f (z) is said to be subordinate 
tog (z) ifthere exists a function w (z), analytic in U with 

(3.6) w(O)=O and lw(z)l<l (zEU), 

such that 

(3.7) f(z)=g(w(z)) (zEU). 

We denote this subordination by 

(3.8) f (z) -< g (z). 

The following subordination theorem will be required in our present investigation. 

Theorem 3 (Littlewood [31). If the functions f (z) and g (z) are analytic in U with 

g (z)--: f(z), 

then 

(3.9) f2"|g (re'°)|μ d0こj2"|f (Te'°)『d0
0 JO 

(μ > O; 0 < r < 1). 

4. Integral Means Inequalities Involving Higher-Order Derivatives 

The familiar Stirling numbers s (m, l) of the first kind are usually defined by means of 
the generating function: 

m m 

(4.1) IT (z -l + l)＝I.:s(m,l)メ (mE No), 
l=l l=O 

so that, obviously, 

s (m, 0) = om,o, s (m, l) = (-1r+1 (m -l)!, and s (m, m) = 1, 

where Om,n denotes the Kronecker delta. Here (and in what follows) an empty product is 
interpreted (as usual) to be 1. 

Upon setting z = n + l (n E N), we immediately obtain 

(4.2) 立(m,l)(n+l/= Il(n-1+2) (mE閻； nEN). 
l=O l=l 

Making use of the relationships (4.1) and (4.2), we now prove 
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Theorem 4. Suppose that

 f\in A(n;\{k^{p}B_{k}\}, \theta)  (B_{k}\leqq B_{k+1;}p=2,3, \ldots , n+1;n\in N) .

Also let the function  f_{n+1}(z) be defined by (2.1) with  B_{k} replaced by  k^{p}B_{k} . Then, for
 z=re^{i\theta} and  0<r<1 ,

(4.3)   \int_{0}^{2\pi}|f^{(j)}(z)|^{\mu}d\theta\leqq\int_{0}^{2\pi}|f_{n+1}(j)(z)
|^{\mu}d\theta ,

wheoe  \mu>0 and  j is integer such that  2\leqq j\leqq p for  p=2,3,  \ldots,  n+1 .

Proof. It follows from the hypothesis of Theorem 4 that

(4.4)  (n+1)^{p-m}B_{n+1} \sum_{k=n+1}^{\infty}k^{m}a_{k}\leqq\sum_{k=n+1}^{\infty}
k^{p}B_{k}a_{k}\leqq 1  (m=1, \ldots,p) ,

so that

(4.5)   \sum_{k=n+1}^{\infty}k^{m}a_{k}\leqq\frac{1}{(n+1)^{p-m}B_{n+1}}  (m=1, \ldots,p) .

Also, from (1.5) and (2.1) with  B_{k} replaced by  k^{p}B_{k} , we readily obtain the following
derivative formulas:

(4.6)  f^{(j)}(z)=- \sum_{k=n+1}^{\infty}e^{i(k-1)\theta}a_{k}z^{k-j}\prod_{l=1}^{j}(k
-l+1)  (z\in \mathcal{U};2\leqq j\leqq p)

and

(4.7)  f_{n+1}( j)(z)=-ein\theta(\frac{\prod_{\iota--1}^{j}(n-l+2)}{(n+1)^{p}B_{n+1}})
z^{n-j+1}  (z\in \mathcal{U};2\leqq j\leqq p) .

Upon substituting from (4.6) and (4.7) into the desired inequality (4.3), if we apply
Theorem 3, it would suffice to show that

  \sum_{k=n+1}^{\infty}e^{i(k-1)\theta}a_{k}z^{k-j}\prod_{l=1}^{j}(k-l+1)
(4.8)   \prec e^{in\theta}(\frac{\prod_{\iota--1}^{j}(n-l+2)}{(n+1)^{p}B_{n+1}})z^{n-j
+1}  (2\leqq j\leqq p) .

If we put

  \sum_{k=n+1}^{\infty}e^{i(k-1)\theta}a_{k}z^{k-j}\prod_{l=1}^{j}(k-l+1)
(4.9)  =e^{in\theta}( \frac{\prod_{\iota--1}^{j}(n-l+2)}{(n+1)^{p}B_{n+1}})\{w(z)\}^{n
-j+1}
then we have

  \{w(z)\}^{n-j+1}:=(\frac{(n+1)^{p}B_{n+1}}{\prod_{l=1}^{j}(n-l+2)})
  \sum_{k=n+1}^{\infty}e^{i(k-n-1)\theta}a_{k}z^{k-j}\prod_{l=1}^{j}(k-l+1) ,
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Theorem 4. Suppose that 

f E A(n;｛炉Bk},iJ) (Bk~ Bk+1; p= 2,3,...,n+ l; n E :ts!). 

Also let the function fn+l (z) be defined by (2.1) with Bk replaced by kP Bk. Then, for 
z = rei8 and O < r < 1, 

(4.3) 「|f(3)(z)|μ d0こ[|fn+10)（z)|μ d0, 

゜whereμ> 0 and j is integer such that 2 3 j 3 p for p = 2, 3,..., n + 1. 

Proof It follows from the hypothesis of Theorem 4 that 
00 00 

(4.4) (n + ll-m Bn+l L炉 akここ炉B四 k~ 1. (m = 1,...,p), 
k=n+l k=n+l 

so that 

(4.5) :炉akこ l

k=n+l (n + l) p-m 
Bn+l 

(m = 1,...,p). 

Also, from (1.5) and (2.1) with Bk replaced by kP Bk, we readily obtain the following 
derivative formulas: 

(4.6) 炉 (z)= -f ei(k-l)1'ak zk-j IT (k -l + 1) (z EU; 2 ;£ j ;£ p) 

and 

(4.7) 

k=n+l l=l 

fn+l (j) (z) = -ein,'J (rr{＝1 (n -l + 2)) zn-j+1 
(n + 1/ Bn+l 

(z EU; 2 ~ j ~ p). 

Upon substituting from (4.6) and (4.7) into the desired inequality (4.3), if we apply 
Theorem 3, it would suffice to show that 

00 j 

E ei(K-1）国 zk-jIT (k-l + 1) 

k=n+1 l=1 

(4.8) ベe'n{)（日；)；；n＋+12))zn-J+1 (2 ~ j ~ p). 

If we put 

00 j L ei(k-1),'}知 zk-jIT (k -l + 1) 

k=n+l l=1 

{4.9) = e'nd （尼翫―;~) {w(z)}n-i+l, 

then we have 

{w(z)｝n-J+1 :＝ (][>:[[”++12))

00 j 

. ~ ei(k-n-1){)ak zk-j IT (k -l + 1), 

k=n+l l=l 
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so that, in view of (4.1) and (4.2),

 |w(z)|^{n-j+1} \leqq(\frac{(n+1)^{p}B_{n+1}}{\prod_{l=1}^{j}(n-l+2)})\sum_{k=n+
1}^{\infty}a_{k}|z|^{k-j}\prod_{l=1}^{j}(k-l+1)
  \leqq(\frac{(n+1)^{p}B_{n+1}}{\prod_{l=1}^{j}(n-l+2)})|z|\sum_{k=n+1}^{\infty}
a_{k}\sum_{l=0}^{j}s(j, l)k^{l}
  \leqq(\frac{(n+1)^{p}B_{n+1}}{\prod_{l=1}^{j}(n-l+2)})|z|\sum_{l=0}^{j}s(j,l)
\sum_{k=n+1}^{\infty}k^{l}a_{k}
  \leqq(\frac{(n+1)^{p}B_{n+1}}{\prod_{l=1}^{j}(n-l+2)})|z|\sum_{l=0}^{j}s(j, l)
\frac{1}{(n+1)^{p-l}B_{n+1}}
 =( \frac{|z|}{\prod_{l=1}^{j}(n-l+2)})\sum_{l=0}^{j}s(j, l)(n+1)^{l}

(4.10)  =|z|<1  (z\in \mathcal{U}) .

Thus we have shown that the function  w(z) , occurring in (4.9), satisfies each of the con‐
ditions in (3.6). Hence the subordination in (4.8) holds true, and this evidently completes
the proof of Theorem 4.

Since [cf. Equation (1.14)]

 C_{\alpha}(n,  \theta):=A(n;\{\frac{k(k-\alpha)}{1-\alpha}\},  \theta)
(4.11)  =A(n; \{k^{2}\cdot\frac{k-\alpha}{k(1-\alpha)}\} ,  \theta)
and since the sequence

 \{B_{k}\}  (B_{k}:= \frac{k^{\wedge-}\alpha}{k(1-\alpha)})
is an increasing sequence, Theorem 4 immediately yields

Corollary 4. Suppose that  f\in C_{\alpha}(n, \theta) and let  f_{n+1}(z) be defined by (2.5). Then, for
 z=re^{:\theta} and  0<r<1 ,

(4.12)   \int_{0}^{2\pi}|f"(z)|^{\mu}d\theta\leqq\int_{0}^{2\pi}|f_{n+1} ”  (z)|^{\mu}d\theta  (\mu>0) .

5. Integral Means Inequalities Involving Fractional Calculus Operators

Our first integral means inequality involving fractional integrals is given by

Theorem 5. Suppose that

 f\in A(n;\{B_{k}\}, \theta)  (B_{k}\leqq B_{k+1})

and let the  funct\dot{\iota}onf_{n+1}(z) be defined by (2.1). Then, for  z=re^{i\theta} and  0<r<1 ,

(5.1)   \int_{0}^{2\pi}|D_{z}^{-\lambda}f(z)|^{\mu}d\theta\leqq\int_{0}^{2\pi}|D_{z}^{
-\lambda}f_{n+1}(z)|^{\mu}d\theta  (\lambda>0;\mu>0) .
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so that, in view of (4.1) and (4.2), 

(4.10) 

lw (z)ln-j+l ~（土閂P-『]+;)） kElak lzlk-j且(K-l + 1) 

く ((n+1)PBn+1) OO j 

= n恥(n-l+2)
lzl E 咋どs(j, l)が

k=n+l l=D 

く ((n+1)PBn+1) i oo 

= n恥(n-l + 2) 
lz!Es(j,l) E k1ak 

1:0 k=n+l 

こ（贔悶p_『]＋玉）噌(j,l)~
= （k|)文s(j,l)(n+I)1

n恥(n-l+2))~ 
=lzl<l (zEU). 

Thus we have shown that the function w (z), occurring in (4.9), satisfies each of the con-
ditions in (3.6). Hence the subordination in (4.8) holds true, and this evidently completes 
the proof of Theorem 4. 

Since [cf Equation (1.14)] 

C,, (n,{)）：=A  (n;「『＿-aa)}り
{4.11) = A (n; { k2 ・ kに以｝，り
and since the sequence 

{Bk} （凡＝~)
is an increasing sequence, Theorem 4 immediately yields 

Corollary 4. Suppose that f E Ca (n,,{)) and let fn+l (z) be defined by (2.5). Then, for 
z = rei9 and O < r < 1, 

(4.12) J加 If"(z)『d0~ fo2" lfn+1" (z)『d0

゜
(μ > 0). 

5. Integral Means Inequalities Involving Fractional Calculus Operators 

Our first integral means inequality involving fractional integrals is given by 

Theorem 5. Suppose that 

/EA (n; {Bk}, 1'J) (Bk 2 Bk+i) 
and let the function fn+l (z) be defined by (2.1). Then, for z = rei9 and O < r < I, 

(5.1) fo2" ID,;--'f (zW d0 2 fo2" ID戸fn+l(z)『d0 （入＞ O;μ > 0) 
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Proof. By means of the fractional integral formula (3.4), we find from (1.5) that

(5.2)  D_{z}^{-\lambda}f(z)= \frac{z^{\lambda+1}}{\Gamma(\lambda+2)}(1-\sum_{k=n+1}
^{\infty}e^{i(k-1)\theta}\textcircled{-}(k)a_{k}z^{k-1})  (\lambda>0)

or

  \frac{\Gamma(\lambda+2)}{z^{\lambda+1}}D_{z}^{-\lambda}f(z)=1-\sum_{k=n+1}
^{\infty}e^{i(k-1)\theta}\textcircled{-}(k)a_{k}z^{k-1}  (\lambda>0) ,

where

(5.3)   \textcircled{-}(k):=\frac{\Gamma(\lambda+2)\Gamma(k+1)}{\Gamma(\lambda+k+1)}>0  (\lambda>0;k\geqq n+1;n\in N)

is a decreasing function of  k so that

(5.4)  0< \textcircled{-}(k)\leqq\textcircled{-}(n+1)=\frac{\Gamma(\lambda+2)\Gamma(n+
2)}{\Gamma(\lambda+n+2)}
 (\lambda>0;k=n+1, n+2, n+3, \ldots ; n\in N) .

Similarly, (2.1) and (3.4) yield

(5.5)  D_{z}^{-\lambda}f_{n+1}(z)= \frac{z^{\lambda+1}}{\Gamma(\lambda+2)}(1-
\frac{e^{in\theta}}{B_{n+1}}\textcircled{-}(n+1)z^{n})  (\lambda>0)

or

  \frac{\Gamma(\lambda+2)}{z^{\lambda+1}}D_{z}^{-\lambda}f_{n+1}(z)=1-
\frac{e^{in\theta}}{B_{n+1}}\textcircled{-}(n+1)z^{n}  (\lambda>0))

where  \textcircled{-}(k) is given by (5.3).
Upon substituting from (5.2) and (5.5) into the desired inequality (5.1), if we apply

Theorem 3, it would suffice to show that

1—   \sum_{k=n+1}^{\infty}e^{i(k-1)\theta}\textcircled{-}(k)a_{k}z^{k-1}
(5.6)   \prec 1-\frac{e^{in\theta}}{B_{n+1}}\textcircled{-}(n+1)z^{n} .

Indeed, by setting

1—   \sum_{k=n+1}^{\infty}e^{i(k-1)\theta}\textcircled{-}(k)a_{k}z^{k-1}
 =1- \frac{e^{in\theta}}{B_{n+1}}\textcircled{-}(n+1)\{w(z)\}^{n}

we find that

  \{w(z)\}^{n}:=\frac{B_{n+1}}{\textcircled{-}(n+1)}\sum_{k=n+1}^{\infty}e^{i(k-
n-1)\theta}\textcircled{-}(k)a_{k}z^{k-1} ,
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Proof By means of the fractional integral formula (3.4), we find from (1.5) that 

(5.2) 
z入＋1 OO 

叩 f(z)＝い＋2） (1-K互1ei(k-1)怜 (k)ak zk-I) （入＞ 0)

or 
00 r（入＋ 2)

z入＋1
D；入f(z) = 1- 区 ei(k-l)"0(k)akzk-l （入＞ 0),

k==n+l 

where 

(5.3) 0 (k) := 
r（入＋ 2)r {k + 1) 
r（入＋ k+ 1) >0 （入＞ O;k ~ n + I; n EN) 

is a decreasing function of k so that 

(5.4) 0 < 0 (k) ~ 0 (n + 1) = r（入＋ 2)r (n + 2) 
r（入＋ n+ 2) 

（入＞ O;k = n + I, n + 2, n + 3,... ; n EN). 

Similarly, (2.1) and (3.4) yield 

(5.5) 叩fn+1(z)=~ (1-圧0(n + 1) zn) （入＞ 0)

or 

r（入＋ 2） ein8 

z入＋1
D；入fn+l(z) = 1 -—0 (n + 1) Zn （入＞ 0),

Bn+l 

where 0 (k) is given by (5.3). 
Upon substituting from (5.2) and (5.5) into the desired inequality (5.1), if we apply 

Theorem 3, it would suffice to show that 

(5.6) 

Indeed, by setting 

we find that 

00 

1- I:が(k-1)田 (k)akzk-1 

k=n+l 

co 

e in" 
ペ1---0(n + 1) zり

Bn+l 

l — L i(k-1){J0 (k) akzk-l 
k=n+l 

e 
in,'J 

= 1 ---0(n+ 1) ｛w(z)｝n, 
Bn+l 

Bn+l ;:. {w(z)t := ~), ei(k-n-1).J0(k)ak zk-1, Le 
0 (n + 1) 

k=n+l 
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so that, by virtue of the inequality (5.4), we have

 |w(z)|^{n} \leqq\frac{B_{n+1}}{\textcircled{-}(n+1)}\sum_{k=n+1}^{\infty}
\textcircled{-}(k)a_{k}z^{k-1}
  \leqq\frac{B_{n+1}}{\textcircled{-}(n+1)}\textcircled{-}(n+1)|z|\sum_{k=n+1}^{
\infty}a_{k}
  \leqq|z|B_{n+1}\sum_{k=n+1}^{\infty}a_{k}
  \leqq|z|\sum_{k=n+1}^{\infty}B_{k}a_{k}

{5.7)  \leqq|z|<1  (z\in \mathcal{U}) ,

since (by hypothesis)

 B_{k}\leqq B_{k+1} {  k=n+1,  n+2,  n+3,  \ldots ;  n\in N).

In light of the inequality (5.7), we have the subordination (5.6), which proves Theorem
5.

In precisely the same manner as detailed above, by making use of the fractional derivative
formula (3.5) in place of the fractional integral formula (3.4), we can prove

Theorem 6. Suppose that

 f\in A  (n;\{kB_{k}\} , \theta)  (B_{k}\leqq B_{k+1})

and let the function  f_{n+1}(z) be defined by (2.1) with  B_{k} replaced by  kB_{k} . Then, for  z=re^{i\theta}

and  0<r<1 ,

(5.8)   \int_{0}^{2\pi}|D_{z}^{\lambda}f(z)|^{\mu}d\theta\leqq\int_{0}^{2\pi}|D_{z}
^{\lambda}f_{n+1}(z)|^{\mu}d\theta  (0\leqq\lambda<1;\mu>0) .

Next we prove

Theorem 7. Suppose that

 f\in A(n;\{k^{2}B_{k}\}, \theta)  (B_{k}\leqq B_{k+1})

and let the function  f_{n+1}(z) be defined (as in Theorem 6) by (2.1) with  B_{k} reploced by
 kB_{k} . Then, for   z=re:\theta and  0<r<1 ,

(5.9)   \int_{0}^{2\pi}|D_{z}^{1+\lambda}f(z)|^{\mu}d\theta\leqq\int_{0}^{2\pi}|D_{z}^
{1+\lambda}f_{n+1}(z)|^{\mu}d\theta  (0\leqq\lambda<1;\mu>0) .

Proof. In view of Definition 3 and the fractional derivative formula (3.5), we find from (1.5)
that

(5.10)  D_{z}^{1+\lambda}f(z)= \frac{z^{-\lambda}}{\Gamma(1-\lambda)}(1-\sum_{k=n+1}
^{\infty}e^{i(k-1)\theta}k(k-1)\Phi(k)a_{k}z^{k-1})  (0\leqq\lambda<1)

or

  \frac{\Gamma(1-\lambda)}{z^{-\lambda}}D_{z}^{1+\lambda}f(z)=1-\sum_{k=n+1}
^{\infty}e^{i(k-1)\theta}k(k-1)\Phi(k)a_{k}z^{k-1}  (0\leqq\lambda<1) ,
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so that, by virtue of the inequality (5.4), we have 

|w(z)r < Bn+l 
00 

= o(n+1）区 0（K)akZk-1 

(5.7) 

k=n+l 
00 

＜ Bn+I 
= 8 (n + l) 0(n+ 1) lzl L知

k=n+l 
00 

~ lzlBn十1区 ak
k=n+l 

00 

2 lzl L Bk ak 
k=n+l 

~ izl < 1 (z EU), 

since (by hypothesis) 

Bk ~ Bk+1 (k = n + 1, n + 2, n + 3,... ; n EN). 

In light of the inequality (5. 7), we have the subordination (5.6), which proves Theorem 
5. 

In precisely the same manner as detailed above, by making use of the fractional derivative 
formula (3.5) in place of the fractional integral formula {3.4), we can prove 

Theorem 6. Suppose that 

f EA(n;｛KBK}，d) （BKこBK+1)

and let the function fn+i (z) be defined by (2.1) with Bk replaced by kBk. Then, for z = rei8 
and O < r < 1, 

(5.8) 12" ID打(z)『d0~ 12" ID~入い（z）『 d0 (0 ~入 <1; μ > 0). 

Next we prove 

Theorem 7. Suppose that 

/EA (n; {k2凡｝,iJ) (Bk ~ Bk+1) 

and let the function fn+1 (z) be defined (as in Theorem 6) by (2.1) with Bk replaced by 
kBk-Then, for z = rei8 and O < r < 1, 

(5.9) 「|D凸 (z)『d0こj2T|D戸fn+l(z)t d0 (0 ~入 <1;µ>0).
O JO 

Proof In view of Definition 3 and the fractional derivative formula (3.5), we find from (1.5) 
that 

—入

(5.10) D戸f(z) = fTi＿入）（1-k~l i(k→)ilk(k-l)<I>(k)akzk-l) (0~ 入 <1)
k=n+1)  

or 

r(l —入）
co 

Z―入
Dげ"f(z)=l-L ei(k-l)ilk(k-1)<I> (k) apk-l (0 ~入 <1),

k=n+l 
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where

(5.11)   \Phi(k):=\frac{\Gamma(1-\lambda)\Gamma(k-1)}{\Gamma(k-\lambda)}>0  (0\leqq\lambda<1;k\geqq n+1;n\in N)

is a decreasing function of  k so that

(5.12)  0< \Phi(k)\leqq\Phi(n+1)=\frac{\Gamma(1-\lambda)\Gamma(n)}{\Gamma(n-\lambda+1)}
 (0\leqq\lambda<1;k=n+1, n+2, n+3, \ldots ; n\in N) .

Similarly, (2.1) (  w\dot{z}th , of course,  B_{k} replaced by  kB_{k} ),  (3.4) , and Definition 3 would yield

(5.13)  D_{z}^{1+\lambda}f_{n+1}(z)= \frac{z^{-\lambda}}{\Gamma(1-\lambda)}(1-
\frac{e^{in\theta}}{B_{n+1}}n\Phi(n+1)z^{n})  (0\leqq\lambda<1)

or

  \frac{\Gamma(1-\lambda)}{z^{-\lambda}}D_{z}^{1+\lambda}f_{n+1}(z)=1-
\frac{e^{in\theta}}{B_{n+1}}n\Phi(n+1)z^{n}  (0\leqq\lambda<1) ,

where  \Phi(k) is given by (5.11).
Upon substituting from (5.10) and (5.13) into the desired inequality (5.9), it would suffice

to show that

1−   \sum_{k=n+1}^{\infty}e^{\dot{*}(k-1)\theta}k(k-1)\Phi(k)a_{k}z^{k-1}
(5.14)   \prec 1-\frac{e^{\dot{|}n\theta}}{B_{n+1}}n\Phi(n+1)z^{n} .

Indeed, by letting

1−   \sum_{k=n+1}^{\infty}e^{i(k-1)\theta}k(k-1)\Phi(k)a_{k}z^{k-1}
 =1- \frac{e^{in\theta}}{B_{n+1}}n\Phi(n+1)\{w(z)\}^{n}

we find that

  \{w(z)\}^{n}:=\frac{B_{n+1}}{n\Phi(n+1)}\sum_{k=n+1}^{\infty}e^{i(k-n-1)
\theta}k(k-1)\Phi(k)a_{k}z^{k-1} ,

so that, by applying the inequality (5.12), we have

 |w(z)|^{n} \leqq\frac{B_{n+1}}{n\Phi(n+1)}\sum_{k=n+1}^{\infty}k(k-1)\Phi(k)
a_{k}|z|^{k-1}
  \leqq\frac{B_{n+1}}{n\Phi(n+1)}\Phi(n+1)|z|\sum_{k=n+1}^{\infty}k(k-1)a_{k}
  \leqq\frac{|z|}{n}B_{n+1}\sum_{k=n+1}^{\infty}k^{2}a_{k}
  \leqq\frac{|z|}{n}\sum_{k=n+1}^{\infty}k^{2}B_{k}a_{k}

(5.15)   \leqq\frac{|z|}{n}<1  (z\in \mathcal{U}) ,
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where 

〇(k)
r (1 —入） r （K -l) 

：＝ 
r(K —入）

>0 (5.11) (0 ~入 <I; k ~ n + I; n EN) 

is a decreasing function of k so that 

0 < <I> (k) ~ <I> (n + 1) = 
r (1-入)r(n) 

= -,..'-, r (n→+1) 
(5.12) 

(0 ~入 <l; k=n+l,n+2,n+3,... ; nEN). 

Similarly, (2.1) (with, of course, Bk replaced by kBk), (3.4), and Definition 3 would yield 

(5.13) D戸fn+I(z) = f(：――入入） （l-三叫(n+ 1) Zn) (0 2入<1)

or 
r (l —入）が＋入 e'n-//

z—入
:+"fn+I (z) = l --i,-n<I> (n + 1) zn 

Bn+1 
(0 ~入 <1),

where <I> (k) is given by (5.11). 
Upon substituting from (5.10) and (5.13) into the desired inequality (5.9), it would suffice 

to show that 

(5.14) 

Indeed, by letting 

we find that 

1-文ei(k-1)，，k(k -1) <P (k) ak zk-l 

1 -

k=n+I 

00 

e ”n9 
--< 1-― n<P(n+l)zn. 

Bn+I 

区 i(k-1),'Jk(k -I) 4'(k) ak zk-l 

k=n+l 

e ””’ =1-一 n4'(n+ I){w (z)}n, 
Bn+l 

{w (z)}n := Bn+l 
n<I>(n+ 1) 

f ei(k-n-l)-IJ k (k -1) q, (k) ak zk-l, 

k=n+I 

so that, by applying the inequality (5.12), we have 

(5.15) 

00 

|w(z)I”< 
Bn+l 

= no(n+1）区 k(k -1) <I> (k) ak lzlk-l 
k=n+l 

00 

＜ Bn+l 
=n<I>(n+l) 

<I>(n+l)lz|L k(k-l)ak 

oo 

＜ lzl = -Bn+1こ炉ak
n 

k=n+I 

＜ lzl ~ =―こ炉Bk保n 
k=n+I 

lzl 
く―<1 ＝ n 

(z EU), 

k=n+l 
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since (by hypothesis)  f\in A(n;\{k^{2}B_{k}\} , \theta) and

 B_{k}\leqq B_{k+1}  (k=n+1, n+2, n+3, \ldots ; n\in N) .

In view of the inequality (5.15), we arrive immediately at the subordination (5.14), which
evidently completes the proof of Theorem 7.

Similarly, we can prove

Theorem 8. Suppose that

 f\in A(n;\{k^{2}B_{k}\}, \theta)  (B_{k}\leqq B_{k+1})

and let the function  f_{n+1}(z) be defined by (2.1)  w\dot{\iota}thB_{k} replaced by  k^{2}B_{k} . Then, for
 z=re^{i\theta} and  0<r<1 ,

(5.16)   \int_{0}^{2\pi}|D_{z}^{1+\lambda}f(z)|^{\mu}d\theta\leqq\int_{0}^{2\pi}|D_{z}^
{1+\lambda}fn+1(z)|^{\mu}d\theta  (0 \leqq\lambda<\frac{n+1}{n+2};\mu>0) .

Finally, we prove the following interesting extension of the integral means inequality (4.3)
asserted by Theorem 4.

Theorem 9. Suppose that

 f\in A(n;\{k^{p}B_{k}\}, \theta)  (B_{k}\leqq B_{k+1;}p=2,3, \ldots, n) .

Also let the function  f_{n+1}(z) be defined (as in Theorem 4) by (2.1) with  B_{k} replaced by
 k^{p}B_{k} . Then, for  z=re^{i\theta} and  0<r<1 ,

(5.17)   \int_{0}^{2\pi}|D_{z}^{\lambda}f^{(j)}(z)|^{\mu}d\theta\leqq\int_{0}^{2\pi}|D_
{z}^{\lambda(j)}f_{n+1}(z)|^{\mu}d\theta ,

where  \mu>0,0\leqq\lambda<1 and  j is integer such that  2\leqq j\leqq p for  p=2,3,  \ldots,  n .

Proof. First of all, operating upon both sides of (4.6) by  D_{z}^{\lambda} and applying the fractional
derivative formula (3.5), we get

(5.18)  D_{z}^{\lambda}f^{(j)}(z)=- \sum_{k=n+1}^{\infty}e^{i(k-1)\theta}\Psi(k)a_{k}z^
{k-j-\lambda}\prod_{l=1}^{j+1}(k-l+1)
 (0\leqq\lambda<1;2\leqq\tilde{J}\leqq p;p=2,3, \ldots, n) ,

where

(5.19)   \Psi(k):=\frac{\Gamma(k-j)}{\Gamma(k-j-\lambda+1)}>0  (0\leqq\lambda<1_{)}.k\geqq n+1;2\leqq j\leqq p)

is a decreasing function of  k so that

(5.20)  0< \Psi(k)\leqq\Psi(n+1)=\frac{\Gamma(n-j+1)}{\Gamma(n-j-\lambda+2)}
 (0\leqq\lambda<1;k=n+1, n+2, n+3, \ldots ; 2\leqq j\leqq p) .

Similarly, we find from (4.7) and (3.5) that

(5.21)  D_{z}^{\lambda(j)}f_{n+1}(z)=-e^{in\theta}( \frac{\prod_{l--1}^{j+1}(n-l+2)}{(n
+1)^{p}B_{n+1}})\Psi(n+1)z^{n-j-\lambda+1}
 (0\leqq\lambda<1;2\leqq j\leqq p) ,
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since (by hypothesis) f EA (n;｛炉凡｝，iJ)and 

Bk ~ Bk+l (k = n + l, n + 2, n + 3,... ; n EN). 

In view of the inequality {5.15), we arrive immediately at the subordination (5.14), which 

evidently completes the proof of Theorem 7. 

Similarly, we can prove 

Theorem 8. Suppose that 

f EA (n;｛炉BK}，0) （BKこBK+1)

and let the function fn+l (z) be defined by (2.1) with Bk replaced by炉Bk- Then, for 

z = rei8 and O < r < l, 

{5.16) fo2" ID戸f(z)『d0~ 12" ID巴fn+l(z)『d。(o~入＜畠，µ > o) 

Finally, we prove the following interesting extension of the integral means inequality (4.3) 

邸 sertedby Theorem 4. 

Theorem 9. Suppose that 

f EA (n;｛炉Bk},-,'J) (Bk~Bk+1; p=2,3,...,n). 

Also let the function fn+1 (z) be defined (as in Theorem 4) by (2.1) with Bk replaced by 

kP Bk-Then, for z = rei9 and O < r < l, 

(5.17) [ |D炉 (z)|μ d0こ[|的fn+l(j) (z) Iμ d0, 

where μ > 0, 0 ;::;入 <land j is integer such that 2;::; j ;::; p for p = 2, 3,..., n. 

Proof First of all, operating upon.both sides of (4.6) by D; and applying the fractional 

derivative formula (3.5), we get 

oo j+l 

(5.18) D；炉（z)=— 区 ei(k-1)憧 (k)akzk-jー入II(k -l + 1) 
k=n+l.  l=l 

(0;::;入<l;2;::;j;::;p; p=2,3,...,n), 

where 

(5.19) 
r (k -j) 

w(k):=~>0 (0~ 入 <1; k ~ n + 1; 2 ~ j ~ p) 
r (k -j —入＋ 1)

is a decreasing function of k so that 

0 < ¥JI (k) ~ ¥JI (n + l) = f(n-j + 1) 
r (n-j —入＋ 2)

(5.20) 

(0 ~入 <l; k = n + l, n + 2, n + 3,... ; 2 ~ j ~ p). 

Similarly, we find from (4.7) and (3.5) that 

(5.21) 叩 n+l(j) (z)＝ーロ（］巳胃こp)I[/ (n + 1) zn-j—入＋ 1
(0 ~入 <1; 2 ~ j ~ p), 
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where  \Psi(k) is given by (5.19). Thus, by virtue of Theorem 3, it would suffice to show that

  \sum_{k=n+1}^{\infty}e^{i(k-1)\theta}\Psi(k)a_{k}z^{k-j-\lambda}\prod_{l=1}^{j
+1}(k-l+1)
(5.22)   \prec e^{in\theta}(\frac{\prod_{l--1}^{j+1}(n-l+2)}{(n+1)^{p}B_{n+1}})\Psi(n+
1)z^{n-j-\lambda+1}  (2\leqq j\leqq p) .

In order to prove the subordination (5.22), we set

  \sum_{k=n+1}^{\infty}e^{;(k-1)\theta}\Psi(k)a_{k}z^{k-j-\lambda}\prod_{l=1}^{j
+1}(k-l+1)
 =e^{in\theta}( \frac{\prod_{\iota--1}^{j+1}(n-l+2)}{(n+1)^{p}B_{n+1}})\Psi(n+1)
\{w(z)\}^{n-j-\lambda+1}

and observe that

 |w(z)|^{n-j-\lambda+1} \leqq\frac{(n+1)^{p}B_{n+1}}{\Psi(n+1)\prod_{l=1}^{j+1}
(n-l+2)}
  \sum_{k=n+1}^{\infty}\Psi(k)a_{k}|z|^{k-j-\lambda}\prod_{l=1}^{j+1}(k-l+1)

  \leqq\frac{(n+1)^{p}B_{n+1}}{\Psi(n+1)\prod_{l=1}^{j+1}(n-l+2)}
.   \Psi(n+1)\sum_{k=n+1}^{\infty}a_{k}|z|^{k-j-\lambda}\prod_{l=1}^{j+1}(k-l+1)

(5.23)   \leqq\frac{(n+1)^{p}B_{n+1}}{\prod_{l=1}^{j+1}(n-l+2)}\sum_{k=n+1}^{\infty}
a_{k}|z|^{k-j-\lambda}\prod_{l=1}^{j+1}(k-l+1) ,

which, in view of (4.1) and (4.2), would lead us to the inequality:

(5.24)  |w(z)|<1  (z\in \mathcal{U})

just as in (4.10). This evidently completes the proof of Theorem 9.
Each of our integral means inequalities (given by Theorems 4 to 9 above) can be suitably

speciahzed in order to derive the corresponding results for numerous simpler classes of
analytic and univalent functions. For example, in its special cases when

(i)  n=1 ,  \theta=0 , and  B_{k}=1 ,

(ii)  n=1 ,  \theta=0 , and  B_{k}= \frac{k-\alpha}{k(1-\alpha)}  (0\leqq\alpha<1) ,
and

(iii)  n=1 ,  \theta=0 , and  B_{k}= \frac{k-\alpha}{1-\alpha}  (0\leqq\alpha<1) ,
Theorem 6 would immediately yield the integral means inequahties proven earlier by Kim
and Choi [2, p. 49, Theorem 1 (i); p. 51, Theorem 3 (i) and  (ii) ]  ) who also gave several
obvious special cases of Theorem 7 to hold true for such  familia\iota. function classes as  \mathcal{T} ,
 \tau*(\alpha) , and  C(\alpha) involved in the relationship (1.3).
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where ¥[I (k) is given_ by (5.19). Thus, by virtue of Theorem 3, it would suffice to show that 

(5.22) 

oo j+l 
I: ei(k-1}{)¥[I (k) ak zk-j→II (k -l + 1) 

k=n+l I=! 

-< ein{}（芦(n-l+2)
(n+ 1/ B叶 1

) ¥ff (n + 1) zn-j→+I (2 ~ j ~ p). 

In order to prove the subordination (5.22), we set 

00 f ei(k-1)惰 (k)ak zk-jー入廿(k-l+l)

k=n+1 l=1 

= einfJ （庄霊;~) ¥J! (n + l){w (z)}n-j—入＋1
and observe that 

lw (z)|”―j —入＋ 1 ＜ (n+ 1)PBn+1 

＝屯 (n+l)IT店 (n-l+2)

oo j+l 

・ I: 1¥ (k) ak lzlk-j→II (k -l + 1) 
k=n+l l=1 

＜ (n + lY Bn+l 

= w(n+l)IT店 (n-l + 2) 

oo j+l 

・ W (n + 1) L ak lzlk-jー入II(k -l + 1) 

k=n+l l=l 

(5.23) 
く (n+ 1YBn+1 00 

= I1店 (n-l+2)
f ak lzlk-j—廿 (k-l+l),

k=n+l l=l 

which, in view of (4.1) and (4.2), would lead us to the inequality: 

{5.24) jw {z)j < 1 {z EU) 

just as in (4.10). This evidently completes the proof of Theorem 9. 
Each of our integral means inequalities (given by Theorems 4 to 9 above) can be suitably 

specialized in order to derive the corresponding results for numerous simpler classes of 
analytic and univalent functions. For example, in its special cases when 

(i) n = 1, 1'J = 0, and Bk = 1, 
k -a 

{ii) n = l, 1'J = 0, and Bk = ~ (0 ~a< 1), 
k (1 -a) 

and 
k-a 

(iii)n=l, fJ=O, and Bk=~ (O~a<l), 
1 -a 

Theorem 6 would immediately yield the integral means inequalities proven earlier by Kim 
and Choi [2, p. 49, Theorem 1 (i); p. 51, Theorem 3 (i) and (ii)], who also gave several 
obvious special cases of Theorem 7 to hold true for such familiar function classes as T, 

T* (a), and C (a) involved in the relationship (1.3). 
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