<table>
<thead>
<tr>
<th>Title</th>
<th>Sufficient conditions for Caratheodory functions (Study on Inverse Problems in Univalent Function Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nunokawa, Mamoru; Owa, Shigeyoshi; Takahashi, Norihiro; Saitoh, Hitoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2001), 1192: 107-113</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2001-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/64771</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On certain conditions for starlikeness

MAMORU NUNOKAWA [布川 護] (群馬大学・教育学部)
SHIGEYOSHI OWA [尾和 重義] (近畿大学・理工学部)

Abstract. The object of the present paper is to consider a sufficient condition for analytic functions in the open unit disk to be strongly starlike of order \(\alpha \).

1 Introduction.

Let \(A \) be the class of functions of the form

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
\]

which are analytic in the open unit disk \(U = \{ z \in \mathbb{C} : |z| < 1 \} \). A function \(f(z) \) in \(A \) is said to be starlike in \(U \) if it satisfies

\[
\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > 0 \quad (z \in U).
\]

We denote by \(S^* \) the subclass of \(A \) consisting of all starlike functions \(f(z) \) in \(U \). Further a function \(f(z) \) belonging to \(A \) is said to be strongly starlike of order \(\alpha \) in \(U \) if it satisfies

\[
\left| \arg \frac{zf'(z)}{f(z)} \right| < \frac{\pi}{2} \alpha \quad (z \in U)
\]

for some \(\alpha \) \((0 < \alpha \leq 1) \). We denote by \(SS^*(\alpha) \) the subclass of \(A \) consisting of all strongly starlike functions of order \(\alpha \) in \(U \).

From the definition for strongly starlike functions of order \(\alpha \), we note that \(f(z) \in SS^*(\alpha) \) is univalent and starlike in \(U \). Recently, Tuneski [2] obtained the following theorem.

Mathematics Subject Classification (1991): 30C45

Key Words and Phrases: Starlike, univalent, strongly starlike.
Theorem A. Let a function $f(z) \in A$ satisfy
\[\frac{f(z)f''(z)}{f'(z)^2} < 2 - \frac{2}{(1-z)^2} \quad (z \in U), \]
where the symbol "\(<" means the subordination. Then $f(z) \in S^*$.

To derive our main theorem, we need the following lemma due to Nunokawa [1].

Lemma. Let $p(z)$ be analytic in U with $p(0) = 1$ and $p(z) \neq 0 (z \in U)$. If there exists a point $z_0 \in U$ such that
\[|\arg(p(z))| \leq \frac{\pi}{2} \alpha \quad \text{for} \quad |z| < |z_0| \]
and
\[|\arg(p(z_0))| = \frac{\pi}{2} \alpha \quad (\alpha > 0), \]
then we have
\[\frac{z_0 p'(z_0)}{p(z_0)} = ik \alpha, \]
where $k \geq 1$ when $\arg(p(z_0)) = (\pi/2) \alpha$ and $k \leq -1$ when $\arg(p(z_0)) = -(\pi/2) \alpha$.

2 Strongly starlikeness of order α

Now we derive

Theorem. Let $f(z)$ in A satisfy the following inequalities
\[\pi - \frac{\pi}{2} \alpha - \tan^{-1} \alpha < \arg \left(\frac{f(z)f''(z)}{f'(z)^2} - 1 \right) < \pi + \frac{\alpha}{2} + \tan^{-1} \alpha \quad (z \in U) \]
for some $\alpha(0 < \alpha \leq 1)$. Then $f(z)$ belongs to the class $SS^*(\alpha)$ in U.
Proof. From the assumption in the theorem, we see that \(f'(z) \neq 0 \) in \(U \). Let us define the function \(p(z) \) by \(p(z) = z f'(z) / f(z) \). Then \(p(z) \) satisfies

\[
\frac{f(z)f''(z)}{f'(z)^2} = 1 + \frac{zp'(z)}{p(z)^2} - \frac{1}{p(z)},
\]

and so

\[
\frac{f(z)f''(z)}{f'(z)^2} - 1 = \frac{1}{p(z)} \left(-1 + \frac{zp'(z)}{p(z)} \right).
\]

If there exists a point \(z_0 \in U \) such that

\[
|\arg(p(z_0))| < \frac{\pi}{2} \alpha \quad \text{for } |z| < |z_0|
\]

and

\[
|\arg(p(z_0))| = \frac{\pi}{2} \alpha,
\]

then Lemma gives us that

(i) for the case \(\arg(p(z_0)) = (\pi/2)\alpha \),

\[
\arg \left(\frac{f(z_0)f''(z_0)}{f'(z_0)^2} - 1 \right) = \arg \left\{ \frac{1}{p(z_0)} \left(\frac{z_0p'(z_0)}{p(z_0)} - 1 \right) \right\}
\]

\[
= -\frac{\pi}{2} \alpha + \arg \left(-1 + \frac{z_0p'(z_0)}{p(z_0)} \right)
\]

\[
= -\frac{\pi}{2} \alpha + \arg(-1 + ik\alpha)
\]

\[
\leq \pi - \frac{\pi}{2} \alpha - \tan^{-1} \alpha.
\]

This contradicts our condition in the theorem.

(ii) for the case \(\arg(p(z_0)) = -(\pi/2)\alpha \), the application of the same method as in (i) shows that

\[
\arg \left(\frac{f(z_0)f''(z_0)}{f'(z_0)^2} - 1 \right) \geq \pi + \frac{\pi}{2} \alpha + \tan^{-1} \alpha.
\]

This also contradicts the assumption of the theorem. Thus we complete the proof of our main theorem.

Putting \(\alpha = 1 \) in Theorem, we have the following corollary.
Corollary. If \(f(z) \in A \) satisfies

\[
\frac{\pi}{4} < \arg \left(\frac{f(z)f''(z)}{f'(z)^2} - 1 \right) < \frac{7\pi}{4} \quad (z \in U),
\]

then \(f(z) \in S^* \).

References

Mamoru Nunokawa
Department of Mathematics
University of Gunma
Aramaki, Maebashi, Gunma 371-8510
Japan
e-mail: nunokawa@edu.gunma-u.ac.jp

Shigeyoshi Owa
Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502
Japan
e-mail: owa@math.kindai.ac.jp