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Abstmct. For Carath'\inftydory  f\iota mctionsp(z) which are analytic in the open unit disk  U with  p(O)=1 ,
S.S.MiUer (Bull.Amer.Math.Soc.81(1975),79- 81) has shown some sufficient conditions applying the
differential inequalities.The object of the present paper is to derive some improvements of results by
S.S.MiUer.

1 Introduction

Let  A be the class of functions  p(z) of the form

  p(z)=1+p_{1}z+p_{2}z^{2}+\cdots (1.1)

which are analytic in the open unit disk  U=\{z\in \mathbb{C} : |z|<1\} . If  p(z) in  A

satisfies  {\rm Re} p(z)>0 for  z\in U, then we say that  p(z) is the Carathéodory function. For
Carathéodory functions, Miller [1] has given

Theorem A. Let  p(z) be in the class  A .

(i) If  {\rm Re}\{p(z)^{2}+zp^{l}(z)\}>0 .  (z\in U)_{f} then  {\rm Re} p(z)>0  (z\in U) .

(ii) If {\rm Re}(z\in\{p(z)U),+\alpha zp'(z)\}>0  (z\in U) for some  \alpha  (\alpha\geqq 0) , then  {\rm Re} p(z)>0

(iii) If  p(z)\neq 0  (z\in U) and  {\rm Re} \{p(z)-\frac{zp'(z)}{p(z)^{2}}\}>0  (z\in U) , then

 {\rm Re} p(z)>0  (z\in U) .

Let  f(z) and  g(z) be analytic in  U . If there exists an analytic function  w(z) with
 w(O)=0 and  |w(z)|<1  (z\in U) such that  f(z)=g(w(z)) , then  f(z) is said to be
subordinate to  g(z) in  U .
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Sufficient conditions for Caratheodory functions 

MAMORU NUNOKAWA, SHIGEYOSHI OWA, 
NORIHIRO TAKAHASHI and HITOSHI SAITOH 

Abstract. For Carathfudory functions p(z) which匹eanalytic in the open unit disk U with p(O) = 1, 
S.S.Miller(Bull.Amer.Math.Soc.81(1975),79--81) h邸 shownsome sufficient conditions applying the 
differential inequalities. The object of the present paper is to derive some improvements of results by 
S.S.Miller. 

1 Introduction 

Let A be the cl邸 sof functions p(z) of the form 

p(z) = 1 + Pl z +p記＋・・・ (1. 1) 

which are analytic in the open unit disk U = {z EC: lzl < l}. If p(z) in A 
satisfies Rep(z) > 0 for z E U, then we say that p(z) is the Caratheodory function. For 
Caratheodory functions, Miller [1] has given 

Theorem A. Let p(z) be in the class A. 

(i) If Re {p(z)彗 zp'(z)}> 0 (z EU), then Rep(z) > 0 (z EU). 

(ii) If Re {p(z) + azp'(z)} > 0 (z EU) /or some a (a~ 0), then Rep(z) > 0 
{z EU), 

(iii) If p(z) :/= 0 (z EU) and Re {p(z) -
zp'(z) 詞―}＞0 (z EU), then 

Rep(z) > 0 (z EU). 

Let J(z) and g(z) be analytic in U. If there exists an analytic function'W（z) with 
'W（0) = 0 and I'W（z)I < 1 (z E U) such that f(z) = g('W（z)), then f(z) is said to be 
subordinate to g(z) in U. 
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We denote this subordination by  f(z)\prec g(z).We note that the subordination
 f(z)\prec g(z) implies that  f(U)\subset g(U) . Applying the subordination principles, we improve
Theorem A by Miller [1]. To prove our results for Carathéodory functions, we have to
recaU here the  foUowing .lemma due to Nunokawa [3] (also due to Miller and Mocanu [2]).

Lemma. Let  p(z)\in A and suppose that the re exists a point  z_{0}\in U such that
 {\rm Re} p(z)>0 for  |z|<|z_{0}| and  {\rm Re} p(z_{0})=0 urith  p(z_{0})\neq 0 . Then we have

 z_{0}p'(z_{0}) \leqq-\frac{1}{2}(1+a^{2}) , (1.2)

wheoe  p(z_{0})=ia  (a\neq 0) .

2 Subordination theorems for Carathéodory functions

Our first result for Carathéodory functions is contained in

Theorem 1. Let  p(z)\in A and  w(z) be andytic in  U with   w(O)=\alpha and
 w(z)\neq k  (k\in \mathbb{R},z\in U) . If

 \alpha p(z)^{2}+\beta zp'(z)\prec w(z) , (2.1)

then  {\rm Re} p(z)>0  (z\in U), where  \beta>0,   \alpha\geqq-\frac{\beta}{2} , and  k \leqq-\frac{\beta}{2} .
Proof. Let us suppose that there exists a point  z_{0}\in U such that

 {\rm Re} p(z)>0 for  |z|<|z_{0}|

and

 {\rm Re} p(z_{0})=0  (p(z_{0})\neq 0) .

Then Lemma gives that  p(z_{0})=ia  (a\neq 0) and  z_{0}p'(z_{0}) \leqq-\frac{1}{2}(1+a^{2}) . It follows that

 \alpha p(z_{0})^{2}+\beta z_{0}p'(z_{0})=-\alpha a^{2}+\beta z_{0}p'(z_{0})

  \leqq-\frac{1}{2}\{\beta+(2\alpha+\beta)a^{2}\} (2.2)

  \leqq-\frac{\beta}{2} .

Since   w(O)=\alpha and  w(e^{i\theta}) \leqq-\frac{\beta}{2} , the inequality (2.2) contradicts our condition (2.1).
Therefore  {\rm Re} p(z)>0 for all  z\in U .  \square 
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We denote this subordination by f(z)-< g(z).We note that the subordination 

f(z) -< g(z) implies that f(U) C g(U). Applying the subordination principles, we improve 

Theorem A by Miller (1]. To prove our results for Caratheodory functions, we have to 

recall here the followingJemma due to Nunokawa (3] (also due to Miller and Mocanu (2]). 

Lemma. Let p(z) E A and suppose that there exists a point z0 E U such that 

Rep(z) > 0 for lzl < lzol and Rep(zo) = 0切ithp(zo)'F 0. Then we have 

where p(zo) = ia (a,f-0). 

1 
zop'(zo) ~ー一(1+ a2), 

2 
(1.2) 

2 Subordination theorems for Caratheodory functions 

Our first result for Caratheodory functions is contained in 

Theorem 1. Let p(z) EA and w(z) be analytic in U両thw(O) = a and 
w(z) =f k (k E良，zEU). If 

ap(z)2 + {Jzp'(z) ~ w(z), 

゜then Rep(z) > 0 (z EU), where {J > 0, a~-~, and k ~ー一゜= 2 2. 

Proof. Let us suppose that there exists a point zo E U such that 

Rep(z) > 0 for lzl < lzol 

and 
Rep(zo) = 0 (p(zo) # 0). 

(2.1) 

1 
Then Lemma gives that p(z0) = ia (a# 0) and zop'(z0) ~ー一(1+ a2). It follows that 

2 

ap(zo)2十釦0p'(z0)= -aa2十釦op'{zo)

こ—½{fJ + (2a + fJ)a2} (2.2) 

こ
fJ --． 
2 

/3 
Since w(O) = a and w（ぎ）こ――,theinequality (2.2) contradicts our condition (2.1). 

2 
Therefore Rep(z) > 0 for all z E U. ロ



Remark 1. Theorem 1 is the improvement of (i) of Theorem A by Miller [1].

Corollary 1. If  p(z)\in A satisfies

  \alpha p(z)^{2}+\beta zp'(z)\prec\frac{2\alpha+\beta}{2}(\frac{1+z}{1-z})^{2}-
\frac{\beta}{2} , (2.3)

where  \beta>0 and   \alpha\geqq-\frac{\beta}{2} , then  {\rm Re} p(z)>0(z\in U) .

Pmof. Taking

 w(z)= \frac{2\alpha+\beta}{2}(\frac{1+z}{1-z})^{2}-\frac{\beta}{2} (2.4)

in Theorem 1, we see that  w(z) is analytic in  U,   w(O)=\alpha and

 w(e^{:\theta})= \frac{2\alpha+\beta}{2}(\frac{1+e^{:\theta}}{1-e^{i\theta}})
^{2}-\frac{\beta}{2}\leqq-\frac{\beta}{2} . (2.5)

Thus  w(z) satisfies the conditions in Theorem 1.

Theorem 2. Let  p(z)\in A and  w(z) be analytic in  U with   w(O)=\alpha and
 w(z)\neq ik  (k\in \mathbb{R}, z\in U) . If

  \alpha p(z)+\beta\frac{zp'(z)}{p(z)}\prec w(z) , (2.6)

then  {\rm Re} p(z)>0(z\in U) , where  \alpha>0,  \beta>0_{f} and  k^{2}\geqq\beta(2\alpha+\beta) .

Proof. From the subordination (2.6), we have  p(z)\neq 0 in  U , because if  p(z) has a zero
of order  l at  z=z_{0}\in U , then we have  p(z)=(z-z_{0})^{l}q(z) , where  q(z) is analytic in  U ,
 q(z_{0})\neq 0 , and  l is a positive integer.
Letting  zarrow z_{0} such that

  \arg(z-z_{0})=\arg(z_{0})-\frac{\pi}{2} ,

we have

  \lim_{zarrow z_{0}}{\rm Im}(\alpha p(z)+\beta\frac{zp'(z)}{p(z)})=\lim_{zarrow
zo}{\rm Im}(\alpha p(z)+\frac{\beta\sim\vee(lq(z)+(z-z_{0})q'(z)}{(z-z_{0})q(z)}
)
 =+\infty .
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Remark 1. Theorem 1 is the improvement of (i) of Theorem A by Miller [l]. 

Corollary 1. If p(z) E A satisfies 

ap(z)2 +/3zp'(z)喜デ（巴）2-；，
/3 

where/3 >0 and a~ 一—,thenRep(z) > 0 (z EU). 
2 

Proof. Taking 

w(z)=¥巳）2- f!.. 
2 ¥1-z/ 2 

in Theorem 1, we see that w(z) is analytic in U, w(O) = a and 

w(e`°) ＝翌（国）2- 和—i.
Thus w (z) satisfies the conditions in Theorem 1. 

Theorem 2. Let p(z} EA and w(z} be analytic in U両thw(O} = a and 
w(z)-:/-ik (k E恥zEU). If 

ap(z) +(J叫立~ w(z}, 
p(z) 

then Rep(z) > 0 (z EU), whe詑 a> 0, fJ > 0, and k2 ~ [J(2a +(J）． 

(2.3) 

(2.4) 

(2.5} 

ロ

(2.6) 

Proof. From the subordination (2.6), we have p(z) i= 0 in U, because if p(z) has a zero 
of order lat z = z0 E U, then we have p(z) = (z -zo)1q(z), where q(z) is analytic in U, 

q(zo) i= 0, and l is a positive integer. 
Letting z→z0 such that 

we have 

汀

arg(z -zo) = arg(zo) -i 
2' 

lim Im { ap(z) + /3逆邑＝ limIm { ap(z) + 
釦(lq(z)+ (z -zo)q'(z) 

z→zo ( )  p(z) ） z→z。 (ap(z)+~)
=+oo. 



This contradicts (2.6) and so we conclude that  p(z)\neq 0 for all  z\in U .
We assume that there exists a point  z_{0}\in U such that

 {\rm Re} p(z)>0 for  |z|<|z_{0}|

and

 {\rm Re} p(z_{0})=0 .

Then using Lemma, we have

  \alpha p(z_{0})+\beta\frac{z_{0}p'(z_{0})}{p(z_{0})}=i\alpha a+\frac{\beta}
{ia}z_{0}p'(z_{0})
 =i( \alpha a-\frac{\beta}{a}z_{0}p'(z_{0})) (2.7)

 =iv ,

where  v is real, because  z_{0}p'(z_{0}) \leqq-\frac{1}{2}(1+a^{2}) . Furthermore, we have, if  a>0 , then

 v \geqq\alpha a+\frac{\beta}{2a}(1+a^{2}) (2.8)
 \geqq\sqrt{\beta(2\alpha+\beta)},

and if  a<0 , then

 v \leqq-\alpha b-\frac{\beta}{2b}(1+a^{2})  (b=-a>0)
(2.9)

 \leqq-\sqrt{\beta(2\alpha+\beta)}.

This contradicts our condition that  w(e^{*\theta})=ik(|k|\geqq\sqrt{\beta(2\alpha+\beta)}).Thus we conclude
that  {\rm Re} p(z)>0 for all  z\in U .  \square 

Using Theorem 2, we have the following corollary.

Corollary 2. If  p(z)\in A satisfies

 p(z)+ \frac{zp'(z)}{p(z)}\prec\frac{1+4z+z^{2}}{1-z^{2}} , (2.10)

then  {\rm Re} p(z)>0(z\in U) .

Proof. Let us consider the case of  \alpha=\beta=1 in Theorem 2. Defining the function  w(z)
by

 w(z)= \frac{1+4z+z^{2}}{1-z^{2}} , (2.11)
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This contradicts (2.6) and so we conclude that p(z) i= 0 for all z E U. 
We邸sumethat there exists a point z0 E U such that 

Rep(z) > 0 for lzl < lzol 

and 
Rep(zo) = 0. 

Then using Lemma, we have 

zop'(zo) : __, (3 
ap(zo) ＋仕—―=iaa十一zop'(zo)

p(zo) 

= 2 (aa:]Zop'（zo)) 

=iv ， 

(2.7) 

1 
where v is real, because z0p'(zo)こー一(1+ a2). Furthermore, we have, if a> 0, then 

2 

and if a < 0, then 

/3 v ~ aa十一{1+ a2) 
2a 

~✓/3(2a+/3）， 

v~ ーab- f!_(1+aり (b=-a> 0) 
2b 

こーJ/3(2a+/3）．

(2.8) 

(2.9) 

This contradicts our condition that w(e;6) = ik (lkl ~ ✓/3(2a+/3））．Thus we conclude 
that Rep(z) > 0 for all z EU. ロ

Using Theorem 2, we have the following corollary. 

Corollary 2. If p(z) EA satisfies 

， 
p(z) + 
zp'(z), 1 + 4z + z2 

p(z) -< 1-z2' 
(2.10) 

then Rep(z) > 0 (z EU). 

Proof. Let us consider the case of a= (3 = 1 in Theorem 2. Defining the function w(z) 

by 

1 + 4z + z2 
w(z) = 

1-z2' 
(2.11) 



we know that  w(z) is analytic in  U,  w(O)=1 , and

 w(e^{i\theta})= \frac{2+\cos\theta}{\sin\theta}i . (2.12)

Letting

 g( \theta)=(\frac{2+\cos\theta}{\sin\theta})^{2}  (0\leqq\theta\leqq 2\pi) , (2.13)

we have  g'(\theta)=0 when   \cos\theta=-\frac{1}{2} .
If follows from the above that  g(\theta)\geqq 3 , that is, that  w(z)\neq ik(|k|\geqq\sqrt{3}) .  \square 

Next, we derive

Theorem 3. If  p(z)\in A satisfies

 {\rm Re} \{\alpha p(z)-\beta\frac{zp'(z)}{p(z)^{2}}\}>-\frac{\beta}{2}  (z\in U) (2.14)

for some  \alpha\geqq 0 and  \beta>0, then  {\rm Re} p(z)>0  (z\in U) .

Proof. Applying the same method as the proof of Theorem 2, the condition (2.14) gives
us that  p(z)\neq 0 in  U , because if  p(z) has a zero of order  l at a point  z=z_{0}\in U , then
we have  p(z)=(z-z_{0})^{l}q(z) , where  q(z) is analytic in  U,  q(z_{0})\neq 0 and  l is a positive
integer. Letting  zarrow\approx_{0} such that

  \arg(z-z_{0})=\frac{\arg(z_{0})-\arg(q(z_{0}))}{l+l} ,

we see that

  \lim_{zarrow z_{0}}(\alpha p(z)-\beta\frac{zp'(z)}{p(z)^{2}})=\lim_{zarrow z0}
(\alpha p(z)-\beta\frac{lzq(z)+(z-z_{0})zq'(z)}{(z-z_{0})^{l+1}q(z)^{2}})
 =-\infty .

This contradicts our condition (2.14) and so we have  p(z)\neq 0 in  U .
By means of Lemma, if there exists a point  z_{0}\in U such that

 {\rm Re} p(z)>0 for  |z|<|z_{0}|

and

 {\rm Re} p(z_{0})=0 ,

then  p(z_{0})=ia  (a\neq 0) and   \sim 0p'7(z_{0})\leqq-\frac{1}{2}(1+a^{2}) .

This implies that

 {\rm Re} \{\alpha p(z_{0})-\beta\frac{z_{0}p'(z_{0})}{p(z_{0})^{2}}\}\leqq-
\frac{\beta}{2a^{2}}(1+a^{2})\leqq-\frac{\beta}{2} (2.15)

which contradicts our condition (2.14). Thus  {\rm Re} p(z)>0 for all  z\in U .  \square 
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we know that w(z) is analytic in U, w(O) = 1, and 

w(i()） 
2+cos(}． 
= 2. 
sin(} 

Letting 

(2.12) 

2 +cos0 
2 

g(O) ＝ ［ sin。)(0;£ 0 ;£ 2w), (2.13) 

we have 91(0) = 0 when cos 0 = -;;-. 
2 

If follows from the above that g(0)~ 3, that is, that w(z),f= ik (lk|~ v'3). ロ

Next, we derive 

Theorem 3. If p(z) EA satisfies 

Re{ ap(z)-/3虹｝ー(!_(zEU) 
p(z)2 

＞ 
, 2 

for some a ~ 0 and/3 ＞0, then Rep(z) > 0 (z EU). 

(2.14) 

Proof. Applying the same method as the proof of Theorem 2, the condition (2.14) gives 
us that p(z) -=/= 0 in U, because if p(z) has a zero of order l at a point z = z0 E U, then 
we have p(z) = (z -z0)1q(z), where q(z) is analytic in U, q(zo)-I= 0 and l is a positive 
integer. Letting z→z0 such that 

arg(z -zo) = arg(zo) -arg(q(
zo)) 

l + 1 
we see that 

尼(ap(z)-/3靡）＝尼 (ap(z)-{3lzq((zz) —+`;;0(>;’(z))
= -00. 

This contradicts our condition (2.14) and so we have p(z) f:: 0 in U. 
By means of Lemma, if there exists a point z0 E U such that 

Rep(z) > 0 for lzl < lzol 

and 
Rep(zo) = 0, 
1 

then p(zo) = ia (a f:: 0) and zop1(zo) ~方(1 + a2). 
This implies that 

Re { ap(zo) -/3Z;f；位｝こ—贔(1 ＋社）こ一% • (2.15) 

which contradicts our condition (2.14). Thus Rep(z) > 0 for all z EU. ロ



Remark 2. Theorem 3 is the improvement of (iii) of Theorem A by Miller [1].

Finally we have

Corollary 3. If  p(z)\in A satisfies

  \alpha p(z)-\beta\frac{zp'(z)}{p(z)^{2}}\prec\frac{2\alpha+\beta}{2}(\frac{1+
z}{1-z})^{2}-\frac{\beta}{2} (2.16)

for some  \alpha\geqq 0 and  \beta>0_{f} then  {\rm Re} p(z)>0(z\in U) .

Pmof. Since the function

 w(z)= \frac{2\alpha+\beta}{2}(\frac{1+z}{1-z})^{2}-\frac{\beta}{2} (2.17)

maps the open unit disk  U onto the complex domain which has the slit

 \delta=\{w :  {\rm Re}(w)<- \frac{\beta}{2}\} ,

the proof of Corollary 3 follows from the above.  \square 
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Remark 2. Theorem 3 is the improvement of (iii) of Theorem A by Miller fl]. 

Finally we have 

Corollary 3. If p(z) E A satisfies 

zp'(z). 2a +/31 +z¥2/3 
ap(z) -/3詞ベァ応）ー5 (2.16) 

for some a~ 0 and /3 > 0, then Rep(z) > 0 (z EU). 

Proof. Since the function 

w(z) =三巳）2-f!. 
2 ¥1-z/ 2 

(2.17) 

maps the open unit disk U onto the complex domain which has the slit 

d={w:Re(w)<-i}, 

the proof of Corollary 3 follows from the above. ロ
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