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On Radius Problems for Analytic Functions of
Koebe Type |

Atsushi Eguchi and .Shigeyos.hi Owa

Abstract. By virtue of the extremal function f(z) for S*(a) which is the class of all starlike functions f(z)
of order a having f(0) = 0 and f'(0) = 1 in the open unit disk U, new function of Koebe type is considered.
The object of the present paper is to derive radii for starlikeness of order a, and for convexity of order o for the
function of Koebe type. Using the extremal functions for the classes of a-spiral like of order 3 and of a-convex
like of order 3, we also consider the analytic function of the generalized Koebe type. Some interesting examples
for the theorems are also given with their mapping properties. '

1 Introduction

Let A be the class of functions f(z) of the form

f(z)=z+ Zanz”

n=2

that are analytic in the open unit disk U = {z:2 € Cand |z|] < 1}. A function f(z) in A is
said to be starlike of order « if it satisfies

Zf’(z)>

Re < > o

f(2)

for some @ (0 £ @ < 1) and all zin U. Werdenote by S*(a) the subclass of A consisting of all
starlike functions of order o in U. A function f(2) in A is said to be convex of order « if it

satisfies
e (1 20) 5

for some o (0 £ @ < 1) and all z in U. Also we denote by K(«) the subclass of A consisting of
functions f(z) which are convex of order a in U. In particular, we denote by S*(0) = S* and
K(0) = K (cf. Robertson [3]). By Robertson [3], we note that

(i) f(z) = (1—:%)26_—5 is the extremal function for the class S*(«).
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(i) f =1 "1 X
—log(1 - 2) (@=3)

is the extremal function for the class K(«).

If we take @ = 0in (i) and (ii), then we see that

(iii) f(z) =

(1-2)?

is the extremal function for thé class S*.
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(right)

VA . .
(iv) f(z) = 1 is the extremal function for the class K.
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Fig 1.2: Image of |z| =r by f(z) = l—i—; (left), 1+

f'(2)

(right)

(r =1 in all cases).

(r =1 in all cases).
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Furthermore, by Marx [2] and Strohhéicker [4] (also by Komatu [1]), we see that K is the
subclass of S*(3). And by Wilken and Feng [5], K (c) is the subclass of S*(8(c)), where

2a—1 1
2(1 — 21-2a) (a # 5)

Bl)={ |
2log2 (o= 5)'

In view of the previous properties for the classes S*(a) and K(«), it is very interesting to
consider the following analytic function

f(z):ﬁ (k € R)

which was called Koebe type. Then by the extremal functions f(z) for the classes S*(a) and
K («), we know that, in general, this function f(z) is not univalent (so, is not starlike or convex)
in U. But, since every analytic function f(z) maps, one-to-one, a small disk onto a small disk,
we consider the radius problems for the analytic function f(z) of Koebe type to be starlike and
convex of order a. '

2 Radii for starlikeness of order «

We derive radii of starlikeness of order « for the function f(z) of Koebe type to be in the
class of S*(a). Our first result is contained in

Theorem 1. The function f(z) of Koebe type satz';sﬁeé '

l—«
7;_—‘(1—_“(1—) (Jz| =7),

(2) 0SkS201—-a) = f(z) € S*(a) for 0=r<1 (Jz|=71),

(1) k>21-a) = f(z2) € S(a) for 0Sr<

(8) k<0 = f(z) € S*(a) for 0§r<1—i——;—%—i€- (2] = ).

Proof. By a simple calculation, we have

2f'(z) _ 2
0 =14k T

Letting z = re®, and we have

() = el )

r? — rcosf
1+ 72— 2rcosf’

=1

We define the function g(#) by

r2 — rcosf

1 + 72 — 2rcosf’

9(9)
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For k 2 0, we calculate maximum g(#) to get the minimum value for Re(zﬂg)). Changing
cosf by t (=1 £t < 1) in g(h), we get '
r? —rt
)=
9(t) 1472 —2rt’

and then

1(g\ 7’(’!‘2 - 1)
gt = (1+72—2rt)?

Thus we know that g(t) is monotone decreasing because ¢'(t) is non-positive for 0 <r<i

Therefore, g(¢) has maximum value at ¢t = —1. It follows from the above that
r2+r
) = ———
max g(6) 14+7r242r
T
o147

Therefore, we have

zf'(2) 72 — rcosf
= 1-k
Re ( f(2) ) 1+ 72 — 2rcosf

1-(k—=1)r
1+r

v -

for r satisfying the following inequality

l—a>(k-(1-a)r
We see that if £ > 1 — a, then

and if k£ > 2(1 — «), then

11—«
k—(1-a)

so, we derive the case (1) in Theorem 1.

<1,

If 0 £ k < 1— a, then the inequality (2.1) is always satisfied for all 7 (0 < r < 1).
If 1 —a <k S 2(1 —a), then we have the next inequality

l—-a
k—(1-a)

This gives us that f(z) € S*(a) for 0 £ r < 1. Hence we get the result of case (2) in
Theorem 1.

1<

If k£ < 0, letting K = —j, we have

z

f(z)=(—1_—z)75=z(1—z)j (7> 0).
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Similary, for k¥ = 0, we have to consider

dE

f) 1

This gives that
zf'(2) . re?

= 1-— -

M(ﬂ@) m( i
. 12— rcost :
= 1+ =1+39(0),

1+ 72— 2rcosf

where
r2 — rcosf

0) = }
9(9) 1472 — 2rcosf

When g¢(f) has its minimum value, then Re(zﬁs)) becomes minimum. It is easy to check

that g(f) has the minimum value at cosf = 1 because it is monotone decreasing. Hence, we
have ' o
rP—r

1472 —2r
T

min g(f) =

1—1r

z2f'(2)\ _ . 1% —rcosf
Re( f(z) ) = 147 1+ 72 — 2rcosf

1—(j+1
(J+)7">a

It follows that

v

1—7r
for r satisfying
l-a
r< ——< 1.
_ J+l1—-«a
Noting that j = —k, we conclude that

l-a
0Sr< ———
=TS "ok

which proves the cases (3) in Theorem 1.

We give some examples of functions f(z) in S*(«) for Theorem 1.

Example 1.
(1) f2) = —— € §°(3) for 07 <,
(1-2)i

(2) f(2) = € S*(3) for 0= r <1,

(3) f(Z) = (IT)_'S € S*(é) for 0§T < %
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Fig 2.1: Image of |z| = r by f(z) = (T-%ﬁ (left), ZJJ:éS) (right) (r = £ in all cases).

0.250.50.7

(right) (r =1 in all cases).




Fig 2.3: Image of |z| = by f(z) =

(left),

1-

z)™8

3 Radii for convexity of order «o
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Next we discuss the radii of convexity of order « for the function. f (z) of Koebe type.

Theorem 2. The function f(z) of Koebe type satisfies
(1) k21 = f(2) € K(a) for

B-a)k—201—a)— k(0 —22+5)k-4(1—a))

0=r< 20— 1)k~ (1~ ) (=",
(2) k-1 = f(z) € K(a) for
b<r< 21— ) — (3— )k — /(0 — 20 + 5)k — 4(1 — 0)) Gl=n.

21—k)(l—a—k)

Proof. From Theorem 1, since

zf'(z) 14+ (k—-1)z
i) - 1-z
we have
zf"(2) 2 1+kz
b+ F1(2) _(k_1)1+(k—1)z 1—z"
Let
_ z d _1+kz
gl(z)_l-i—(k—l)z an gQ(z)—l——z'
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Taking z = re®, we see that

' Re (2) = Re re”
| g = 1+ (k—1)re?

72(k — 1) + rcosf
1+72(k—1)2+42r(k — 1)cosé

and

1+ kre®
R992(2> = Re (—1—:-7610_)

1 —r2k +r(k — 1)cost
1472 —2rcosf

Let h1(6) = Regi1(2) and hy(f) = Regz(2). Hence we get

zf/l(z)
f'(2)

If k 2 1, when hi(f) and hy(6) take the minimum values for the same 6, Re(1 + zﬁés)) has
its minimum value. After the calculations, we see :

Re (1 + ) = (k= 1)hy(6) + ha(6).

min bn(0) = ;=g (o9 =1 and r S =)
and
min hy(0) = L (cos# =1 and r > —1-)
1+rk-1) E—1
Similary,
min hy(f) = 11:_]? (cosf = —1).

It follows that

Re(1+zf"(z)) > (o1 T Lok

f1(z) = 1-r(k=1) 1+
(k—1)%r2 — (3k — 2)r +1 N
1—(k=1)r)(1+r) ’
< -
where 7 < T
Hence, we derive the next inequality

(k=1)(k—-(1-a))r*—(8—a)k- 21-a))r+1—-a>0. (3.1)

From (3.1) and r 2 0,

0Sr< (3—a)k——2(1—a)—\/k((a2_2a+5)k_4(1_a)),
2k = 1)(k— (1 - )
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which completes the case (1) of Theorem 2.
If0 = k < 1, when hy(f) is maximum and hy(6) is minimum for the same 8, Re(1 + zﬁ;g’;))
becomes minimum. Note that hy(f) is the same as the case (1). For hy(6),

max hy(6) = I+—T(7}€_—_1_) (cos =1 and r < ik)
or
-r 1
max hy(0) = m (cosf = -1 and r > 1—_1—5)

But f(z) is not univalent in this case for |z| = r does not include the ongln Therefore, &
does not exist such that this condition is satisfied in this case.

If £ <0, letting k = —j in f(2). Similary to ¥ = 0, we have
z2f"(z) _1-jz

2

Y 1o U TTGane
Let v
1—j ,
g3(2) = - _]; and g¢4(2) = 1_——(jo1)2-

By a simple calculation,

_ impil
Regs(z) = Re (1_..1__)

1+7%j — (j + 1)rcosf
1+ 72 — 2rcosf

and

Regs(2) = Re re” o
e = 1=+ re?,
rcosf — r2(j +1)

14+72(5+1)2—2r(j + 1)cosb

for z = re?. And let h3(0) = Regs(2) and hy(f) = —Regs(z). Then we have

2f"(z) _ :
Re (1 + e ) = h3(0) + (j + 1)ha(0).

When h3(6) and hy(6) have the minimum values for the same 6, we see that Re(1 + Zﬁ;g‘;))
has its minimum value. After calculations, we know that

: 1+ jr ,
= = -1 1
min h3(6) Ty (cosd and 0<j<1)
or
min hs(0) = —2°  (cos9 =1 and j > 1).

1—7r
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Similary, for hy(6),

min hy(0) = m (cosf = —1 and 3% <r)
or
min hy(6) = S — (cosf =1 and —1— 2r).
(j+Dr—-1 j+1
Thus we have to consider two cases for cosd = —1 and cosf = 1.
If cos§ = —1, the domain of f(z) is not the simply connected domain because |z| = r does

not include the origin. Therefore, f(z) is not univalent. This case is impossible.
If cosf = 1, the domain of f(z) is the simply connected domain because |z| = r includes
the origin. Hence we have

zf"(z) 1—gr , r
Re<1+f’(2)) 2 77 Uty
G+ = @Bj+2)r+1 ) 1
T-na-Gron @ Ustad0srsa)

In view of the above, we have

G+DGE+1-a)r? - (B-a)j+2l—a)r+1—-a>0. - (3.2

Solvmg (3.2) for r 2 0, we obtaln that

B-a)j+2(1-a)- \/] f2a+5)j—4(1—a))'

0Sr<
=7 20+1)(+1-a)

Since j = —k, this inequality becomes that

4 2(1—a) - B—a)k— Vk((a® —2a+5)k — 4(1 — a))
0=7< 2A—K)(l—a—k) (k=-1),

which gives the case (2) in Theorem 2. Therefore we complete the proof of the theorem.

We give two examples for Theorem 2 as follows.

Example 2.

z

(1) f(z):m € K(1) for 0<r< 1=¥28 — (00201293 - - -

2) f(2) = ﬁ € K(1) for 0<r < B2 = (,0758477 - - -
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Fig 3.1: Image of |z| =7 by f(2) = (1_Z—Z)10 (left); 1+ szl’;(zz))

; — 19-v235 _
(in all cases, 7 = D238 — 0.00291293 - - -).

(right)
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Fig 3.2: Image of |z| = by f(2) = H——Z—z)_"* (left), 1+ i

(in all cases, r = 2=Y2T8 = 0.0758477 - - -).




24

By the way, for —1 < k£ < 1 in Theorem 2, we could not specify the bound for the radius
r. But we know that every analytic function f(z) in U has the radius r for convexity. For
example, the function f(z) given by

which is the case k = 1, belongs to K for 0 < r £ 0.95 as follows.

Fig 3.3: Image of |z| =7 by f(2) =

(1—_?)—%— (r =0.95).
4
2
1 2 2 4
-2
-4
Fig 3.4: Image of |z| =7 by 1 + () (r =0.95).

f'(z)
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Thus we give the following problem for convexity of the function f(z) for -1 < k' < 1.

Problem 1. Find the sharp bound r for the function f(z) of Koebe type to be conver in |z| < r.

4 Definitions of S*(8) and K,(f)

A function f(z) € A is said to be d‘-spiral like of order S if it satisfies

() >0

for some o (-5 <a < %), 8 (0= B <cosaw £1)and all zin U. We denote by Si(5) the
subclass of A consisting of functions f(z) which are a-spiral like of order 3 in U. A function
f(z) in A is said to be a-convex like of order § if it satisfies

i Zf”(z.)>) ‘
Rele™(1+ >0
( - < - f(=) . ,
for some o (-5 <a < %), (0SB <cosa<1)andall zin'U. Also we denote by K,(8) the
subclass of A consisting of funtions f(z) which are a-convex like of order 8 in U. In particular,
we denote by S;(0) = $*(0) = §* and K(0) = K(0) = K.
We can check that the function

VA .
f(z) = (1 — z)2ei"(cosa—ﬂ)

(4.1)

is the extremal function for the class S%(3). Because, since

zf'(z) : z
=1+ 2¢i@ -
) + 2€'*(cosa — [3) T—
for the extremal function, we have
!/
e‘i"‘———zf (2) _ e + 2(cosa — 3) ?

fl2) 1-2z

Note that w = 72> maps the unit disk U onto the half domain with Re(w) > —35. Therefore,
we see that

i Zf’(Z)) »
Re | e™*—=——=] > cosa — (cosa — 3) = .
Q= (eosa=P)
By definitions for the classes S%(8) and Ko(f), since f(z) € Ko(B) if and only if
z2f'(z) € S5(B), we calculate the extremal function f(z) for the class Kq(f) given by

1 1
@)= 2ei%(cosa — ) — 1 ((1 — z)2e(cosa=f)-1 1) ' (4.2)

Let us give some examples of functions f(z) in Sk(6) and K, (5).
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Example 3.

1) f(z) =

z

~  (when oo =
(l_z)l 23

, B=01in (4.1)),

w|y

9—v/3—(2v/3-1)i T L ] a
(2) f(Z) = 5_2\/5 ((1 _ z) 2_\/§+22\/§_1),' - 1) (When a ZE ? I6 = Z,ln (42))

Fig 4.1: Image of |z| =7 by f(z) = ( Z)M (0 <7 £0.95 (left), 7 = 1 (right)).
: _ 1—2)"z

14

12

10

: 2—v3—(2v/3-1)i 1
Fig 4.2: Image of 2| =7 by f(2) = \/;_(2\\//5_ )i ((1 )2_ﬁ+ T 1)
—Z 4

(0= 7 £0.99 (left), 7 = 1 (right)).
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As we give extremal functions for the classes S} (83) and K, (), our functions in Example 3

show that it is interesting for us to introduce the analytic function of generalized Koebe type
by

z

| f(z)=(—1—_—'z)—,reiz

for some k € Rand o (0 £ « < 27).
If k = 2(cosa — ), then f(z) becomes the extremal function of the class S%(3).

5 Radii for a-spiral likeness of order (3

We discuss the radii of a-spiral like of order j for the function f(z) of the generalized Koebe
type.

Theorem 3. The function f(z) of the generalized Koebe type satisfies

cosa — 3

k — (cosa — 3) (e =),

(1) k> 2(cosa — B) = f(2) € S3(B) for 0=r<

(2) 0=k = 2(cosa — ) = f(2) € S3(B) for 0=r<1 (|z]=r),

, ' cosa — (3
* < _ewsee—pr —
8) k<0= f(2) € SuB) for 0Sr< 2P (2] =)

Proof. By a simple calculation, we have

zf'(2) ez

=14+k

f(z) TR

which gives
—ia Zf’(Z) _ —ta <z
flz) Tk 1-2

Letting w = L, we have z = ——. Since |z|2 < |r)? for |z| £ |r|, we have
1-=2 w+1

2
w
o= || <h

After a simple calculation, we have
jw? < |w+ 1% r?,

which implies




28

Hence we have

. (5.1)

S 1—r2| T 1=

u
Now, we can calculate the maximum and minimum values of Re(w) from (5.1) as follows:

2

T T
max Re(w) = 1—r2+1—r2
T
o 1-r
and
. ' r? T
min Re(w) = T T T
_ T
147

For k 2 0, to get the minimum value of Re(e‘id%), we take the minimum value of Re(w).
Then we see that R

Re (e"'“zJ{;—S)) = cosa + k Re(w)

T
2 cosa—k i%r > S.
Since
(cosa — B)(1+ 1) —kr > 0,
or
(cosa — B — k)r + cosa — 3 > 0,
r satisfies the following inequality
(k — (cosa — B))r — (cosa — ) < 0. (56.2)

We see that if k > cosa — 3, then

cosa — 3

k — (cosa — ()

r<

and if k > 2(cosa — (), then

cosa — f3

k — (cosa — ) <l

So, we derive the case (1) in Theorem 3.
If 0 < k < cosa — B3, then the inequality (5.2) is always satisfied for all 7 (0 < r < 1).
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If cosa: £ k < 2(cosa — 3), then we have the next inequality

1 cosa — 3
k — (cosa — B)°

This gives us that f(z) € S%(8) for 0 £ r < 1. Hence we get the result of the case (2) in
Theorem 3.

For k < 0, to get the minimum value of Re(e"'“%?), we take the maximum value of Re(w).
In this case, we have ' '

R§ (e"“f%ﬁ?) = cosa + k Re(w)

cosa+k—L—>ﬂ.
1—1r

v

Similary, for £ 2 0, since

(cosa — B)(1 —7) + kr >0,
or

(k — (cosa — B))r +cosa — 3> 0,
we have 4

cosa — 3.

cosa — B —k
for r satisfying

cosa — 3 <l
cosa — (3 —k
Thus we have

cosa — f3
0Sr< —78M8—,
=" cosa— B —k
which gives the result of the case (3) in Theorem 3. The proof of Theorem 3 is completed

We give some examples of functions f(z) in S%(8) for Theorem 3.

Example 4.

(1) f(z)zfi-zﬁ’? € S3(}) for 0Sr<=00588285--,
—Z

(1—2)3eF € 5i(s) for O=r<l,

N A% 3 (2 < 5v3-4 = e
1ot € S3(3) for 0Sr < 2=t =0.0624195---.
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HLLL TS AT
-0.2:0.075 b | Uk 3 90.075 0.1

z
Fig 5.1: Image of |z| =7 by f(2) = ———

H=r by 1) =
(in all cases, r = & = 0.0588235 - - -).

(left), i3 zf’iz) (right)

(right) (in all cases, r = 1).
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0.1 1.2
|
=\
S
=il
RS
-0, SRR 050 . 0750, 1
-0.1
-1
. 2 o
Fig 5.3: Image of |2| = by f(2) = ————— (left), e~*s ———~ (right
g ge of 2] (2) () (left) ) ieht)
(in all cases, r = 2Y3=L = 0.0624195-- ).

6 Radii for starlikeness of order 3

Next we discuss the radii of starlikeness of order § for the function f(z) of the generalized
Koebe type. - SRP SRIRTE

Theorem 4. The function f(z) of the generalized Koebe type satisfies

(1) for k20 and cosa 20,

. 1_6 *
(1) k20, =2 f)e5p) for
k — \/k? — 4k(1 — B)cosa + 4(1 — B)2 B
0=r< 2(kcosa+ 3 — 1) (e =),
(ii)k=1cc;f$f(z)€5’*(ﬁ) for 0<r<cosa (j2]=7),

(i) k=0= f(z) € 5*(8) for 0=7r<1 (lz|]=r),

(2) for k20 and cosa <0,

(1) k#0 = f(z) € 5*(B) for

k — /k? — 4k(1 — B)cosa + 4(1 — B)? _
O < Slhosat 1) (el =),
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(3) for k<0 and cosa 20,

(i) k<0 = () €S(8) for
| k+ /K% — 4E(1 — B)cosa + 4(1 = B)?

0sr< 2(1 — B — kcosa) (el =1),
(4) for k<0 and cosa <0,
S .
(i) k# p—— = f(z) € S*(B) for
k+ /k? — 4k(1 — B)cosa + 4(1 — )2 B
- osrs S (1 =)
(i) .k:'lco;f = f(z) € S*(B) for 0§r{—cosa (]| = 7).

Proof. From Theorem 3, we have

zf'(z) _ - ez

fz) 1-2’
. eia w - ‘
- Letting w = , that is, z = ————, we have
1-2 w+ e’
_ e _
N e LA L

After calculations, we have

wl* < Jw+ e r?,

that is
" e e
1-—1r2 = (1-r2)2
Hence, we have
r? T ‘
o s -

Now, we have to calculate the maximum and minimum values of Re(w) from (6.1). Note
that

Re(w) = Re r o) + —
max e - 1—r2 1—r?

r2cosa r_ r(rcosa+1)
1—72 1—72 1-12
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and

2 N
min Re(w) = Re( r eia)— r

1—r2 1—7r?
rPcosa ' r - r(rcosa— 1)
1—-72 1—-72 . 1-—72

For k 2 0 and cosa = 0, to get the minimum value of Re(%’;—)), we take the minimum
value of Re(w). Hence, we have
Re ( = 14k Re(w
2 )

-1 .
= 14k g

e
By a simple calculation, we have

(1= B)(1 = r?) + kr(rcosa — 1) > 0,

or
(kcosa—l—ﬂ—l)r ——kr+1—ﬂ>0 G SRS . (6.2)
If kcosa+ f — 1 > 0, we get, from(62) ' o
k— \/k2 4k(1 — B)cosa + 4(1 — B)?
r ’
2(kcosa + 3 — 1)
and

k + v/k? — 4k(1 — B)cosa + 4(1 — f)?
2(kcosa +  — 1)

<T.

Since

K? — k(1 — B)cosa + 4(1 — 5)2
=+/(k—2(1- ﬂ)cosoz)2 +4(1 = 8)2 — 4(1 — B)%cos?a
= v/(k — 2(1 — B)cosa)? + 4(1 — B)2sin’*a 2 0

for all k¥ and o, we consider the following inequality

k — \/k? — 4k(1 — B)cosa + 4(1 — f)?

2(kcosa+ 6 — 1) >0 (6:3)

To be satisfied the inequality (6.3), the following inequality

k — \/k? — 4k(1 — B)cosa + 4(1 — B)2 > 0,
should be satisfied. After calculations, we have

4(1 - B)(kcosa+ f—1) > 0.



The last inequality is always satisfied because kcosa + 8 — 1 > 0 in this case.

inequality (6.3) is always satisfied. Therefore,

0<y k Vk? — 4k(1 — B)cosa + 4(1 — B)?

1-4
2(kcosa+ § — 1) (k> cosa

Finally, we calculate for k such that next inequality is satisfied

k — \/k? — 4k(1 — B)cosa + 4(1 — ()2
2(kcosa+ 3 — 1)

<1

Since the inequality (6.4) implies that

k — /k? — 4k(1 — B)cosa + 4(1 — B)? < 2(kcosa + B — 1),
we see

4k(1 — cosa)(kcosa+ 3 — 1) > 0.

).
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Thus the

(6.4)

‘The last inequality is always satisfied because kcosa+ # — 1 > 0 in this case. Thus, the

inequality (6.4) is always satisfied. Therefore, we derive

0'< k— +/FE —4K(1 — B)cosa + 4(1 — B)?
=<  2(kcosa+B-1) cosa

If kcosa + B—1<0, we have from (6.2),

k+ k% — 4k( 1—ﬂ)cosa+4(1'¥—‘ﬂ)2<r k — \/k? — 4k(1 — B)cosa + 4(1 — B)?

2(kcosa + § — 1) 2(kcosa+ 3 — 1)

Since

k+ /k% — 4k( 1— B)cosa + 4(1 — 5)?
2(kcosa+ 3 — 1)

<0

in this case, we have to have

k — \/k? — 4k(1 — B)cosa + 4(1 — B)2

2(kcosa 1 B — 1) > 0.

This inequality shows that

4(1 — B)(kcosa + 8 — 1) < 0.

The last inequality is always satisfied in this case. Similary to the case kcosa+ § — 1 > 0,

we have to check that

k — /k? — 4k(1 — B)cosa + 4(1 — B)2
(kcosa +4-1)

<1,



35

which implies that
4k(1 — cosa)(kcosa + 3 — 1) < 0.

The last inequality is always satisfied in this case. Hence, we have

— JEZ = _ —3)?
0<r< k — /k? — 4k(1 — B)cosa + 4(1 — B) <
2(kcosa +  — 1) , cosor

Therefore, we derive the result of the case (i ) of Theorem 4 - (1).
If kcosa + B — 1 = 0, we have, from (6.2),

—kr+1-08>0,

or

re =P cosa
koo
We get the result of the case (ii ) of Theorem 4 - (1).

If k =0, we have from (6.2),
(B-1r+1-4>0

which shows r < 1. '
Therefore, we get the result of the case (iii) of Theorem 4 - (1). The proof of Theorem 4 -
(1) is completed.
For k 2 0 and cosa < 0, similary to the case (1) we derive the 1nequahty (6. 2) In this
condition, kcosar + [ — 1 is always non-positive. Noting that : ,

k— \/k2 4k(1 — B)cosa +4(1 — B)2

<
0sr< 2(kcosa + - 1) ’

we see

k—\/k?—4k(1 - )cosoz +4(1 - ﬁ)2
2(kcosa + B — 1)

if k#0,and 0 £ r < 1if k =0. Thus we get the result of the case
For k < 0 and cosa 2 0, to get the minimum value of Re(%

2) of Theorem 4.
( ] ), we need the maximum

value of Re(w). Indeed, we have

() - rerneo

1
S AR )

1—172

After calculations, we have

(1= B)(1 —7%) + kr(rcosa + 1) > 0,
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that is,
(kcosa+ B —1)r*+kr+1—p3>0. (6.5)

With this condition, similary to the case (2) of Theorem 4, kcosa+ 3 — 1 is always positive.
Solving (6.5) for 7, we obtain ‘

—k + \/k? — 4k(1 — B)cosa: + 4(1 — ﬂ)2 : —k \/ls:2 4k(1 — B)cosa + 4(1 — §)?
2(kcosa + - 1) 7 2(kcosa + f — 1) '

We note that

—k + 1/k? — 4k(1 — B)cosa + 4(1 — B)?
2(kcosa + 3 — 1)

<0

and

—k — \/E2 —4k(1 — B)cosa+ 4(1 = B)?

2(kcosa + f — 1) > 0.

This gives us that
4(1 — B)(kcosa+ B —1) < 0.

The last inequality is always satisfied in this condition. Finally, we calculate for k£ such that
next inequality is satisfied
—k — 1/k? — 4k(1 — B)cosa + 4(1 — B)?
2(kcosa+ 5 —1)

<1 (6.6)

By (6.6), we have

—k — \/k? — 4k(1 = fB)cosa + 4(1 — B)? > 2(kcosa + B — 1),
s0
4k(1 + cosa) (kcosa + 8 — 1) > 0.

The last inequality is always satisfied in this condition. Thus, the inequality (6.6) is also
always satisfied. Therefore, we derive

—k — \/k? — 4k(1 — B)cosa + 4(1 — )2
(kcosa +3-1)
_k+ Vk? - 4k 1 — f)cosa + 4(1 — 3)?
2(1 = B — kcosa) ’

0Sr<

which is the result of the case (3) of Theorem 4.
For k < 0 and cosa < 0, we derive the inequality (6.5). If kcosa + 3 — 1 > 0, then we
have, from (6.5),

—k — \/k2 — 4k(1 — B)cosa + 4(1 — §)?
2(kcosa+ f — 1) 7

r<
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and

—k + \/k% — 4k(1 — B)cosa + 4(1 — )2
Z(kcosq +0 - 1)

<T.

Therefore the following inequality

. 4k 1— )cosa + 4(1 - ﬁ)
(kcosa +6-1)

>0 | (6.7)

is satisfied. Since the inequality (6.7) implies

—k — \/k? — 4k(1 — B)cosa + 4(1 — §)? > 0,
we have
4(1 — B)(kcosa+ B —1) > 0.

This last inequality is always satisﬁed in this case. Then, we calculate for k£ such that the
inequality

—k — \/k2 4k(1 — B)cosa + 4(1 — B)2
(kcosa +6-1)

<1

is satisfied. Noting that

—k — /k? — 4k(1 — B)cosa + 4(1 — §)? < 2(kcosa + 8 — 1),
we have
74k(1 + cosa)(kcosa + 3 —1) < 0.

The last inequality is always satisfied in this case. Hence, we have

—k — \/k? — 4k(1 — B)cosa + 4(1 — B)?

0 2(kcosa +  — 1)

HA

r<

k+\/k2 4k(1 — B)cosa + 4(1 — B)2 k< 1—,8)
2(1 — B — kcosa) cosa ’
If kcosa + B — 1 < 0, we have, from (6.5),
—k + /K2 — 4k(1 — B)cosa + 4(1 — B)? e ~k — \/k2 4k(1 — B)cosa + 4(1 — B)2
2(kcosa+ f— 1) 2(kcosa + 5 — 1) '
By the same manner as in the previous cases, we have
—k — \/k? — 4k(1 — B)cosa + 4(1 — B)? -0

2(kcosa+ 3 — 1)
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which implies
4(1 - B)(kcosa+ B —-1) < 0.

The last inequality is always satisfied in this case. Thus, we have

0<r< —k — \/k? — 4k(1 — B)cosa +4(1 - ,8')2‘
2(kcosa + 6 —1)

_k+ k2 — 4k(1 — B)cosa + 4(1 — B)2 .

2(1 — B — kcosa) < ‘ ( cosa

Therefore, we derive the result of the case (i) of Theorem 4 - (4).
If kcosa+ f — 1 = 0, we have, from (6.5),

kr+1-p3>0,

or
1-—

r < ———— = —cosa.
k

We get the result of the case (i) of Theorem 4 - (4). And the proof of Theorem 4 is
completed. ' ' ' . .

We give some examples for Theorem 4 as follows.

Example 5. ,
(1) f(z) = fl———%)f’—; € S*() for 07 < BT (182355
(2) f(z) = ﬁ— € S.*”(é) fof 0Sr< —————‘4+1\J{f\;4— = 0.112465 -
(3) f(2) = (1—_—55:-&? € S§*3) for 0Sr< 3(_6211?;;8‘/5) =0.102513- - -,
(4) f(2) = ﬁ € S*(3) for 0<r< H/0 0.6881061...',
(5) f(2) = . € §*3) for 0= r<cosT=0.809017- -,

(1— 2)zvm° "

6) f(z) = ————z_—-— € S*() for 0Sr < —cosir=05.



Fig 6.1: Image of |2| = r by f(2) = Q ~i)5ei§ (left), zj{é’? (right)

(in all cases, r = ‘% =0.182355---).

!
Fig 6.2: Image of |z| =7 by f(z) = z —— (left), 2 (@)

(1 — z)4e'e" f(2)

(in all cases, r = =TS — 0119465 - ).

(right)

39
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-
N 0.2 [oLA[ o 6
~‘~"z’,’l‘l‘l!ll.
SE
5557
2,
: z 2f'(z) .
Fig 6.3: Image of |z| = r by f(2) = ————— (left), = right
sge of | () = g (em), 55 eeho
3(—6+,/320+8v2 |
(in all cases, 7 = oA ) — 0.102513.-.).

85

\

=)
o —

-0.5

z

(left), 2L (1igt)

Fig 6.4: Image of |2| =7 by f(2) =

(1- z)‘%"i%“r

(in all cases, r = =7£Y1% — (688061 - - ).

f(2)
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Fig 6.5: Image of |z] = r by f(z) = z — (left), zf'(z)
| (1= z)T+m©° f(2)

(in all cases, r = cos¥ = 0.809017- - -).

72N
72
N

-0.
-1
-1
]
Fig 6.6: Image of |z| = r by f(z) = ————Z——2 (left), 22) (right)
(1—2z)-3%" f(2)
(in all cases, r = —cosZr = 0.5).
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Remark 1. Finally, we have to say that we can not find the sharp bound of the radius r for
the classes K,(8) and K (), because it is not so easy to calculate. But, as we mention before,
the analytic function has the property that it maps, one-to-one, a small disk onto a small disk.
Therefore, this problem to find the sharp bound of the radius r for the classes K, () and K ()
is remained. :
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