On Radius Problems for Analytic Functions of Koebe Type

Atsushi Eguchi and Shigeyoshi Owa

Abstract. By virtue of the extremal function f(z) for $S^*(\alpha)$ which is the class of all starlike functions f(z) of order α having f(0) = 0 and f'(0) = 1 in the open unit disk U, new function of Koebe type is considered. The object of the present paper is to derive radii for starlikeness of order α , and for convexity of order α for the function of Koebe type. Using the extremal functions for the classes of α -spiral like of order β and of α -convex like of order β , we also consider the analytic function of the generalized Koebe type. Some interesting examples for the theorems are also given with their mapping properties.

1 Introduction

Let A be the class of functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

that are analytic in the open unit disk $U=\{z:z\in\mathbb{C}\text{ and }|z|<1\}$. A function f(z) in A is said to be starlike of order α if it satisfies

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha$$

for some α ($0 \le \alpha < 1$) and all z in U. We denote by $S^*(\alpha)$ the subclass of A consisting of all starlike functions of order α in U. A function f(z) in A is said to be convex of order α if it satisfies

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right)>\alpha$$

for some α ($0 \le \alpha < 1$) and all z in U. Also we denote by $K(\alpha)$ the subclass of A consisting of functions f(z) which are convex of order α in U. In particular, we denote by $S^*(0) \equiv S^*$ and $K(0) \equiv K$ (cf. Robertson [3]). By Robertson [3], we note that

(i)
$$f(z) = \frac{z}{(1-z)^{2(1-\alpha)}}$$
 is the extremal function for the class $S^*(\alpha)$.

(ii)
$$f(z) = \begin{cases} \frac{1 - (1 - z)^{2\alpha - 1}}{2\alpha - 1} & (\alpha \neq \frac{1}{2}) \\ -\log(1 - z) & (\alpha = \frac{1}{2}) \end{cases}$$

is the extremal function for the class $K(\alpha)$.

If we take $\alpha = 0$ in (i) and (ii), then we see that

(iii) $f(z) = \frac{z}{(1-z)^2}$ is the extremal function for the class S^* .

Fig 1.1: Image of |z| = r by $f(z) = \frac{z}{(1-z)^2}$ (left), $\frac{zf'(z)}{f(z)}$ (right) (r = 1 in all cases).

(iv) $f(z) = \frac{z}{1-z}$ is the extremal function for the class K.

Fig 1.2: Image of |z| = r by $f(z) = \frac{z}{1-z}$ (left), $1 + \frac{zf''(z)}{f'(z)}$ (right) (r = 1 in all cases).

Furthermore, by Marx [2] and Strohhäcker [4] (also by Komatu [1]), we see that K is the subclass of $S^*(\frac{1}{2})$. And by Wilken and Feng [5], $K(\alpha)$ is the subclass of $S^*(\beta(\alpha))$, where

$$\beta(\alpha) = \begin{cases} \frac{2\alpha - 1}{2(1 - 2^{1 - 2\alpha})} & (\alpha \neq \frac{1}{2}) \\ \frac{1}{2\log 2} & (\alpha = \frac{1}{2}). \end{cases}$$

In view of the previous properties for the classes $S^*(\alpha)$ and $K(\alpha)$, it is very interesting to consider the following analytic function

$$f(z) = \frac{z}{(1-z)^k}$$
 $(k \in \mathbb{R})$

which was called Koebe type. Then by the extremal functions f(z) for the classes $S^*(\alpha)$ and $K(\alpha)$, we know that, in general, this function f(z) is not univalent (so, is not starlike or convex) in U. But, since every analytic function f(z) maps, one-to-one, a small disk onto a small disk, we consider the radius problems for the analytic function f(z) of Koebe type to be starlike and convex of order α .

2 Radii for starlikeness of order α

We derive radii of starlikeness of order α for the function f(z) of Koebe type to be in the class of $S^*(\alpha)$. Our first result is contained in

Theorem 1. The function f(z) of Koebe type satisfies

$$(1) \quad k > 2(1-\alpha) \implies f(z) \in S^*(\alpha) \quad for \quad 0 \le r < \frac{1-\alpha}{k-(1-\alpha)} \quad (|z|=r),$$

(2)
$$0 \le k \le 2(1-\alpha) \implies f(z) \in S^*(\alpha) \text{ for } 0 \le r < 1 \ (|z|=r),$$

(3)
$$k < 0 \implies f(z) \in S^*(\alpha)$$
 for $0 \le r < \frac{1-\alpha}{1-\alpha-k}$ $(|z|=r)$.

Proof. By a simple calculation, we have

$$\frac{zf'(z)}{f(z)} = 1 + k \frac{z}{1-z}.$$

Letting $z = re^{i\theta}$, and we have

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) = \operatorname{Re}\left(1 + k\frac{re^{i\theta}}{1 - re^{i\theta}}\right)$$
$$= 1 - k\frac{r^2 - r\cos\theta}{1 + r^2 - 2r\cos\theta}.$$

We define the function $g(\theta)$ by

$$g(\theta) = \frac{r^2 - r\cos\theta}{1 + r^2 - 2r\cos\theta}.$$

For $k \ge 0$, we calculate maximum $g(\theta)$ to get the minimum value for $\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right)$. Changing $\cos\theta$ by t $(-1 \le t \le 1)$ in $g(\theta)$, we get

$$g(t) = \frac{r^2 - rt}{1 + r^2 - 2rt},$$

and then

$$g'(t) = \frac{r(r^2 - 1)}{(1 + r^2 - 2rt)^2}.$$

Thus we know that g(t) is monotone decreasing because g'(t) is non-positive for $0 \le r < 1$. Therefore, g(t) has maximum value at t = -1. It follows from the above that

$$\max g(\theta) = \frac{r^2 + r}{1 + r^2 + 2r}$$
$$= \frac{r}{1 + r}.$$

Therefore, we have

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) = 1 - k \frac{r^2 - r\cos\theta}{1 + r^2 - 2r\cos\theta}$$

$$\geq \frac{1 - (k-1)r}{1 + r} > \alpha$$

for r satisfying the following inequality

$$1 - \alpha > (k - (1 - \alpha))r. \tag{2.1}$$

We see that if $k > 1 - \alpha$, then

$$0 \le r < \frac{1-\alpha}{k - (1-\alpha)},$$

and if $k > 2(1 - \alpha)$, then

$$\frac{1-\alpha}{k-(1-\alpha)} < 1,$$

so, we derive the case (1) in Theorem 1.

If $0 \le k < 1 - \alpha$, then the inequality (2.1) is always satisfied for all r ($0 \le r < 1$).

If $1 - \alpha \leq k \leq 2(1 - \alpha)$, then we have the next inequality

$$1 < \frac{1-\alpha}{k-(1-\alpha)}.$$

This gives us that $f(z) \in S^*(\alpha)$ for $0 \le r < 1$. Hence we get the result of case (2) in Theorem 1.

If k < 0, letting k = -j, we have

$$f(z) = \frac{z}{(1-z)^{-j}} = z(1-z)^j$$
 $(j > 0).$

Similary, for $k \geq 0$, we have to consider

$$\frac{zf'(z)}{f(z)} = 1 - j \frac{z}{1-z}.$$

This gives that

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) = \operatorname{Re}\left(1 - j\frac{re^{i\theta}}{1 - re^{i\theta}}\right)$$
$$= 1 + j\frac{r^2 - r\cos\theta}{1 + r^2 - 2r\cos\theta} = 1 + jg(\theta),$$

where

$$g(\theta) = \frac{r^2 - r \cos \theta}{1 + r^2 - 2r \cos \theta}.$$

When $g(\theta)$ has its minimum value, then $\text{Re}(\frac{zf'(z)}{f(z)})$ becomes minimum. It is easy to check that $g(\theta)$ has the minimum value at $\cos\theta = 1$ because it is monotone decreasing. Hence, we have

$$\min g(\theta) = \frac{r^2 - r}{1 + r^2 - 2r}$$
$$= \frac{r}{1 - r}.$$

It follows that

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) = 1 + j \frac{r^2 - r\cos\theta}{1 + r^2 - 2r\cos\theta}$$

$$\geq \frac{1 - (j+1)r}{1 - r} > \alpha$$

for r satisfying

$$r < \frac{1-\alpha}{j+1-\alpha} < 1.$$

Noting that j = -k, we conclude that

$$0 \le r < \frac{1-\alpha}{1-\alpha-k}$$

which proves the cases (3) in Theorem 1.

We give some examples of functions f(z) in $S^*(\alpha)$ for Theorem 1.

Example 1.

(1)
$$f(z) = \frac{z}{(1-z)^{\frac{3}{4}}} \in S^*(\frac{2}{3})$$
 for $0 \le r < \frac{4}{5}$,

(2)
$$f(z) = \frac{z}{(1-z)^{\frac{1}{3}}} \in S^*(\frac{1}{4}) \text{ for } 0 \le r < 1,$$

(3)
$$f(z) = \frac{z}{(1-z)^{-5}} \in S^*(\frac{1}{6})$$
 for $0 \le r < \frac{1}{7}$.

Fig 2.1: Image of |z| = r by $f(z) = \frac{z}{(1-z)^{\frac{3}{4}}}$ (left), $\frac{zf'(z)}{f(z)}$ (right) $(r = \frac{4}{5} \text{ in all cases})$.

Fig 2.2: Image of |z| = r by $f(z) = \frac{z}{(1-z)^{\frac{1}{3}}}$ (left), $\frac{zf'(z)}{f(z)}$ (right) (r = 1 in all cases).

Fig 2.3: Image of |z| = r by $f(z) = \frac{z}{(1-z)^{-5}}$ (left), $\frac{zf'(z)}{f(z)}$ (right) $(r = \frac{1}{7} \text{ in all cases})$.

3 Radii for convexity of order α

Next we discuss the radii of convexity of order α for the function f(z) of Koebe type.

Theorem 2. The function f(z) of Koebe type satisfies

(1)
$$k \ge 1 \implies f(z) \in K(\alpha)$$
 for
$$0 \le r < \frac{(3-\alpha)k - 2(1-\alpha) - \sqrt{k((\alpha^2 - 2\alpha + 5)k - 4(1-\alpha))}}{2(k-1)(k-(1-\alpha))} \quad (|z| = r),$$

(2)
$$k \le -1 \Rightarrow f(z) \in K(\alpha)$$
 for
$$0 \le r < \frac{2(1-\alpha) - (3-\alpha)k - \sqrt{k((\alpha^2 - 2\alpha + 5)k - 4(1-\alpha))}}{2(1-k)(1-\alpha - k)} \quad (|z| = r).$$

Proof. From Theorem 1, since

$$\frac{zf'(z)}{f(z)} = \frac{1 + (k-1)z}{1 - z},$$

we have

$$1 + \frac{zf''(z)}{f'(z)} = (k-1) \frac{z}{1 + (k-1)z} + \frac{1+kz}{1-z}.$$

Let

$$g_1(z) = \frac{z}{1 + (k-1)z}$$
 and $g_2(z) = \frac{1 + kz}{1 - z}$.

Taking $z = re^{i\theta}$, we see that

$$\operatorname{Re} g_1(z) = \operatorname{Re} \left(\frac{re^{i\theta}}{1 + (k-1)re^{i\theta}} \right)$$
$$= \frac{r^2(k-1) + r\cos\theta}{1 + r^2(k-1)^2 + 2r(k-1)\cos\theta}$$

and

$$\operatorname{Re} g_2(z) = \operatorname{Re} \left(\frac{1 + kre^{i\theta}}{1 - re^{i\theta}} \right)$$
$$= \frac{1 - r^2k + r(k - 1)\cos\theta}{1 + r^2 - 2r\cos\theta}.$$

Let $h_1(\theta) = \text{Re}g_1(z)$ and $h_2(\theta) = \text{Re}g_2(z)$. Hence we get

Re
$$\left(1 + \frac{zf''(z)}{f'(z)}\right) = (k-1)h_1(\theta) + h_2(\theta).$$

If $k \ge 1$, when $h_1(\theta)$ and $h_2(\theta)$ take the minimum values for the same θ , $\text{Re}(1 + \frac{zf''(z)}{f'(z)})$ has its minimum value. After the calculations, we see

$$\min h_1(\theta) = \frac{-r}{1 - r(k - 1)}$$
 $(\cos \theta = -1 \text{ and } r \le \frac{1}{k - 1})$

and

$$\min h_1(\theta) = \frac{r}{1 + r(k-1)}$$
 $(\cos \theta = 1 \text{ and } r > \frac{1}{k-1}).$

Similary,

$$\min h_2(\theta) = \frac{1 - kr}{1 + r} \qquad (\cos \theta = -1).$$

It follows that

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) \geq (k-1)\frac{-r}{1-r(k-1)} + \frac{1-kr}{1+r}$$
$$= \frac{(k-1)^2r^2 - (3k-2)r + 1}{(1-(k-1)r)(1+r)} > \alpha,$$

where $r \leq \frac{1}{k-1}$.

Hence, we derive the next inequality

$$(k-1)(k-(1-\alpha))r^2 - ((3-\alpha)k - 2(1-\alpha))r + 1 - \alpha > 0.$$
(3.1)

From (3.1) and $r \geq 0$,

$$0 \le r < \frac{(3-\alpha)k - 2(1-\alpha) - \sqrt{k((\alpha^2 - 2\alpha + 5)k - 4(1-\alpha))}}{2(k-1)(k-(1-\alpha))},$$

which completes the case (1) of Theorem 2.

If $0 \le k < 1$, when $h_1(\theta)$ is maximum and $h_2(\theta)$ is minimum for the same θ , $\text{Re}(1 + \frac{zf''(z)}{f'(z)})$ becomes minimum. Note that $h_2(\theta)$ is the same as the case (1). For $h_1(\theta)$,

$$\max h_1(\theta) = \frac{r}{1 + r(k - 1)} \qquad (\cos \theta = 1 \text{ and } r \le \frac{1}{1 - k})$$

or

$$\max h_1(\theta) = \frac{-r}{1 - r(k - 1)}$$
 $(\cos \theta = -1 \text{ and } r > \frac{1}{1 - k}).$

But f(z) is not univalent in this case for |z| = r does not include the origin. Therefore, k does not exist such that this condition is satisfied in this case.

If k < 0, letting k = -j in f(z). Similarly to $k \ge 0$, we have

$$1 + \frac{zf''(z)}{f'(z)} = \frac{1 - jz}{1 - z} - (j+1) \frac{z}{1 - (j+1)z}.$$

Let

$$g_3(z) = \frac{1 - jz}{1 - z}$$
 and $g_4(z) = \frac{z}{1 - (j+1)z}$.

By a simple calculation,

$$Reg_3(z) = Re\left(\frac{1 - jre^{i\theta}}{1 - re^{i\theta}}\right)$$
$$= \frac{1 + r^2j - (j+1)r\cos\theta}{1 + r^2 - 2r\cos\theta}$$

and

$$Re g_4(z) = Re \left(\frac{re^{i\theta}}{1 - (j+1)re^{i\theta}}\right)$$
$$= \frac{r\cos\theta - r^2(j+1)}{1 + r^2(j+1)^2 - 2r(j+1)\cos\theta}$$

for $z = re^{i\theta}$. And let $h_3(\theta) = \text{Re}g_3(z)$ and $h_4(\theta) = -\text{Re}g_4(z)$. Then we have

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) = h_3(\theta) + (j+1)h_4(\theta).$$

When $h_3(\theta)$ and $h_4(\theta)$ have the minimum values for the same θ , we see that $\text{Re}(1 + \frac{zf''(z)}{f'(z)})$ has its minimum value. After calculations, we know that

$$\min h_3(\theta) = \frac{1+jr}{1+r}$$
 $(\cos \theta = -1 \text{ and } 0 < j < 1)$

or

$$\min h_3(\theta) = \frac{1 - jr}{1 - r}$$
 ($\cos \theta = 1$ and $j \ge 1$).

Similary, for $h_4(\theta)$,

$$\min h_4(\theta) = \frac{r}{(j+1)r+1}$$
 $(\cos \theta = -1 \text{ and } \frac{1}{j+1} < r)$

or

$$\min h_4(\theta) = \frac{r}{(j+1)r-1} \qquad (\cos \theta = 1 \text{ and } \frac{1}{j+1} \ge r).$$

Thus we have to consider two cases for $\cos \theta = -1$ and $\cos \theta = 1$.

If $\cos\theta = -1$, the domain of f(z) is not the simply connected domain because |z| = r does not include the origin. Therefore, f(z) is not univalent. This case is impossible.

If $\cos\theta = 1$, the domain of f(z) is the simply connected domain because |z| = r includes the origin. Hence we have

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) \ge \frac{1 - jr}{1 - r} - (j+1)\frac{r}{1 - (j+1)r}$$

$$= \frac{(j+1)^2r^2 - (3j+2)r + 1}{(1-r)(1-(j+1)r)} > \alpha \qquad (j \ge 1 \text{ and } 0 \le r \le \frac{1}{j+1}).$$

In view of the above, we have

$$(j+1)(j+1-\alpha)r^2 - ((3-\alpha)j + 2(1-\alpha))r + 1 - \alpha > 0.$$
(3.2)

Solving (3.2) for $r \ge 0$, we obtain that

$$0 \le r < \frac{(3-\alpha)j + 2(1-\alpha) - \sqrt{j((\alpha^2 - 2\alpha + 5)j - 4(1-\alpha))}}{2(j+1)(j+1-\alpha)}.$$

Since j = -k, this inequality becomes that

$$0 \le r < \frac{2(1-\alpha) - (3-\alpha)k - \sqrt{k((\alpha^2 - 2\alpha + 5)k - 4(1-\alpha))}}{2(1-k)(1-\alpha - k)} \qquad (k \le -1),$$

which gives the case (2) in Theorem 2. Therefore we complete the proof of the theorem.

We give two examples for Theorem 2 as follows.

Example 2.

(1)
$$f(z) = \frac{z}{(1-z)^{10}} \in K(\frac{1}{3})$$
 for $0 \le r < \frac{19-\sqrt{235}}{126} = 0.00291293 \cdots$

(2)
$$f(z) = \frac{z}{(1-z)^{-4}} \in K(\frac{1}{7})$$
 for $0 \le r < \frac{23-\sqrt{274}}{85} = 0.0758477 \cdots$

Fig 3.1: Image of |z| = r by $f(z) = \frac{z}{(1-z)^{10}}$ (left), $1 + \frac{zf''(z)}{f'(z)}$ (right) (in all cases, $r = \frac{19-\sqrt{235}}{126} = 0.00291293 \cdots$).

Fig 3.2: Image of
$$|z| = r$$
 by $f(z) = \frac{z}{(1-z)^{-4}}$ (left), $1 + \frac{zf''(z)}{f'(z)}$ (right) (in all cases, $r = \frac{23-\sqrt{274}}{85} = 0.0758477 \cdots$).

By the way, for -1 < k < 1 in Theorem 2, we could not specify the bound for the radius r. But we know that every analytic function f(z) in U has the radius r for convexity. For example, the function f(z) given by

$$f(z) = \frac{z}{(1-z)^{\frac{1}{2}}},$$

which is the case $k = \frac{1}{2}$, belongs to K for $0 \le r \le 0.95$ as follows.

Fig 3.3: Image of |z| = r by $f(z) = \frac{z}{(1-z)^{\frac{1}{2}}}$ (r = 0.95).

Fig 3.4: Image of |z| = r by $1 + \frac{zf''(z)}{f'(z)}$ (r = 0.95).

Thus we give the following problem for convexity of the function f(z) for -1 < k < 1.

Problem 1. Find the sharp bound r for the function f(z) of Koebe type to be convex in |z| < r.

4 Definitions of $S_{\alpha}^{*}(\beta)$ and $K_{\alpha}(\beta)$

A function $f(z) \in A$ is said to be α -spiral like of order β if it satisfies

$$\operatorname{Re}\left(e^{-i\alpha} \frac{zf'(z)}{f(z)}\right) > \beta$$

for some α $\left(-\frac{\pi}{2} < \alpha < \frac{\pi}{2}\right)$, β $\left(0 \le \beta < \cos \alpha \le 1\right)$ and all z in U. We denote by $S_{\alpha}^{*}(\beta)$ the subclass of A consisting of functions f(z) which are α -spiral like of order β in U. A function f(z) in A is said to be α -convex like of order β if it satisfies

$$\operatorname{Re}\left(e^{-i\alpha}\left(1+rac{zf''(z)}{f'(z)}
ight)\right)>eta$$

for some α $\left(-\frac{\pi}{2} < \alpha < \frac{\pi}{2}\right)$, β $\left(0 \le \beta < \cos \alpha \le 1\right)$ and all z in U. Also we denote by $K_{\alpha}(\beta)$ the subclass of A consisting of funtions f(z) which are α -convex like of order β in U. In particular, we denote by $S_0^*(0) \equiv S^*(0) \equiv S^*$ and $K_0(0) \equiv K(0) \equiv K$.

We can check that the function

$$f(z) = \frac{z}{(1-z)^{2e^{i\alpha}(\cos\alpha - \beta)}}$$
(4.1)

is the extremal function for the class $S_{\alpha}^{*}(\beta)$. Because, since

$$\frac{zf'(z)}{f(z)} = 1 + 2e^{i\alpha}(\cos\alpha - \beta)\frac{z}{1-z}$$

for the extremal function, we have

$$e^{-i\alpha} \frac{zf'(z)}{f(z)} = e^{-i\alpha} + 2(\cos\alpha - \beta) \frac{z}{1-z}.$$

Note that $w = \frac{z}{1-z}$ maps the unit disk U onto the half domain with $Re(w) > -\frac{1}{2}$. Therefore, we see that

$$\operatorname{Re}\left(e^{-i\alpha}\frac{zf'(z)}{f(z)}\right) > \cos\alpha - (\cos\alpha - \beta) = \beta.$$

By definitions for the classes $S_{\alpha}^{*}(\beta)$ and $K_{\alpha}(\beta)$, since $f(z) \in K_{\alpha}(\beta)$ if and only if $zf'(z) \in S_{\alpha}^{*}(\beta)$, we calculate the extremal function f(z) for the class $K_{\alpha}(\beta)$ given by

$$f(z) = \frac{1}{2e^{i\alpha}(\cos\alpha - \beta) - 1} \left(\frac{1}{(1-z)^{2e^{i\alpha}(\cos\alpha - \beta) - 1}} - 1 \right). \tag{4.2}$$

Let us give some examples of functions f(z) in $S^*_{\alpha}(\beta)$ and $K_{\alpha}(\beta)$.

Example 3.

(1)
$$f(z) = \frac{z}{(1-z)^{\frac{1+\sqrt{3}i}{2}}}$$
 (when $\alpha = \frac{\pi}{3}$, $\beta = 0$ in (4.1)),

(2)
$$f(z) = \frac{2-\sqrt{3}-(2\sqrt{3}-1)i}{5-2\sqrt{3}} \left(\frac{1}{(1-z)^{\frac{2-\sqrt{3}+(2\sqrt{3}-1)i}{4}}}-1\right)$$
 (when $\alpha = \frac{\pi}{6}$, $\beta = \frac{1}{4}$ in (4.2)).

Fig 4.1: Image of |z| = r by $f(z) = \frac{z}{(1-z)^{\frac{1+\sqrt{3}i}{2}}}$ $(0 \le r \le 0.95 \text{ (left)}, r = 1 \text{ (right)}).$

Fig 4.2: Image of
$$|z| = r$$
 by $f(z) = \frac{2 - \sqrt{3} - (2\sqrt{3} - 1)i}{5 - 2\sqrt{3}} \left(\frac{1}{(1 - z)^{\frac{2 - \sqrt{3} + (2\sqrt{3} - 1)i}{4}}} - 1 \right)$
 $(0 \le r \le 0.99 \text{ (left)}, r = 1 \text{ (right)}).$

As we give extremal functions for the classes $S_{\alpha}^*(\beta)$ and $K_{\alpha}(\beta)$, our functions in Example 3 show that it is interesting for us to introduce the analytic function of generalized Koebe type by

$$f(z) = \frac{z}{(1-z)^{ke^{i\alpha}}}$$

for some $k \in \mathbb{R}$ and α $(0 \le \alpha < 2\pi)$.

If $k = 2(\cos \alpha - \beta)$, then f(z) becomes the extremal function of the class $S_{\alpha}^{*}(\beta)$.

5 Radii for α -spiral likeness of order β

We discuss the radii of α -spiral like of order β for the function f(z) of the generalized Koebe type.

Theorem 3. The function f(z) of the generalized Koebe type satisfies

(1)
$$k > 2(\cos\alpha - \beta) \Longrightarrow f(z) \in S_{\alpha}^{*}(\beta)$$
 for $0 \le r < \frac{\cos\alpha - \beta}{k - (\cos\alpha - \beta)}$ $(|z| = r)$,

(2)
$$0 \le k \le 2(\cos\alpha - \beta) \Longrightarrow f(z) \in S_{\alpha}^*(\beta)$$
 for $0 \le r < 1$ $(|z| = r)$,

(3)
$$k < 0 \Longrightarrow f(z) \in S_{\alpha}^{*}(\beta)$$
 for $0 \le r < \frac{\cos \alpha - \beta}{\cos \alpha - \beta - k}$ $(|z| = r)$.

Proof. By a simple calculation, we have

$$\frac{zf'(z)}{f(z)} = 1 + k \frac{e^{i\alpha}z}{1-z},$$

which gives

$$e^{-i\alpha} \frac{zf'(z)}{f(z)} = e^{-i\alpha} + k \frac{z}{1-z}.$$

Letting $w = \frac{z}{1-z}$, we have $z = \frac{w}{w+1}$. Since $|z|^2 \le |r|^2$ for $|z| \le |r|$, we have

$$|z|^2 = \left|\frac{w}{w+1}\right|^2 \le |r|^2.$$

After a simple calculation, we have

$$|w|^2 \le |w+1|^2 \ r^2,$$

which implies

$$\left| w - \frac{r^2}{1 - r^2} \right|^2 \le \frac{r^2}{(1 - r^2)^2}.$$

Hence we have

$$\left| w - \frac{r^2}{1 - r^2} \right| \le \frac{r}{1 - r^2}. \tag{5.1}$$

Now, we can calculate the maximum and minimum values of Re(w) from (5.1) as follows:

max Re(w) =
$$\frac{r^2}{1-r^2} + \frac{r}{1-r^2}$$

= $\frac{r}{1-r}$

and

min Re(w) =
$$\frac{r^2}{1-r^2} - \frac{r}{1-r^2}$$

= $-\frac{r}{1+r}$.

For $k \ge 0$, to get the minimum value of $\operatorname{Re}(e^{-i\alpha}\frac{zf'(z)}{f(z)})$, we take the minimum value of $\operatorname{Re}(w)$. Then we see that

$$\operatorname{Re}\left(e^{-i\alpha}\frac{zf'(z)}{f(z)}\right) = \cos\alpha + k \operatorname{Re}(w)$$

 $\geq \cos\alpha - k \frac{r}{1+r} > \beta.$

Since

$$(\cos\alpha - \beta)(1+r) - kr > 0,$$

or

$$(\cos\alpha - \beta - k)r + \cos\alpha - \beta > 0,$$

r satisfies the following inequality

$$(k - (\cos\alpha - \beta))r - (\cos\alpha - \beta) < 0. \tag{5.2}$$

We see that if $k > \cos \alpha - \beta$, then

$$r < \frac{\cos\alpha - \beta}{k - (\cos\alpha - \beta)}$$

and if $k > 2(\cos\alpha - \beta)$, then

$$\frac{\cos\alpha - \beta}{k - (\cos\alpha - \beta)} < 1.$$

So, we derive the case (1) in Theorem 3.

If $0 \le k < \cos \alpha - \beta$, then the inequality (5.2) is always satisfied for all r ($0 \le r < 1$).

If $\cos \alpha \leq k \leq 2(\cos \alpha - \beta)$, then we have the next inequality

$$1 < \frac{\cos\alpha - \beta}{k - (\cos\alpha - \beta)}.$$

This gives us that $f(z) \in S^*_{\alpha}(\beta)$ for $0 \leq r < 1$. Hence we get the result of the case (2) in Theorem 3.

For k < 0, to get the minimum value of $\operatorname{Re}(e^{-i\alpha}\frac{zf'(z)}{f(z)})$, we take the maximum value of $\operatorname{Re}(w)$. In this case, we have

$$\operatorname{Re}\left(e^{-i\alpha}\frac{zf'(z)}{f(z)}\right) = \cos\alpha + k\operatorname{Re}(w)$$

 $\geq \cos\alpha + k\frac{r}{1-r} > \beta.$

Similary, for $k \geq 0$, since

$$(\cos\alpha - \beta)(1 - r) + kr > 0,$$

or

$$(k - (\cos\alpha - \beta))r + \cos\alpha - \beta > 0,$$

we have

$$r < \frac{\cos\alpha - \beta}{\cos\alpha - \beta - k}$$

for r satisfying

$$r < \frac{\cos\alpha - \beta}{\cos\alpha - \beta - k} < 1.$$

Thus we have

$$0 \le r < \frac{\cos\alpha - \beta}{\cos\alpha - \beta - k},$$

which gives the result of the case (3) in Theorem 3. The proof of Theorem 3 is completed.

We give some examples of functions f(z) in $S^*_{\alpha}(\beta)$ for Theorem 3.

Example 4.

(1)
$$f(z) = \frac{z}{(1-z)^{3e^{i\frac{\pi}{3}}}} \in S^*_{\frac{\pi}{3}}(\frac{1}{3})$$
 for $0 \le r < \frac{1}{17} = 0.0588235 \cdots$,

(2)
$$f(z) = \frac{z}{(1-z)^{\frac{1}{2}e^{i\frac{\pi}{4}}}} \in S_{\frac{\pi}{4}}^*(\frac{1}{5})$$
 for $0 \le r < 1$,

(3)
$$f(z) = \frac{z}{(1-z)^{-7e^{i\frac{\pi}{6}}}} \in S^*_{\frac{\pi}{6}}(\frac{2}{5})$$
 for $0 \le r < \frac{5\sqrt{3}-4}{5\sqrt{3}+66} = 0.0624195 \cdots$

Fig 5.1: Image of |z| = r by $f(z) = \frac{z}{(1-z)^{3e^{i\frac{\pi}{3}}}}$ (left), $e^{-i\frac{\pi}{3}} \frac{zf'(z)}{f(z)}$ (right) (in all cases, $r = \frac{1}{17} = 0.0588235 \cdots$).

Fig 5.2: Image of |z| = r by $f(z) = \frac{z}{(1-z)^{\frac{1}{2}e^{i\frac{\pi}{4}}}}$ (left), $e^{-i\frac{\pi}{4}}\frac{zf'(z)}{f(z)}$ (right) (in all cases, r = 1).

er all a base bally bally

Fig 5.3: Image of |z| = r by $f(z) = \frac{z}{(1-z)^{-7e^{i\frac{\pi}{6}}}}$ (left), $e^{-i\frac{\pi}{6}} \frac{zf'(z)}{f(z)}$ (right) (in all cases, $r = \frac{5\sqrt{3}-4}{5\sqrt{3}+66} = 0.0624195\cdots$).

6 Radii for starlikeness of order β

Next we discuss the radii of starlikeness of order β for the function f(z) of the generalized Koebe type.

Theorem 4. The function f(z) of the generalized Koebe type satisfies

(1) for $k \ge 0$ and $\cos \alpha \ge 0$,

(i)
$$k \neq 0$$
, $\frac{1-\beta}{\cos\alpha} \Longrightarrow f(z) \in S^*(\beta)$ for
$$0 \leq r < \frac{k-\sqrt{k^2-4k(1-\beta)\cos\alpha+4(1-\beta)^2}}{2(k\cos\alpha+\beta-1)}$$
 ($|z|=r$),

(ii)
$$k = \frac{1-\beta}{\cos\alpha} \Longrightarrow f(z) \in S^*(\beta)$$
 for $0 \le r < \cos\alpha$ $(|z| = r)$,

(iii)
$$k = 0 \Longrightarrow f(z) \in S^*(\beta)$$
 for $0 \le r < 1$ $(|z| = r)$,

(2) for $k \ge 0$ and $\cos \alpha < 0$,

(i)
$$k \neq 0 \implies f(z) \in S^*(\beta)$$
 for
$$0 \leq r < \frac{k - \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)}$$
 $(|z| = r),$

(3) for k < 0 and $\cos \alpha \ge 0$,

(i)
$$k < 0 \implies f(z) \in S^*(\beta)$$
 for
$$0 \le r < \frac{k + \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(1 - \beta - k\cos\alpha)} \quad (|z| = r),$$

(4) for k < 0 and $\cos \alpha < 0$,

$$(i) \ k \neq \frac{1-\beta}{\cos\alpha} \Longrightarrow f(z) \in S^*(\beta) \quad for$$

$$0 \leq r < \frac{k + \sqrt{k^2 - 4k(1-\beta)\cos\alpha + 4(1-\beta)^2}}{2(1-\beta - k\cos\alpha)} \quad (|z| = r),$$

$$(ii) \ k = \frac{1-\beta}{\cos\alpha} \Longrightarrow f(z) \in S^*(\beta) \quad for \quad 0 \leq r < -\cos\alpha \quad (|z| = r).$$

Proof. From Theorem 3, we have

$$\frac{zf'(z)}{f(z)} = 1 + k \frac{e^{i\alpha}z}{1-z},$$

Letting $w = \frac{e^{i\alpha}z}{1-z}$, that is, $z = \frac{w}{w + e^{i\alpha}}$, we have

$$|z|^2 = \left|\frac{w}{w + e^{i\alpha}}\right|^2 \le |r|^2 \qquad (|z| \le r).$$

After calculations, we have

$$|w|^2 \le |w + e^{i\alpha}|^2 r^2,$$

that is

$$\left| w - \frac{r^2}{1 - r^2} e^{i\alpha} \right|^2 \le \frac{r^2}{(1 - r^2)^2}$$

Hence, we have

$$\left| w - \frac{r^2}{1 - r^2} e^{i\alpha} \right| \le \frac{r}{1 - r^2}.$$
 (6.1)

Now, we have to calculate the maximum and minimum values of Re(w) from (6.1). Note that

$$\max \operatorname{Re}(w) = \operatorname{Re}\left(\frac{r^{2}}{1 - r^{2}}e^{i\alpha}\right) + \frac{r}{1 - r^{2}}$$
$$= \frac{r^{2}\cos\alpha}{1 - r^{2}} + \frac{r}{1 - r^{2}} = \frac{r(r\cos\alpha + 1)}{1 - r^{2}}$$

and

min Re(w) = Re
$$\left(\frac{r^2}{1-r^2}e^{i\alpha}\right) - \frac{r}{1-r^2}$$

= $\frac{r^2\cos\alpha}{1-r^2} - \frac{r}{1-r^2} = \frac{r(r\cos\alpha - 1)}{1-r^2}$.

For $k \ge 0$ and $\cos \alpha \ge 0$, to get the minimum value of $\operatorname{Re}(\frac{zf'(z)}{f(z)})$, we take the minimum value of $\operatorname{Re}(w)$. Hence, we have

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) = 1 + k\operatorname{Re}(w)$$
$$= 1 + kr\frac{r\cos\alpha - 1}{1 - r^2} > \beta.$$

By a simple calculation, we have

$$(1-\beta)(1-r^2) + kr(r\cos\alpha - 1) > 0$$
,

or

$$(k\cos\alpha + \beta - 1)r^2 - kr + 1 - \beta > 0.$$
 (6.2)

If $k\cos\alpha + \beta - 1 > 0$, we get, from (6.2),

$$r < \frac{k - \sqrt{k^2 - 4k(1-\beta)\cos\alpha + 4(1-\beta)^2}}{2(k\cos\alpha + \beta - 1)},$$

and

$$\frac{k + \sqrt{k^2 - 4k(1-\beta)\cos\alpha + 4(1-\beta)^2}}{2(k\cos\alpha + \beta - 1)} < r.$$

Since

$$\sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}$$

$$= \sqrt{(k - 2(1 - \beta)\cos\alpha)^2 + 4(1 - \beta)^2 - 4(1 - \beta)^2\cos^2\alpha}$$

$$= \sqrt{(k - 2(1 - \beta)\cos\alpha)^2 + 4(1 - \beta)^2\sin^2\alpha} \ge 0$$

for all k and α , we consider the following inequality

$$\frac{k - \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)} > 0.$$
(6.3)

To be satisfied the inequality (6.3), the following inequality

$$k - \sqrt{k^2 - 4k(1-\beta)\cos\alpha + 4(1-\beta)^2} > 0,$$

should be satisfied. After calculations, we have

$$4(1-\beta)(k\cos\alpha+\beta-1)>0.$$

The last inequality is always satisfied because $k\cos\alpha + \beta - 1 > 0$ in this case. Thus the inequality (6.3) is always satisfied. Therefore,

$$0 \le r < \frac{k - \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)} \qquad (k > \frac{1 - \beta}{\cos\alpha}).$$

Finally, we calculate for k such that next inequality is satisfied

$$\frac{k - \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)} < 1.$$
(6.4)

Since the inequality (6.4) implies that

$$k - \sqrt{k^2 - 4k(1-\beta)\cos\alpha + 4(1-\beta)^2} < 2(k\cos\alpha + \beta - 1),$$

we see

$$4k(1-\cos\alpha)(k\cos\alpha+\beta-1)>0.$$

The last inequality is always satisfied because $k\cos\alpha + \beta - 1 > 0$ in this case. Thus, the inequality (6.4) is always satisfied. Therefore, we derive

$$0 \le r < \frac{k - \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)} \qquad (k > \frac{1 - \beta}{\cos\alpha}).$$

If $k\cos\alpha + \beta - 1 < 0$, we have from (6.2),

$$\frac{k + \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)} < r < \frac{k - \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)}.$$

Since

$$\frac{k+\sqrt{k^2-4k(1-\beta)\cos\alpha+4(1-\beta)^2}}{2(k\cos\alpha+\beta-1)}<0$$

in this case, we have to have

$$\frac{k - \sqrt{k^2 - 4k(1-\beta)\cos\alpha + 4(1-\beta)^2}}{2(k\cos\alpha + \beta - 1)} > 0.$$

This inequality shows that

$$4(1-\beta)(k\cos\alpha+\beta-1)<0.$$

The last inequality is always satisfied in this case. Similary to the case $k\cos\alpha + \beta - 1 > 0$, we have to check that

$$\frac{k - \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)} < 1,$$

which implies that

$$4k(1-\cos\alpha)(k\cos\alpha+\beta-1)<0.$$

The last inequality is always satisfied in this case. Hence, we have

$$0 \le r < \frac{k - \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)} \qquad (0 \le k < \frac{1 - \beta}{\cos\alpha}).$$

Therefore, we derive the result of the case (i) of Theorem 4 - (1). If $k\cos\alpha + \beta - 1 = 0$, we have, from (6.2),

$$-kr + 1 - \beta > 0,$$

or

$$r < \frac{1 - \beta}{k} = \cos \alpha.$$

We get the result of the case (ii) of Theorem 4 - (1). If k = 0, we have from (6.2),

$$(\beta - 1)r + 1 - \beta > 0$$

which shows r < 1.

Therefore, we get the result of the case (iii) of Theorem 4 - (1). The proof of Theorem 4 - (1) is completed.

For $k \ge 0$ and $\cos \alpha < 0$, similarly to the case (1), we derive the inequality (6.2). In this condition, $k\cos \alpha + \beta - 1$ is always non-positive. Noting that

$$0 \le r < \frac{k - \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)},$$

we see

$$\frac{k - \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)} < 1$$

if $k \neq 0$, and $0 \leq r < 1$ if k = 0. Thus we get the result of the case (2) of Theorem 4.

For k < 0 and $\cos \alpha \ge 0$, to get the minimum value of $\operatorname{Re}(\frac{zf'(z)}{f(z)})$, we need the maximum value of $\operatorname{Re}(w)$. Indeed, we have

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) = 1 + k\operatorname{Re}(w)$$
$$= 1 + kr\frac{r\cos\alpha + 1}{1 - r^2} > \beta.$$

After calculations, we have

$$(1 - \beta)(1 - r^2) + kr(r\cos\alpha + 1) > 0,$$

that is,

$$(k\cos\alpha + \beta - 1)r^2 + kr + 1 - \beta > 0. \tag{6.5}$$

With this condition, similary to the case (2) of Theorem 4, $k\cos\alpha + \beta - 1$ is always positive. Solving (6.5) for r, we obtain

$$\frac{-k + \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)} < r < \frac{-k - \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)}.$$

We note that

$$\frac{-k + \sqrt{k^2 - 4k(1-\beta)\cos\alpha + 4(1-\beta)^2}}{2(k\cos\alpha + \beta - 1)} < 0$$

and

$$\frac{-k - \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)} > 0.$$

This gives us that

$$4(1-\beta)(k\cos\alpha+\beta-1)<0.$$

The last inequality is always satisfied in this condition. Finally, we calculate for k such that next inequality is satisfied

$$\frac{-k - \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)} < 1.$$
 (6.6)

By (6.6), we have

$$-k - \sqrt{k^2 - 4k(1-\beta)\cos\alpha + 4(1-\beta)^2} > 2(k\cos\alpha + \beta - 1),$$

so

$$4k(1+\cos\alpha)(k\cos\alpha+\beta-1)>0.$$

The last inequality is always satisfied in this condition. Thus, the inequality (6.6) is also always satisfied. Therefore, we derive

$$0 \le r < \frac{-k - \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)}$$
$$= \frac{k + \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(1 - \beta - k\cos\alpha)},$$

which is the result of the case (3) of Theorem 4.

For k < 0 and $\cos \alpha < 0$, we derive the inequality (6.5). If $k\cos \alpha + \beta - 1 > 0$, then we have, from (6.5),

$$r < \frac{-k - \sqrt{k^2 - 4k(1-\beta)\cos\alpha + 4(1-\beta)^2}}{2(k\cos\alpha + \beta - 1)},$$

and

$$\frac{-k+\sqrt{k^2-4k(1-\beta)\cos\alpha+4(1-\beta)^2}}{2(k\cos\alpha+\beta-1)} < r.$$

Therefore the following inequality

$$\frac{-k - \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)} > 0$$
(6.7)

is satisfied. Since the inequality (6.7) implies

$$-k - \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2} > 0,$$

we have

$$4(1-\beta)(k\cos\alpha+\beta-1)>0.$$

This last inequality is always satisfied in this case. Then, we calculate for k such that the inequality

$$\frac{-k - \sqrt{k^2 - 4k(1-\beta)\cos\alpha + 4(1-\beta)^2}}{2(k\cos\alpha + \beta - 1)} < 1$$

is satisfied. Noting that

$$-k - \sqrt{k^2 - 4k(1-\beta)\cos\alpha + 4(1-\beta)^2} < 2(k\cos\alpha + \beta - 1),$$

we have

$$4k(1+\cos\alpha)(k\cos\alpha+\beta-1)<0.$$

The last inequality is always satisfied in this case. Hence, we have

$$0 \le r < \frac{-k - \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)}$$
$$= \frac{k + \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(1 - \beta - k\cos\alpha)} \qquad (k < \frac{1 - \beta}{\cos\alpha}).$$

If $k\cos\alpha + \beta - 1 < 0$, we have, from (6.5),

$$\frac{-k + \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)} < r < \frac{-k - \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)}.$$

By the same manner as in the previous cases, we have

$$\frac{-k-\sqrt{k^2-4k(1-\beta)\cos\alpha+4(1-\beta)^2}}{2(k\cos\alpha+\beta-1)}>0,$$

which implies

$$4(1-\beta)(k\cos\alpha+\beta-1)<0.$$

The last inequality is always satisfied in this case. Thus, we have

$$0 \le r < \frac{-k - \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(k\cos\alpha + \beta - 1)}$$
$$= \frac{k + \sqrt{k^2 - 4k(1 - \beta)\cos\alpha + 4(1 - \beta)^2}}{2(1 - \beta - k\cos\alpha)} < 1 \qquad (\frac{1 - \beta}{\cos\alpha} < k < 0).$$

Therefore, we derive the result of the case (i) of Theorem 4 - (4). If $k\cos\alpha + \beta - 1 = 0$, we have, from (6.5),

$$kr+1-\beta>0$$
,

or

$$r < -\frac{1-\beta}{k} = -\cos\alpha.$$

We get the result of the case (ii) of Theorem 4 - (4). And the proof of Theorem 4 is completed.

We give some examples for Theorem 4 as follows.

Example 5.

(2)
$$f(z) = \frac{z}{(1-z)^{4e^{i\frac{5}{6}\pi}}} \in S^*(\frac{1}{2})$$
 for $0 \le r < \frac{-4+\sqrt{17+4\sqrt{3}}}{1+4\sqrt{3}} = 0.112465 \cdots$

(3)
$$f(z) = \frac{z}{(1-z)^{-6e^{i\frac{\pi}{4}}}} \in S^*(\frac{1}{3})$$
 for $0 \le r < \frac{3\left(-6+\sqrt{\frac{340}{9}+8\sqrt{2}}\right)}{4+18\sqrt{2}} = 0.102513\cdots$

(4)
$$f(z) = \frac{z}{(1-z)^{-\frac{2}{3}e^{i\frac{2}{3}\pi}}} \in S^*(\frac{3}{7})$$
 for $0 \le r < \frac{-7+\sqrt{109}}{5} = 0.688061 \cdots$,

(5)
$$f(z) = \frac{z}{(1-z)^{\frac{5}{2(1+\sqrt{5})}e^{i\frac{\pi}{5}}}} \in S^*(\frac{3}{8})$$
 for $0 \le r < \cos\frac{\pi}{5} = 0.809017 \cdots$,

(6)
$$f(z) = \frac{z}{(1-z)^{-\frac{5}{4}e^{i\frac{2}{3}\pi}}} \in S^*(\frac{3}{8})$$
 for $0 \le r < -\cos\frac{2}{3}\pi = 0.5$.

Fig 6.1: Image of |z| = r by $f(z) = \frac{z}{(1-z)^{5e^{i\frac{\pi}{3}}}}$ (left), $\frac{zf'(z)}{f(z)}$ (right) (in all cases, $r = \frac{35-\sqrt{949}}{23} = 0.182355\cdots$).

Fig 6.2: Image of
$$|z| = r$$
 by $f(z) = \frac{z}{(1-z)^{4e^{i\frac{5}{6}\pi}}}$ (left), $\frac{zf'(z)}{f(z)}$ (right) (in all cases, $r = \frac{-4+\sqrt{17+4\sqrt{3}}}{1+4\sqrt{3}} = 0.112465\cdots$).

Fig 6.3: Image of |z| = r by $f(z) = \frac{z}{(1-z)^{-6e^{i\frac{\pi}{4}}}}$ (left), $\frac{zf'(z)}{f(z)}$ (right) (in all cases, $r = \frac{3\left(-6+\sqrt{\frac{340}{9}+8\sqrt{2}}\right)}{4+18\sqrt{2}} = 0.102513\cdots$).

Fig 6.4: Image of
$$|z| = r$$
 by $f(z) = \frac{z}{(1-z)^{-\frac{2}{3}e^{i\frac{2}{3}\pi}}}$ (left), $\frac{zf'(z)}{f(z)}$ (right) (in all cases, $r = \frac{-7+\sqrt{109}}{5} = 0.688061 \cdots$).

Fig 6.5: Image of |z| = r by $f(z) = \frac{z}{(1-z)^{\frac{5}{2(1+\sqrt{5})}e^{i\frac{\pi}{5}}}}$ (left), $\frac{zf'(z)}{f(z)}$ (right) (in all cases, $r = \cos\frac{\pi}{5} = 0.809017\cdots$).

Fig 6.6: Image of
$$|z| = r$$
 by $f(z) = \frac{z}{(1-z)^{-\frac{5}{4}e^{i\frac{2}{3}\pi}}}$ (left), $\frac{zf'(z)}{f(z)}$ (right) (in all cases, $r = -\cos\frac{2}{3}\pi = 0.5$).

Remark 1. Finally, we have to say that we can not find the sharp bound of the radius r for the classes $K_{\alpha}(\beta)$ and $K(\beta)$, because it is not so easy to calculate. But, as we mention before, the analytic function has the property that it maps, one-to-one, a small disk onto a small disk. Therefore, this problem to find the sharp bound of the radius r for the classes $K_{\alpha}(\beta)$ and $K(\beta)$ is remained.

References

- [1] Y.Komatu, On the starlike and convex mappings of a circle, Kodai Math. Sem. Rep. 13 (1961), 123-126.
- [2] A.Marx, Undersachungen über schlichte Abbildungen, Math. Ann. 107 (1932/33), 40-67.
- [3] M.S.Robertson, On the theory of univalent functions, Ann. Math. 37 (1936), 374-408.
- [4] E.Strohhäcker, Beitrage zur Theorie der schlichten Funktionen, Math. Z. 37 (1933), 356-380.
- [5] D.Wilken and J.Feng, A remark on convex and starlike functions, *J.London Math. Soc.* 21 (1980), 287-290.

Department of Mathematics Kinki University Higashi-Osaka, Osaka 577-8502 Japan