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Abstract

We consider the Cauchy problem for nonlinear reaction-diffusion equation in a superdiffusive random medium. The non-
degeneracy of Ll— norm of the positive solutions can be established as a result of longtime asymptotic behaviors. We
construct locally finite non-negative measure valued stochastic processes associated with the nonlinear equations in question

and show stochastic convergence of the processes in a superdiffusive medium as a probabiblistic counter-phenomenon.

I Introduction

The technical term catalytic branching is used in most cases for stochastic models which
are introduced, for instance, based upon the following two distinct viewpoints in catalytic
chemical systems or in catalytic biological systems. The first one is a microscopic view
in the chemical reaction, where a molecule reveals a certain chemical reaction only in the
places where exists the catalyst. The second one is just the case where, in the macroscopic
view, the chemical reaction is described by reaction diffusion equations and the catalyst
enters as a spatially heterogeneous rate function. In some cases there are catalysts present
only in the localized regions such as networks of filaments or the surfaces of pellets.

Mathematically, such systems are modelled by the following catalytic reaction diffusion
equations in R?

SO Ly R, 0<s<t (1)
0s 2

with terminal condition u|s—; = ¢. Here R is a reaction term, and p; is a spatial density of
the catalyst at time s with continuous measure-valued path : s+ p, € M(R?). Let p(r, b)
denote the transition density of a standard Brownian motion in R%. Then the above (1)

can be formulated rigorously by the following integral equation:

u(s,t,a) = /p(t —s,b—a)p(b)db + ‘/St dr /p(r —8,b—a)R(u(r,t,b))p.(db). (2)
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Our main concerns are firstly to formulate the equation (2) meaningfully for measure-
valued paths p as generalized as possible, and secondly to investigate long-time asymptotic
behaviors of the solutions, whereby we aim at:s'tudying the asymptotic behaviors of the
associated stochastic processes. In this paper we will treat simply the typical case R(u) =
u?.

For the cases when p; in (1) are nice measures having mass on an open set or a hypersur-
face, the equation (1) has been studied via analytic method by Chadan-Yin [2], Chan-Fung
[3], Bramson-Neuhauser [1], and Durrett-Swindle [19]. On the other hand, the relationship
between semilinear reaction diffusion equations, branching particle systems, and super-
processes (or measure-valued processes) has been investigated by Dynkin-Kuznetsov [21],
Le Gall [24], and Gorostiza-Wakolbinger [23]. At the same time this implies that prob-
abilistic research on analysis of this sort of equation like (1) may provide with a natural
approach to the asymptotic problem, in connection with superprocesses associated with
catalytic reaction diffusion equations. As to the works for stochastic processes with cat-
alytic branching, there can be found interesting and exciting new results in series of papers
written by Dawson-Fleischmann [5,6,7], and Fleischmann-Le Gall [22].

This paper is organized as follows. In Section II we introduce basic notations and prelim-
inaries used in the succeeding sections through the whole paper. Section III is devoted to
the construction of catalytic superdiffusion in a superdiffusive random medium. In partic-
ular, in Section III.1 we shall look at a quick review of superdiffusion in terms of Dynkin’s
formulation [20], which plays an essential role later as catalyst process in construction
of catalytic superdiffusion. The useful tools called branching rate functionals (BRF) are
provided in Section II1.2, where we introduce several classes of BRF. Each class possesses
its own peculiar feature to work effectively in the investigation of properties of the corre-
sponding measure-valued processes, such as existence of process itself, its characterization,
existence of modification with continuous sample paths, etc. Diffusive collision local time
(DCLT) is constructed in Section II1.5, whereby the existence of catalytic superdiffusion
with DCLT as its branching rate functional is shown as well. In Section IV we study
longtime asymptotic behaviors, which are the chief themes in this paper. In Section IV.1
asymptotic non-degeneracy of the L!- norm of positive solutions to nonlinear catalytic
reaction diffusion equations is proved. Section IV.2 is devoted to the asymptotic behav-
iors of the associated processes, namely, catalytic superdiffusions (CSD). It is shown that
CSD with Lebesgue measure as its initial measure converges stochastically to the Lebesgue
measure as time parameter goes to infinity. |

II Notation and Preliminaries

Let p be a positive number such that p > d, where d is the space dimension parameter. ¢,
is a reference function defined by

pp(z) = (1 + |z|?) P2, z € R%
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We denote by CP the space of continuous functions f on R® such that |f| < C +pp for some
positive constant Cy depending on f. The norm || f||, f € C? is defined by

1= 11f/pllcos

and (CP,|| - ||) becomes a Banach space. C% is the totality of positive elements of C?. For
a time interval I in R, C»' denotes the space of all functions f(s,z) in C(I x R%) such
that there exists a positive constant C'y depending on f, satisfying

|f(5,)| <Cf-@p for sel

Let B = B(R?) denote the space of all Borel measurable functions on R%. We say that
f € Bif f: R* - R is B- measurable. Let BP denote the set of all those f € B satisfying
|f| < Cypp for some constant Cy. Moreover, f € bBP means that f is a bounded element of
BP. As is easily imagined, the symbols B%, BP!, etc. denote those measurable counterparts
of C%, CP!, etc. respectively. Let M, = M,(R%) denote the set of all locally finite non-
negative measures x on R?, such that '

lilly = (m0) = [, eo@)nidy) < co.

M, is also called the set of tempered measures on R, equipped with the p- Vague topology.
While, Mg = Mp(RY) is the set of all finite measures on R’
L is the second order differential operator defined by

2

18 G |
52:: r:z:axzaxj—FZb Tﬂ:ax | (3)

i=1 ‘T

for (r,z) € Q := R, x R%. We assume
(A.1) (a) A = (a;;) is non-negative definite and symmetric.

(b) L is uniformly elliptic, i.e., there is a positive constant Cy such that

Z ajuu; > Cy Z |ug|*  for Y(r,z) €S and wuq,---,uq € R.
i i
(c) aij, b; € bC(S) satisfying Hélder conditions: there exists a positive constant 4,0 < a < 1
2 d d
such that for any (r,s,z,y) € R x R* x R,
laij(r,z) —aii(s,9)] < A{lr —s[*®+ |z —y|*},
[bs(r,z) = bi(r,y)| < Alz —yl*.

Under the assumption (A.1) there exists a fundamental solution p(r, z;¢,y) of the differen-
tial equation dyu + Lu = 0 such that for any f € bC(R?),

u(r,z) = /R ozt y) fy)dy (4)
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satisfies the problem

ot
u(r,z) — f(z) as r /'t

0 :
{ ~u+Lu=0 in Q:=[0,t) x R (5)

We denote by (&;,I1,.,) an L- diffusion, which is a Markov process in R? with continuous
paths with transition function

P(r,z,t,dy) = p(r, z;t,y)dy. (6)
In addition, S = (S})¢>0 denotes the L- diffusion semigroup.
IITI  Superdiffusion in a Superdiffusive Medium

III.1  Superdiffusion as Catalyst Process

We begin with definition of superdiffusion (SD), which is based on the martingale problem
formulation. Let 2 be the path space C(R4, M,), and Kj be a special branching rate
functional (BRF) given by

Ky(dr) := ~dr, v > 0.

We consider the superdiffusion X*° = X7 with BRF K. For each p € M, (as initial
measure), there exists a probability measure P} on (Q, ) such that X{ = p, P}- as., and

M) = (X790 = w0 — (X2, L)ds, (vt >0, € Dom(L)

is a continuous Fi- martingale under P}, where the quadratic variation process (M.(¥)),
is given by

M) =2 [ [wln?X2dnyds, P} as.

for V& > 0. We adopt this superdiffusion X" as catalyst to construct a measure-valued
process in catalytic random medium in the succeeding sections. We would rather use the
symbol p as catalyst process instead of X7.

Next we shall present a characterization of SD p. Actually,

p:[X;’:XtKO,PZ,t>O,pEMP] with. p>d, v>0
is an M- valued Markov process whose Laplace transition functional is given by
Py, exp(X], —p) = exp(u, —v¥)(s,1,-)),  p€Cik (7)

where the solution v(t) = v¥!(¢) of the log-Laplace equation

v(s,t,z) + I » /: yv?(r,t,&)dr = s (&) (8)
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solves uniquely the nonlinear parabolic equation

~ 35 = Ly —yv? with V]s=t = . (9)

Note that
Map(6) = [ p(s, 5, )p(w)dy.

L2  Classes of Branching Rate Functionals

The additive functional (AF) K = K (&) of diffusion process £ = (&) is a random measure
K = K(w,dt) on (0,c0) such that for any r < ¢, K(-,(r,t)) is measurable with respect to
the completion of F(r,t) relative to Il,,, where II, , is defined by

[ i)

for any u € Mp. Let K be the set of all branching rate functionals. We say that K € K if
an AF K = K(£) satisfies the following two conditions:

(a) (Continuity) K(dr) does not carry mass at any single point set.

(b) (Local Admissibility) For u > 0,

t
sup s, [ @p(&)K(dr) =0 as s,t— u.
acR? s

DEFINITION 1. Let K € K. We say that K € K* if for each finite interval I = [L, T
C Ry, there is a positive constant C'(I) such that

T
supll,, | ¢o(&)K(dr) <C(I) - ppa), a€R%

DEFINITION 2. We say that K € K? (8 > 0) if for each N > 0, there is a positive
constant C'(N) such that

i
s o w?,(&,)l((dr) < C(N)|t —s)?- pp(a) for 0<s<t<N, a€R%
Notice that we have a natural inclusion X? C KC*.

111.3  Superdiffusion with Continuous Paths

Let K € KP for some 8 > 0. Then it is easy to show that there exists a probability measure
Ps . € Myi(C(R4, Mp)) such that for ¢ € C, x

P, exp(XK, —p) = exp(p, —u(s, 1)) | (10)

and v = v¥! is a solution of the log-Laplace equation

3

v(s,t,0) + g [ 0P(r,t,6)K(dr) = T0 (&), (1)
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Define the centered process
Zy:=P,, XK - xK for t>s. (12)

Since K € K* for some 3 > 0, we can assert Holder continuity of Z;. As a matter of fact,
we obtain

LEMMA 1. For N >0, p € My, k> 1 and e € (0,3/2), there exists a modification Z of
Z such that

sup Pop| sup  [(Zun—Zi,@)I/K]* < 400 for €D, (13)
0<s<N s<t<t+h<N

where Dy = {1, 2, - -} is a countable subset of Dom(L).

Proof. By applying the recursive scheme for moments (3.2.4) [6] and higher moment
formula (Lemma 2.6.2, [6]) we can easily obtain

| Poss{Se-st = X, )| < Co {llelFllalo(t — ) *7-

xS el — s EI D8 — )W?Znuup} (14)

2<5<k—2

A simple computation with (14) leads to the higher moment estimate of XX i.e.,

k—1
| Pou{Si—stt — X[ 0)*1 < Gt = )2 )10)l* S Nl (15)
=1

for 0 <s<t<N,pe M, and p € BP. Hence it is not difficult to derive the following
estimate of centered moments -

2k—-1
P Zoru = Ze, )™ < CL[1Sup — ol + alle)*) 3 [l (16)
i=1

for 0<s<t<t+u<N,p€ M, and ¢ € BP, if we apply Lemma 3.2.2 [6] for (15) by
employing the similar techniques discussed in the proof of Lemma 3.2.2 [6]. Consequently
the above (16) implies that

2k—1
Pol{Zorn — Zs, o) [* < Cob 3~ |l
i=1

for some positive constant C,. Therefore, we may resort to a general version of the Kol-
mogorov criterion in order to conclude the assertion (13), because the class Dy is rich
enough to determine in the category of M,. Q.E.D.

For @), € Dy, we can define a metric d,, in M, as

= 1
E : 2_m 1 N | Ky me> <U7(10m>|) for K,V € MP' (17)
1

m=
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Note that (M,,d,) becomes a metric space. In particular, Z has P, - a.s. locally Holder
continuous paths of order ¢ in the metric d,. As a result, we obtain -

PROPOSITION 2. If K € KP for some 3 > 0, then there exists a modification X of
superdiffusion XX with continuous paths, that is, X € C(R4, M,).

Proof. From the expectation formula for the superdiffusion X%, we have
Ps,uXtK =Sy spu for peM,.

For the one-point compactification R? of R?, we denote by C? the subspace of all elements
f € C? such that the mapping ' '

F:z— F(z) := f(z)/pp(2)

can be extended to a function in C(RY). Note that C? becomes a separable Banach space.
Since t = S;p is a continuous curve in CP, the map t — S;u € M, can be regarded as a
continuous mapping. From (12) and (13), we get

St st — Zt Pst Zt X ’

implying that there can be found a continuous M, valued process if we retake the modi-
fication of X¥X. Q.E.D.

IIl.4  Absolute Continuous State of Occupation Time Process

For the catalyst process p = X7, v > 0, we define the occupation time,
. o , ‘ ,
Y[Z’t] = / X dr, 0<s<uct (18)

where Y[Z’t] is a measure on R? and is distributed according to the law P, ( n € M, given
)- Next we shall define the potential kernel,

¢ - ,
q(u,t,a,b) = / p(0,a;7,b)dr for 0<u<t, a,beR? (19)

and
wx q(u,t,b) : /qutab) (da) for peM, 0<u<t, beR% (20)

In addition we can show that, for p € M,, r > 0, z € R?

ep(z)p % p(0, 7, 2) < Co(p) (1 + %)pri’—d, (21)

We have the following lemma.
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LEMMA 3. IfK € K*, p € M,, and z € R* thenforr (8 =r)y orr’' = (t—r), we
have the convergence

(] .
.Hs,p/ q2(6+r’,6+r',§r,z)K(dr)—>0 as 0<e<6\0.

Define
Yiu(2) = (Vi P(0; 56, 2))

for a small parameter ¢ > 0. By virtue of Lemma 3, we can show the existence of the
L*(P,)- limit of a family {¥f,4)(2)}e as € tends to zero, and we write its limit as Yt (2)-
Hence it follows that the random measure Y[Z . on R% is absolutely continuous with respect
to the Lebesgue measure dz, and we can show that y ;) becomes a density field. Moreover,
applying Sugitani’s result [25] on jointly continuous property, we can deduce the existence
of continuous density field.

PROPOSITION 4. Ford<3,6 >0, p € M,, and P, ~ X" fixed, there exists a jointly
continuous field §] = {fis5.4(2); t >0, z € R%} such that

Pu(Y[Z,&-y-t](dZ) = g[ﬁ,§+t](z)d27 vt > O) =

~ Proof. This is greatly due to Sugitani’s work [25]. First of all, it is interesting to note
that for s > 0, p*q(s,s+r, z) is locally Lipschitz continuous in (r, z) € R, x R® by virtue
of the condition (21). While, we have

Puyissri(2) = p*q(s,s + ¢, 2)

by the expectation formula for density field. So that, we can define the centered field as

Er(8,2) = pxq(s,s +1t,2) — yps,s14(2)-

Hence the proposition can be attributed to the assertion that Z,(s, z) has a jointly con-
tinuous modification. So we need to derive the moment estimates of Z,. Indeed, a direct
computation with the argument of Lemma 3.2.1 [6] provides with the following moment
‘estimate

2%—1
P,|Zn(s,2) — Z4(s, 2)|%* < Cyy*hk/? Z {p*q(s+t,s+t+2h2)}. (22)

i=1
On the other hand, set
=5(s,2) =pxqle+s,e+s+t,2)— Yis,s+4)(2)-
By applying the recursive scheme (in Lemma 4, [7]) we can prove the moment estimate

P,|Z5(s,2) — Ei(s, Q) F < Cv*?|z — ([
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k-1 .
x> {nxq(s,2e+s—t),2) +pxq(s,2(e+s-1),0} (23)

i=1
for a small parameter o € (0,1), and all €,7, |2, ||, t, s + t € (0, N], where we employed
the relation
[u®) (s, a)] < KICH2|z — ¢[*
X {q(((S - S)+7 2(8 +6+1— S), a, Z) + q((6 - 3)+a 2(8 +o6+1t— 3)7 G,C)}

for the sequence {u(™(s,a)} of
T
u(s,a) = I, 'u2(r, &) Ko(dr)

(cf. Lemma 11, [7]). On this account, by the above-mentioned local Lipschitz continuity
and the L2- convergence of {¥{y(2)} together with (23) it is easy to show that

P,|=:(s,2) — Et(s,§)|2’° < Cyy*|z — ¢|%*e.
2k—1 |
X»Z {p*q(s,2(s+1),2) + pxq(s,2(s+1),0) }. (24)

i=1
Thus, by choosing k sufficiently large, we may apply the Kolmogorov moment criterion to
deduce from (22), (24) that there exists a jointly continuous modification of =.(s, -), if we
pay attention to the fact that each sum remains finite by continuity. Q.E.D.

In addition, since we have that
the mapping : [r, 2] — p * q(0,r, z)

is finite and continuous on R, x R?, we can extend the above joint continuity result to the
case where § = 0 for §J. Furthermore, we have

LEMMA 5. Letd < 3. Fora € (0,&),0< & < 1,8 >0, and P fired, there exists a
modification §s of y§ such that

|G16.64+1(2)0p(2) — 5,645 () 0p(C)]
|[t, 2] =[5, ]|

holds, where the supremum is taken over the region: 0 < t,s < N, 2,{ € R%, and 2, 2] #

[s,¢]-

111.5  Regular Paths and Catalytic Superdiffusion

sup <oo, P-—a.s.

First of all we shall introduce the concept of regular paths. Let N > 0, 0 < £ < 1 be fixed,
and take 7 € C(Ry, M,). We define

S+H-&
~(1n) = sup (N, 0p - D(8,057,-)) dr. (25)
0<s<N Js
ac R4
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Suggested by Dawson-Fleischmann (7], we shall give below the definition of regular paths.
If the path is regular, then the existence of the corresponding catalytic BRF is able to be
guaranteed.

DEFINITION 3. We say that 7 is a regular path if R5 () — 0 holds for any N > 0 as
€ tends to zero. Then we write n € R.

For the catalyst process p = X? = XX° with Ky(dr) = vdr, v > 0, we know that p €
C(R., M,) with probability one and moreover, p € R, namely, we observe that the catalyst
X7 has a regular path in the sense of Definition 3. Indeed we prove

LEMMA 6. The realization ps, () is a reqular path with P- probability one.
Proof. Fix N > 0, ¢ € BY. Let us consider the integral
Ss+€ .
L= [ (psrr o pls,air, ) dr. (26)

Since the catalyst p has a continuous density field ys = {yss+4(2)} from Sugitani’s jointly
continuous criterion argument, a locally finite random measure

Af(dt) = yas-i—,&—{—(.)](z)" dt

on R, is naturally determined. Then we have

S+€
I = / dr / o (b)p(s, a;r, b) X7, (db)

= / ©(b)db / s+€p(s,a; r, b)Ag(dr)
— /90 db/ ( (0,a;€,b) +/
< /cp db/ ( (0,a;¢,b) —I—/ Z;-%T

X exp {01(0 —s)— —C—l’g(—(}-—I—s)} da) A2 (dr)

where we made use of elementary properties of fundamental solutions for parabolic equa-

(saab)

da) A (dr)

tions. Moreover, a simple estimation gives
< f(p(b db/ (0, a; £, b) A (dr)

-I—/<,0 db/ (/ Eg_gp((f—«S,b——a)da) Xo(dr)

< /go(b)p 0,a;&,b)\([s,s + €])db

+C’4/cp(b)dbls+6(0—~s) Y5(o — s,b — a)A([s, 0])do
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< [ Co epl6)p(0,0i, Bfisiasiora(®)ad
S+€
+Cy / Cyp-op®)db [ (0 = 8)"1p(0 — 8,b — a)ig1s510)(b)do
because we interchanged the integral order in the above second line. Since we have

s%pgj[s,t](b)app(b) <C'(t—s)* for 0<s<t<N, Ja€e(0,1)
from the Holder modulus estimate in Lemma 5, we continue
< G / p(0,a;¢,b) {Sgp i5+s,5+s+e] (b)sop(b)} db
+G; [ [ = 9) (o —s,b—0) {sgp irassal(®) sop(b)} do
C,C'e™ /P(O, a;e,b)db + Cs / db LSH(J —8)'p(c—s,b—a)-C"(c — ‘s)o‘da

(0 —s)*t (/15(0 —s8,b— a)db) do < Cge®.

IA

+&

S Cﬁ€a+07/s

Therefore, taking Definition 3 into account, from (26) and the above estimate we can
conclude immediately that p € R with P- probability one. Q.E.D.

Then for 0 < € <1 we define a continuous additive functional (CAF) of L- diffusion &£ by

L#(p) = L*(&, p)(dr) == {pr, p(0, 413 €, -)) dr. | (27)

Hence a general theory for additive functionals deduces the existence of the limit L(p) of

{L#(p) }.

PROPOSITION 7. There exists an AF L(p) = L(&,p) of L- diffusion & such that for
any ¢ € C" with I = [0,N], N >0,

t t 2

sup Moo sup | [ 9(r &) L4)(dr) = [ $(r &)L —0 (N\0).  (28)
0<s<N s<t<N |/s s .
acR?

Proof. Take an element ¢ € Ci’[O’N]. Then
the map : t — ¥(t, z)pi(dz)
is a continuous Mp- valued path on [0, N|. Define a continuous AF A® = A°(§,vyp) as

A% (&, 9p)(dr) == ((r,&)pr, p(0,&rs €, ) )dr
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in line with (27). Recall that p belongs to the class R, so that, we observe that

S-+€
sup [ dr [ wir, bp(s, air, b X7 (@)
0<s<N Js

acR?

~ vanishes as € tends to zero for each N > 0. An application of Theorem 4.1 (p.144, [28])
with a slight modification changed into the restriction of

| /de{Y on telo,N],

deduces that there exists a continuous AF A(£,vp) of L- diffusion £ such that

sup IL;, ( sup |A(§,¥p)(s,t) — A(&T/)P)(Si)?) —0 (10 (29)
s,a 0<t<N
for N > 0. On this account, we have only to set
L(p) = L(&, p)(dr) := ¢(r, &)~ - A€, 9p) (dr).
Thus we can assert the existence of AF L(p) of L- diffusion £. Q.E.D.

Furthermore, it is possible to state a stronger result on the above convergence (29). Let h
be a function : [0,1] — R, such that h(u) \, 0 as u — 0. For M € N, ¢ € C?!, define
the set ®(h, M) as

N u ;
{17 eER: /0 7s(1)ds < M, sup | dr/p(s,a; r,b)y(r,b)n,(db) < h(u), Vu <1 }

PROPOSITION 8. The convergence (29) in the above Proposition 7 is uniform on
®(h, M).

Proof. Take a sequence {s(k)} such that s(k) /~ N as k — oco. Set

M; = 11,0 [A%(€, ¥m) (s, 5(c0)) | &uyu < £]

By Markov property we can rewrite it as

My = A%(§, ym)(s, 1) + Iie, A°(§, ¥m) (2, 5(c0)). (30)

Then notice that M; is a nonnegative L?(Ils,)- martingale such that

tlin]\lf Mg = A*(&,yn)(s,N), Il , — a.s.
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Therefore, we may apply the Doob maximal L? inequality to get

M, q(sup | M; — M) |

€'+ Myl A°(€, )5, (00)) — A4°(&, ¥m) (5, 5(0))

< 20 T [ ([ 100,656,6) ~ (0,66 8D b, Er(ab) ) -
cMae, [ ([(0(0,656,8) = (0,656,010, &)l ) dr

IA

< ACITLAE IO Ml |1, [ +pe)dr 11, [wn) «p@ar]| . 6D
Combining (31) with (30) we get
suptl,  sup L44(6,9m)(e,8) = A°E v, or)
< o, [ [ee - penpnaa]|
+O" LA YO, Ml x | L, [ [(le) = pO)pme(@)dr|| . (32)

Hence it is obvious from the fact

iy | 1L, A€, ) (0,5(00)) = TL., [(wm) s ple)ar]| =0

oo

uniformly in 77 € ®(h, M) that the term |||ILA(&,%n)(0, N)|||c is uniformly bounded with
respect to n € ®(h, M), because

. [wnn) < plear

< C(e) -sup [ dr [ p(s, 057,86 (r, by (db)

[e o] s,a

holds. Thus we attain that (32) converges to zero as €,6 — 0 uniformly relative to 7 €
¢(h,M). Q.E.D.

We call L(p) a catalytic BRF. On this account, we can construct the corresponding catalytic
SD X% with branching rate functional L(p). Actually, L(p) is nothing but a diffusive
collision local time (DCLT) in the sense of Barlow-Evans-Perkins [26]. Our L(p) is a
generalization of Brownian collision local time Ly, defined by Dawson-Fleischmann [7].

PROPOSITION 9. For any p € M,, for P, a.a. realization p(w), there exists a
catalytic BRF L(p) = L(&,p) € KP for some 3 > 0.

Proof. From Definition 2 in Section II1.2 it suffices to show that for each N > 0,

t

Mo | ep(&)2L(p)(dr) < Cn - |t — 5[Pp,(a) (33)
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holds for 0 < s <t < N, a € R* for some 3 > 0. By virtue of (b) of Proposition 6, [7] if p
lives in R, then Diffusive CLT L(p) allows to have the expectation formula

Moo [ 9, E)LEP)E) = [ dr [(r,00p(s, 051, () (9

for any ¢ € C?'. By using (34) we can rewrite the left-hand side of (33) into

J = /: dr/gop(b)Qp(s,a; r,b) p,(db). (35)

By the similar argument in the proof of Lemma 6, we proceed to estimate (35), that is,
t
J = /(pp(b)zdb/ (s, a;r, b)Ab(dr)

t r+t—s
< /sop(b)zdb/ (p(O,a;t—s,bH/

< [ o075, a1, )N (s, Db

—a%p(s, a;o,b) da) A (dr)

VAN
S
\
>
—
=
3
—
»
]
\'(“#
=
~
|
=
»
QU
(=]

t

+03/<,0p(b)db (0 —s)"'-p(s,a;0, b)C"(U — s)Pdo
. g t
Coppl(a)|t — s|ﬁ/p(s,a; t,b)db+ C'4/ gop(b)db/ (0 — 8)P1p(s, a; 0, b)do

t
Chepla)lt = sl + Cspl@) [ (0 = 9" ([ 85,050, t)db) do
< Gilt - sPgya)

IA

IA

This completes the proof. Q.E.D.

Since we know that our L(p) lies in K, we may resort to the general construction method
for measure-valued processes with BRF K = L(p) (cf. (7, 17, 18, 20]) to obtain

THEOREM 10. Letd < 3. There exists a unique M,- valued Markov process XtL )
(with BRF L(p)) whose Laplace transition functional is given by

P?, exp(X[P, —p) = exp(u, —u¥(s,1, ) (36)

for an element ¢ of C, x, where the function v = vl¥l(.,¢,.) is the unique solution of

t

v(s,t,a) + 15, V3 (r, t,&)L(p)(dr) = L op(&) (for 0<s<t, ae€ Rd). (37)
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Remark 1. It can be interpreted, in fact, as the particle view that a hidden L- diffusion
particle at position y = &, € R? at time r branches with rate L(¢, p)(dr).

In what follows we consider chiefly the one dimensional case. Let d=1. For any p € My,
the catalyst p = X7 possesses a jointly continuous density field gi(z) on R, x R such that

puld2) = julz)dz

holds for any ¢ > 0 with P,- probability one. While, for any u € M,, for P,- a.a. path
realization p(w), there exists a catalytic BRF L(p) = L(£, p) and it follows that L(p) € K#
for some B > 0. Moreover, when d = 1, L(p) can be expressed precisely by using g;, namely,
a simple limiting computation leads to the representation

L(p)(dr) = pr(&)dr, Hs,a —as. a€R (38)

Therefore, we can construct the corresponding catalytic SD X#4" which is a Markov process
taking values in M,,. Furthermore, its Laplace transition functional is given by

P?, exp(X{Y, —p) = exp{p, —v1¥)(s, 1, -)) (39)

for each P - a.a. realization p, and for any ¢ € C, g. Here P?, is the law of X Pdr and this
X# is called a one dimensional catalytic SD in the catalytic medium p = X7 distributed
by P. Here for any ¢ € C%, t > 0, clearly the solution v = v(.,t,-) of the log-Laplace
equation '

v(s,t,a) +1sq tvz(r,t,ﬁr)ﬁr(@)dr =1IL.p(&) (for 0<s<t, a€cR) (40)

solves uniquely the one dimensional nonlinear parabolic equation

" 8s

’Uls—_-t = (p.

0
{ LA psv?, (0<s<t) (41)

I11.6 Moment Formulae

We have the following moment formulae for catalytic SD XX() with catalytic BRF L(p).
LEMMA 11. For0<s<t, up € M,, and ¢ € BY, we have the expectation formula

PS,u<XtL(p)v Q) = s, (&) = (1, Si-sp) = (Se_spt, @) < +co (42)

where S = (St)i>0 15 the L~ diffusion semigroup.
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Proof. Take a sequence of approximating AFs {K,,} from the Dynkin class K¢ (cf. [20])
such that
Kn /L& p) € K.

From the known formulae (1.22) and (1.23) in [27] for the AF K, € Ko, for ¢ € BY,
m € Mg we can derive the relation

Ps{?rzz(XtKna @) = I m (&) = (M, Si—sp) (43)

for Mp- valued Markov processes XX, K, € Ky, by applying the usual technique [4].
It is possible to extend X¥= to an M,- valued Markov process X“®) by the domination
properties

3161?5}_3(,0(17) < Collellegp(z) (for some Cy > 0)

and 0<wu,(s,z) = ugp}(Kn) < Cipp(z) (for some C; > 0)

for t,s € I C R,: given interval, z € R% Since K, / L(p), based on the monotone
convergence

un \, v (L(p)) = v(s,z)

(by continuity in K of the cumulant equation), we conclude the convergence of the corre-
sponding moment formula from (43). Q.E.D.

Similarly we can easily show

LEMMA 12. For 0 < s < t,u, any p € My, and o, € B, we have the following
covariance formula

COVF ((XE¥, ), (XED, )] = 2L, [ S 0pl€)Su €L ). (40

IV Longtime Asymptotic Behaviors

1V.1  Asymptotic Non-Degeneracy of Positive Solutions

In this section we shall introduce our main result of this paper, which is a limit theorem
on lomg-time asymptotic non-degeneracy of the L!- norm of positive solutions of nonlinear
catalytic equation (41). Let B be a Borel subset of R, and define p? as the catalyst p
starting with the restricted measure po((-) N B) for py € M, given. Set

Cpi=[m,m+1) for meZ,
and decompose p as

p= p°m

meZ
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We may propose the following condition:
(A2) P,(pf™(B(0,|m|/2)) > 0 for some t > 1) =~ O(|m|=2), m #0 (m / 00).
Now we are in a position to state the principal theorem in this paper.

THEOREM 13. Assume (A.1). If SD X7 has a finite time interference property with

L- diffusion &, then for the positive solution v'¥l, ¢ € C,  of (41), there can be found a
positive constant C(p) depending on ¢ such that

Jim Jlu(s, ¢,-)[ly = C(y) > 0. (45)

Otherwise, we have
Jim fu(s, £, )l = 0
iDoo .

Here || - || denotes the L'-norm on R.

Remark 2. The condition (A.2) is nothing but one of the sufficient conditions for the
so-called finite time interference of density field to occur without any additional conditions.

Proof. We assume first that X7 has the finite time interference property. Then note that
there exists a random time 7(s, a,&) such that

pr(ér) =0
holds for any r satisfying
r>71(s,a), IexP,—as &= (w,p)

from our major premise. We have the following Feynman-Kac equation

tAT(5,a) R
(s ) = Metgdesn { - [ e 6} (6)
From (46) we can get upper estimates:

v(r,t,b) <IL (&)

and hence
H’U(S,t, )”1 S ”‘10“1

Consequently, there is a constant C' > 0 such that

u(r,t,b) < C(t — 7(s,0)) 7|l =: C - ®(; 7, ).



122

Therefore, a simple calculation leads to

tAT(s,a) .
vu(s,t,a) > s ap(&) exp {—C / pr(&r)@ (L5 7, w)dr} :
Integrating it with respect to the Lebesgue measure A(da) over R, we obtain

Jim flo(s, )l 2 Jim T xe(€) = llell,

where we employed the Lebesgue type dominated convergence theorem and took advantage
of the monotone convergence of the exponential term

exp{~Co(t) [ pr(&)dr}

[8,tAT]

with Cy(t) = C-®(t) towards one as t approaches to infinity. Summing up, we conclude the
assertion (45). Otherwise, the above-mentioned estimates together with the convergence
theorem yield to the L'-norm degeneracy of positive solution v as a longtime asymptotic
behavior. This completes the proof. Q.E.D.

1V.2  Stochastic Convergence of Catalytic Superdiffusion

THEOREM 14. Assume the same conditions as in Theorem 13. Letd = 1. For Py-a.a.
realization p of catalyst process, the catalytic SD XtL @) converges to the initial Lebesque
measure A in P£ - probability (s > 0) in the p-vague topology in M, as t approaches to
infinity.

Proof. The convergence result (45) in Theorem 13 implies that
—log P2, exp(X,, —p) — (A, )

with (\, @) = |l¢||1 if we take the Laplace functional characterization of X into consid-
eration. Then the followings are true:

(A 9p) Pox (0" Pp) — (XtL(p), ‘Pp)) — 0 (t — o0)
P, ((XF9 0,0 = (XFP, o) (M) = 0 (1= c0).

Hence it follows immediately from the above convergence that
P (IKXED,0p) = (A ipp)| >€) =0 as & — co.

This completes the proof. Q.E.D.
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