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To get matters in perspective, I must begin by mentioning two other
branches of quantum field theory. Renormalized perturbation theory has the
task of making numerical computations of scattering cross sections, these
being the quantities that form the backbone of experimental high energy
physics. Success and failure lie close together. Summing the first few terms of
the perturbation series for quantum electrodynamics gives results in extraor-
dinary agreement with experiment. Applications to the Salam~Weinberg
theory meet with less success whilst the large effective coupling constant in
strong interactions precludes the use of the perturbative methods. Further-
more, the perturbative expansion gives one no idea as to whether there is an
underlying field theory whose scattering theory is governed by the perturba-
tive expansion.

Constructive field theory sets itself the goal of constructing interacting
models based on the ideas of renormalization theory. Again, success and
failure lie close together. It proved possible to construct a whole family of
interacting models in two spacetime dimensions such as the P(¢), models,
the polynomial models. Two models, ¢4 and Y, the quartic interaction and
the Yukawa coupling were constructed in three spacetime dimensions but
the methods did not lead to any theories in the physical four dimensional
spacetime. Instead it is believed that attempts to construct #3 or quantum
electrodynamics in this way actually lead to free field models.

Algebraic quantum field theory was innovative both mathematically and’

physically. The fields f — ¢(f) := [ f(z)$(z)dz as unbounded operator—
valued distributions in Hilbert space were replaced by the net O — F(O)
of algebras of bounded operators that they generate. Here F(O) is to be



regarded as the algebra of bounded operators generated by the ¢(f) with
suppf C O. This allows one to use the well developed theory of bounded
operators on Hilbert space. We also implicitly claim that spacetime enters
only through the assignement of algebras to regions O in spacetime, where
it 1s usual to restrict O to be a double cone, that is the intersection of a
backward light cone in one point with a forward light cone in another. This
changes the way that we look at spacetime.

More important was the recognition that the fundamental object was not
O +— F(O) but a smaller net O — A(O), A(O) C F(O). A(O) is to be
thought of as generated by the observable polynomials in the fields whose
test functions f have supports in O or, alternatively, in terms of its physical
interpretation as being generated by the observables that can be measured
within O.

Algebraic quantum field theory proceeds axiomatically, postulating cer-
tain basic ‘laws’ of physics: local commutativity, positivity of the energy,
duality, the Reeh—Schlieder property, local normality, additivity and the split
property. These laws have a physical interpretation and on the basis of these
laws, or some subset of them, conclusions are drawn about the behaviour of
the system that themselves allow a physical interpretation. This is comple-
mented by studying simple models where these laws can be verified or their
independence demonstrated.

As an illustration let me spell out the law of local commutativity.
A1 Ay = AAy, A € A(0y), Ay € A(Oy), O L O,.

Here O; L O, means that the two regions in question are causally disjoint,
or, as one usually says in Minkowski space, spacelike separated. This law
allows a simple physical interpretation. One knows from elementary quantum
mechanics that you cannot make simultaneous measurements of quantities
that do not commute with one another. In the relativistic setting, this means
that measurements made in O; affect the results of measurements made in the
causal future of ©O;. When O; and O, are causally disjoint, neither intersect
the causal future of the other. Thus the measurements do not interfer with
one another and the observables should commute leading to the above law
of local commutativity.

In general, a field net F does not satisfy this law of local commutativity.
Indeed, I have stressed the distinction between the field net and the observ-
able net and this is a manifestation of the appearance of non-observable
quantities in the field net. However, a simple generalization of local com-
mutativity suffices to describe the spacelike commutation properties of the
fields. A field net has what is called a Zy—grading. That is it is a direct sum
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of two pieces:

F(O) = F,(O)®F_(O).

so that F' € F can be written uniquely as a sum of its Bose and Fermi parts:
F, + F_. Given F; € F(O;) and F; € F(O,) with O; L Oy, we have

P By =Fy Py FiyF\_=F_F F_F =-F F_.

These are referred to as Bose-Fermi commutation relations. Algebraic quan-
tum field theory has succeeded in understanding why this simple generaliza-
tion is sufficient.

Let me now explain a simple but important mathematical construction.
By a state of A we mean a positive normalized linear functional, i.e. A +
w(A) € C is linear, w(A*A) > 0 and w(/) = 1. Then the GNS construction
associates with w a representation 7, of A on a Hilbert space H, with a
cyclic vector €2, such that

w(A) = (Q, 7,(A),), A€A.

Q, is cyclic when ()€, is dense in H,,,.

Thus we can pass from any state w to the more familiar Hilbert space
picture in which the algebra is represented concretely by bounded linear
operators and the state by a vector {2,. Nevertheless, there is an important
difference between this mathematical idea of state on A and the physical idea
of the state of a physical system. In fact, only a small fraction of the states
on A allow a reasonable interpretation as physical states. If, in the above
construction, w is physically relevant then the other states given by density
matrices on H,,

wp(A) := Tr(pm.,(A4)),

are physically relevant and 7, is physically relevant. These other states are
the normal states of the representation 7, and include the special case of a
vector state defined by a unit vector @

we(A) := (P, m,(A)D).

This is seen by taking p to be the projection onto the one dimensional sub-
space spanned by ®.

As states of particular physical relevance we have, in the realm of sta-
tistical physics, the thermal equilibrium states characterized by an inverse
temperature 3 and a chemical potential . In the realm of many body
physics, we have the ground states and in elementary particle physics, the
vacuum state. On the other hand, not all states of relevance to elementary
particle can be normal states of the vacuum representation because, among
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such states, there are states with non—zero baryon or lepton numbers which
must belong to different superselection sectors.

I investigated this phenomenon of superselection sectors in joint work
with S. Doplicher and R. Haag. Our intuition was that states of rclevance
to elementary particle physics should tend rapidly to the vacuum state for
measurements which tend spacelike to infinity. This is the theoretical coun-
terpoint to the experimental efforts to achieve a high vacuum by pumping
out the system and by using lots of concrete to shield from the effects of cos-
mic rays. We decided to select as physically relevant to elementary particle
physics those representations = which satisfy

|0t ~ 70O+, (S)

or, in more detail, if given O € K, there is a unitary Vp such that Vpm(A) =
7%(A)Vo, A € A(O;) and O; and O are causally disjoint. A superselection
sector is now defined as an equivalence class of an irreducible representation
satisfying the selection criterion. Using the term charge generically to denote
a parameter distinguishing a superselction sector from the vacuum sector, we
were able to show that there was a law of charge composition of the form

TQn =@’ - - ",

where all representations involved are irreducible but not necessarily inequiv-
alent. This is also referred to as a fusion rule.

Then there is a law of charge conjugation. Given an irreducible rep-
resentation 7 satisfying the selection criterion, there is another irreducible
representation 7 satisfying the selection criterion and unique up to equiva-
lence such that 7 ® 7 contains n°. If the 1-particle states of a particle are
vector states of m, then the l1-particle states of the antiparticle are vector
states of 7. This gives one the correct definition of antiparticle since particle
and antiparticle can annihilate each other to produce photons and photon
states lie in_the vacuum sector.

Finally, to every sector there is a statistics parameter A € :i:Nl. A= é
means para-Bose statistics of order d, d = 1 being ordinary Bose statistics.
A= —5 means para-Fermi statistics of order d, d = —1 being ordinary Fermi
statistics.

To illustrate the role of parastatistics, we first imagine a world without
electromagnetic interactions. Then a proton cannot be distinguished from a
neutron but must be treated as the same elementary particle, the nucleon.
But the nucleon is then a para-Fermion of order two. A second example
is the quark which is treated as a para-Fermion of order three. The quark
does not manifest itsclf as a particle in the sense of scattering theory but
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appears as a constituent of other elementary particles such as the proton in
the scaling limit.

An alternative description of superselection structure is given by the fol-
lowing result of Doplicher and mysclf. There is a canonical net of field alge-
bras O +— F(0), the original observable net appearing as the fixed-point net
of the action of a compact group G of automorphisms of F: A(Q) = F(O)C.
G, the gauge group, is the group of all automorphisms of F leaving A point-
wise invariant. The representation 7 of A on the vacuum Hilbert space of F
has the form

T = ®,cadim;,

where ¢ runs over the equivalence classses of continuous unitary representa-
tions of G and 7; over the equivalence classes of irreducible representations of
A which satisfy the selection criterion. d; = |—/\ll—| is just the dimension of the
corresponding irreducible representation of G. The superselection structure
is described in terms of the representation theory of G with one exception.
The distinction between Bosonic and Fermionics parts corresponds to sin-
gling out an element & of the centre of G whose square is the identity. The
Bose part of F is the part invariant under %, the Fermi part changes sign. k
is represented by 1 in the representation of G corresponding to a para—Bose
sector and by —1 in that corresponding to a para-Fermi sector.

The selection criterion denoted by (S) above is too restrictive to cover the
cases of physical interest. The importance of the above work is therefore that
it points the way as to how to obtain interesting results from a criterion of
this sort. At this stage Buchholz and Fredenhagen made an important con-
tribution. They showed that if a sector described massive particles as evinced
by the presence of an isolated mass hyperboloid in the energy—momentum
spectrum of the sector, then the corresponding irreducible representation
satisfies the following weaker form of the selection criterion

fct ~mlc  (©).

Here C denotes a spacelike cone, that is a cone based on a double cone with

a vertex spacelike to the double cone. Using their criterion (C), Buchholz’

and Fredenhagen were able to reproduce the results of the above analysis in
space dimensions > 3. '

In deriving the criterion (C), Buchholz and Fredenhagen assume the ab-
sence of massless particles. But there are massless particles in nature. In
particular, the photon has mass zero and the corresponding field, the elec-
tromagnetic field satisfies Gauss’s law according to which the total charge
inside a sphere is the flux of the electric field through the sphere. This im-
plies that when the electric charge associated with a sector is non-zero, the
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electric field always extends to spacelike infinity, being non—zero possibly just
within some spacelike cone. This contradicts (S) but it also contradicts (C)
since (C) is supposed to hold for any choice of spacelike cone (C).

At this point, I would like to mention work that has been going on for a
number of years to find a new selection criterion that is sufficiently general
to include quantum electrodynamics and hence the photon. This work has
been done in collaboration with Buchholz, Doplicher, Morchio and Strocchi.
We propose a new selection criterion (N') whereby states are not localized on
the whole algebra but only on a suitable large subalgebra. The subalgebra is
not invariant under Lorentz transformations and therefore involves singling
out a Lorentz frame. In the case of quantum electrodynamics, the algebra
is supposed to be generated by the O0—component of the electric current and
the magnetic field since these quantities remain localized in contrast to the
electric field. We have a simple model exihibiting sectors satisfying (N) but
not (8) or (C). The key question is of course whether quantum electrody-
namics satisfies (A) and this question is presently under investigation using
renormalized perturbation theory. More than this, matters have reached a
decisive stage. We need to know that Feynmann integrals corresponding to
diagrams with one external zero mass photon vanish off-shell. A negative
result would force us to revise our ideas. A positive result would provide
non—trivial evidence in favour of our hypothesis since the specific form of the
interaction enters into the computations.
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