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Introduction

The appellation “coherent vector” appears in a large number of references in various contexts
with wide applications (see e.g., [5], [13]). In this paper we focus on the so-called “canoni-
cal” coherent vectors generated by annihilation and creation operators of Boson field. For
the simplest case let a and a* denote respectively the annihilation and creation operators
satisfying the canonical commutation relation [a,a*] = I. The Boson Fock space I'(C)
is constructed from the Fock vacuum |0) with the action of the creation operator and is
decomposed into a direct sum of 1-dimensional subspaces spanned by the number vectors

[n) € T(C), n = 0,1,2,---. Then, a (normalized) coherent vector or a coherent state is
defined b
efined by .
|2) = e |0) = e 2N " ——|n), zeC.
n=0 \/__'

It is well known that {|z); z € C} is linearly independent and is overcomplete, i.e., each
¢ € I'(C) admits an expression of the form:

¢=%LM@M¥a 1)

but the density function p(2) is not uniquely specified. The above expression (1) follows also
by the resolution of the identity

1 2,
1= [ e, ©)

where |2)(z| stands for the one-dimensional projection onto the subspace spanned by |2) and
d2z is the Lebesgue measure on C. The above formula (2), due to Klauder [12], has extensive
applications in quantum physics, see e.g., [7], [14], [24]. ’

The main purpose of this paper is to look at a role of coherent vectors systematically
on the basis of white noise theory initiated by Hida [9], for a recent framework of white
noise analysis see e.g., [16], [18]. In fact, we introduce a white noise triple over the complex
Gaussian space by modifying the idea of CKS-space [4] and establish an isomorphism, which
will turn out to be a natural extension of the Segal-Bargmann transform (see [8] for a
concise survey), between the white noise distributions on the real Gaussian space and the
holomorphic distributions on the complex Gaussian space. Then we discuss coherent state



64

represenations of white noise functions and of white noise operators. The characterization
theorems of S-transform (white noise version of the Segal-Bargmann transform) and of
symbols of white noise operators [16], [18], [23] are essential tools during our discussion. Then
the overcompleteness of coherent vectors is discussed along with the inverse S-transform and
the Wick multiplication.

1 White Noise Functions

1.1 Weighted Fock space For a Hilbert space H and a sequence a = {a(n)}%2,
positive numbers we put

To(H) = {¢ = (fa)220; fa € HP™, 9l = Y nla(n)|ful? < oo} ,

n=0

where H®" is the n-fold symmetric tensor power of H. In an obvious manner I'y,(H) becomes
a Hilbert space and is called the weighted Fock space over H. The Boson Fock space is by
definition the special case of a(n) =1 and is denoted by I'(H).

Throughout the paper the weight sequence a = {a(n)}2, is assumed to satisfy the
following conditions in order to guarantee basic properties of white noise operators as well
as the characterization theorems for S-transform and operator symbols:

(Al) 1=0a(0)<a(l)<a(2)<--+

(A2) G,(t) = Z 0(7) t" has an infinite radius of convergence;
n!

n=0

n Gals
= Z t" {inf als) } has a positive radius of convergence;
nla s>0 "

(A4) there exists a constant C; > 0 such that a(n)a(m) < CI*™a(n + m) for any n,m;

Ab5) there exists a constant Cy > 0 such that a(n +m) < CH™a(n)a(m) for any n, m;
2

Examples of such a weight sequence are (n!)? with 0 < 3 < 1, the Bell numbers of order £,
and so on, see [4]. For later use we record some essential properties of G,(t), whose proofs
are straightforward.

Proposition 1.1 Let a = {a(n)} be a positive sequence satisfying conditions (A1)-(AS5)
above and G,(t) the generating function defined therein. Then, for s,t > 0 we have:

(1) Ga(0) =1 and G4(s) < Gu(t) for s < t.
(2) Ga(s)Gal(t) < Ga(Ci(s+1)).

3) G (s+t) < Go(Cy8)Go(Coat).

(4) e G4(t) < Go(s +1).

(5) €' < Ga(t)-

In fact, conditions (A1)—(A5) are not minimum prerequisites and an almost ultimate (but
somehow implicit) description has been investigated in terms of a function G,, see [1], [6].
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1.2 CKS-Space We start with the real Gelfand triple:
E=S8R)Cc H=L*R)C E*=S(R), ' (3)

where the canonical bilinear form on E* x E is denoted by (-, -) and the norm of L?(R) by
|- lo. For p > 0let E, be the Hilbert space obtained by completing E = S(R) with respect
to the norm |€]1, = |A*?£|, where A =1+ ¢* — d?/dt*>. We then have

E = projlim E,, E* = indlim E_,,.

pP—00 p—o0

In general, for a real vector space X the complexification is denoted by X¢. For notational
convenience, the C-bilinear extension on E¢ X E¢ is denoted by the same symbol so that

€2 = (£, €) holds for ¢ € He.
Let T'y(E,) be the weighted Fock space over E,. Then

W =T(E) = proj im ', (E,) | (4)

p—0oo

becomes a nuclear space and we obtain a Gelfand triple:
W =T4(FE) CT'(Hc) CT.(E) =W, (5)

which is called the Cochran-Kuo-Sengupta space or the CKS-space for short [4]. By defini-
tion the topology of W is given by the family of norms:

12+ Zn'a Mfal2e 6= (fa), p>0.

We see by a standard argument that

[o(E) =indlimT\-1(E_,),

p—0o0

where I', (E)* carries the strong dual topology and = stands for a topological linear isomor-
phism. The canonical C-bilinear form on W* x W is denoted by (-, -)). Then

(@ ) =D nl(Fu fn),  ®=(F)eW, é=(fa) W,

n=0

and it holds that
| (@, N | < [|®]|p,—l|llp,+»

where

_S M RE, e=(R)ew

1%, =32 0

—p,—
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1.3 Wiener-Ito6—Segal Isomorphism and Coherent Vectors On the basis of the
Gelfand triple (3) we introduce the Gaussian measure on E* with variance o2, denoted by
1452, by the characteristic function:

oo?lelE/2 _ / €® 0 (dz), €€ E. (6)

We denote simply by p the Gaussian measure on E* with variance o = 1 and by L?(E*, u)
the Hilbert space of C-valued L2-functions on E*. The celebrated Wiener-It6-Segal isomor-
phism is the unitary isomorphism between L?(E*, u) and I'( Hc) uniquely determined by the
correspondence

£®2 ' E@n

¢§(x) = @88/ (1,&?,.. ,7’...) , £ € Ec. (7)

The right hand side in (7) will be denoted by the same symbol ¢¢. We call ¢ an ezponential
vector or a coherent vector. Note that

(¢e, g =M, €,ne€ Eg,

and hence ¢, is not normalized in general.
The next result is easily verified.

Proposition 1.2 {¢¢; &£ € Ec} spans a dense subspace of W = I'o(Ec).

2 Complex White Noise

2.1 Complex Gaussian Space Let u’ be the Gaussian measure on E* with variance
0? = 1/2, see (6). In view of the topological isomorphism Eg & E* x E*, we define a
probability measure v =y’ x 1’ on E§ by

v(dz) = p/(dz)p'(dy), 2=z +iy € E¢.

The probability space (Eg, v) is called the complez Gaussian space [10, Chapter 6]. We write
Z=x —1y for z =z 4 iy € E* +iE*. Here are basic formulae:

/ (O L(dr) = 60 g pe B, O @®)
5
/ (2% 6@ - QEm)(E®", M@+ @My v(d2)
Eg
= Omn m! <€l®®€ﬂ% 771®®77m>» éia N4 € EC' (9)

The proofs are straightforward computation.
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2.2 CKS-Space over Complex Gaussian Space We see by modifying the Wiener—
It6-Segal isomorphism (7) that the correspondence

®2 /N
wg(x) = eﬂ(x,&)—(&ﬁ)ﬂ PN ¢£ = <1’£, §2_" e gn._" .. ) , &€ Eg, (10)
determines a unitary isomorphism:
L*(E*, i) = T(Hg). (11)
Then, ,
L*(Eg,v) = L*(E* i) @ L*(E*, ') 2 T'(Hc) ® I'(Hc), (12)
where functions on E& and on E* x E* are identified in a canonical manner:
o Y(z +iy) = p(x)p(y),  z,y€E*, ¢,9 € LX(E ). (13)

Finally, duplicating the Gelfand triple (5) and using (12) we obtain the CKS-space over the
complex Gaussian space:

D c L*(Eg,v) C DY, (14)
where D =W Q@ W.

By construction W C L?(E*, ) and D C L?(E§,v) consist of equivalence classes of
L?-functions on E* and those on E§, respectively. However, each equivalence class contains
a unique continuous function (continuous version theorem, see e.g., [18, Chapter 1.4]), and
moreover, further analytic properties of the continuos function are examined in a similar
manner as in [17], [22].

Lemma 2.1 For any ¢ = (fm) € I'(He)

o0
wo(z) = D (z®™, fm)
m=0
is defined in L?-sense and ¢ — wy is an isometric map from T'(Hc) into L*(E&, v).
PROOF. By the sdandard argument with (9). First, for f,, € Hg’m the function wp,(2)

(2™ f) is defined in the L2-sense. Then, so is w(z) = > oo_ wm(2). ' i

Let L2(E&, v)aor C L2(EE, v) be the image of the isometric map ¢ +— wy, ¢ € I'(Hg),
introduced in Lemma 2.1. Then, in view of the Wiener—It6—Segal isomorphism L?(E*, u) =
['(Hc) we obtain a unitary isomorphism L2(E*,u) & L*(E&,v)mor. This is the famous
Segal-Bargmann transform [8].

For later use we prove the following

Lemma 2.2 Under the identification L*(E§, v) = T(He)®I'(He) described in (12) we have
the following correspondence:

S 0 CA R T O

i S0 () ) oo ()

where ( € Ec.
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PROOF. Since the identification L*(Eg,v) = I'(He) ® I'(Hc) is characterized by (10)
and (13), we have the correspondence:

n!

(2, ¢V H(7 O~ (6. ') £en n®n
WD) = e NEOCD o geag,— (D)o (L), )

where ¢ = (€ +1)/V?2, ¢’ = (£ —in)/v/2, and €, € Ec. Then the assertion follows from
(17) by Taylor expansion. i

, Note that the right hand sides of (15) and (16) are orthogonal sums with respect to the
norm of I'(E,) @ ['(E,) for any p > 0. Then we have

Lemma 2.3 Let ¢ = (f) € T'(Hc) and w = wy € L*(EE, v) be related as in Lemma 2.1.
Then for any p > 0,

loly =Y "m!fmli=llwl?,
m=0

where ||w ||, stands for the norm of T'(E,) ® ['(E,).

3 Representation of White Noise Functions

3.1 S-transform and Characterization Theorem The S-transform of ® € W* is
. defined by

S(I)(‘g) = <<(I)’ (755»1 § € Ec.

It follows from Proposition 1.2 that the S-transform determines a white noise function
uniquely. In fact, for & = (F,) we have

o0

SB(E) =Y (Fn, "), €€ Ec. (18)

=0

3

Moreover, we have the following fundamental result known as the characterization theorem
for S-transform.

Theorem 3.1 [4] (Characterization for S-transform) A C-valued function F defined on Ec
is the S-transform of a white noise distribution ® € W* if and only if

(F1) for any §,& € Eg, z +— F(2€ + &) is entire holomorphic on C;
(F2) there ezist some C > 0 and p > 0 such that

IF(E)I? <CGa(I€L), €€ Ec.

In that case,
2 ~ _
IR prg,— < CGallA™Es),

for any ¢ > 1/2 such that éa(||A_q||}2{S) < o0o. (This choice is always possible since
1A= lgs — 0 as ¢ — 00.)
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For ¢ € W the S-transform S¢ is naturally extended to a function defined on Eg by
S6(2) = (¢ ¢),  z€ B,

®2 ®n

z yA

b, = <1,z,—2' e ) e W*
: n:

and is also referred as a coherent vector. Then, for ¢ = (f,) we have

where

So(z) = Z (2%, fa), z € E¢.
n=0

From this with Lemma 2.1 it follows that the S-transform restricted to L?(E*, u) is nothing

but the Segal-Bargmann transform. Moreover, for ® = (F,,) € W* consider a formal notation
Q(z) =) (®" F,). (19)

n=0

With the help of Lemmas 2.1-2.3 it is easily verifed that {2 gives rise to a distribution in D*.

Let Dfop, be the subspace of 2 € D* of the form (19). Thus the S-transform S® is extended

to a holomorphic distribution on the complex Gaussian space, which will be denoted by the

same symbol. Summing up,

Theorem 3.2 The S-transform (in the above sense) extends the Segal-Bargmann transform
and is a topological isomorphism from W* onto Djqy,-

A holomorphic distribution Q € Djjoy feels only anti-holomorphic test functions. Let
L*(E&,v)an be the subspace of anti-holomorphic L>-functions, i.e., of all ¢ € L*(Eg,v)
such that ¢ € L*(E&,v)noL. Then for w € Dag = D N LA(EE,v)an given by w(z) =
S o (2%, fn) we have

n=0
00

(Q, w) =D nl(Fy, fa)-

n=0

3.2 Coherent State Representation and Inverse S-transform For any £ € E¢ we
consider

€g(2) = et = ¢§/ﬁ(x)¢i5/ﬁ(y)a z=1z+1y € Eg.
Then, € = ¢/ .5 ® Yie/ v and by definition e, e D= W Q W.

Lemma 3.3 For any p € D* there exists a unique ® € W* such that

S®(&) = (p &) & € Ec. (20)

PROOF. Denote by F(¢) the right hand side of (20). It is obvious that F' satisfies
condition (F1) in Thoerem 3.1. We shall prove (F2). Choosing p > 0 such that || p||_, _ < oo,
we observe

2 2 2
IFEOF < ol el = 1o0Z, - el vz lips

= Hp||2_p,_Ga< :)Ga( 2~ :)

V2

£
V2
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In view of Proposition 1.1 (2) we have

SRR

where p = ||A7}|op = 1/2. Choose g > 0 such that C;p*® < 1. Then we come to
[P < lpl?, - GallEL,,),

and condition (F2) is fulfilled. Thus, by Thoerem 3.1, F is the S-transform of a white noise
distribution in W*. |

The white noise distribution ® defined as in (20) is denoted by

= /E o(2)6.0(d2)

*
C

2

) < GolC1IE) < GalCr™ E,,),

and is called a coherent state representation.

Theorem 3.4 (Inverse S-transform) For any ® € W*, the S-transform S® being regarded
as a holomorphic distribution on the complex Gaussian space, it holds that

o= S®(2)p,v(dz).
Eg
In particular, every white noise distribution ® admits a coherent state representation.

PROOF. - It follows from Theorem 3.2 that p(z) = S®(z) = Y o2 (2®", F,) belongs to

D* and by Lemma 3.3 there exists a unique ¥ € W* satisfying SU(£) = ((p, €)) for ¢ € Ec.
Now, in view of

SUE) = (o e

o Rn
= Z . (%", F,) <z®", %T> v(dz)
n=0 (o] ’
= > (Fn %) = 59(¢),
. n=0
we see that ® = W. |

The inverse S-transform was discussed in [15], [17] by means of the real Gaussian integral,
and in [2, Chapter 2.5.3] based on a similar idea of holomorphic distributions in a different
context.

4 Representation of White Noise Operators

4.1 White Noise Operators and Characterization of Symbols In general, a con-
tinuous operator from W into W* is referred to as a white noise operator. Let L(W, W*)
denote the space of white noise operators. The symbol of = € L(W, W*) is by definition a
C-valued function on Ec x E¢ defined by

é(ﬁﬂ?) = <<E¢€’ ¢7)>>v 6777 € EC-

The symbol uniquely specifies a white noise operator by Proposition 1.2.
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Theorem 4.1 [3] (Characterization for operator symbols) A function © : Ec X Ec — C is
the symbol of an operator = € LW, W*) if and only if

(O1) for any &, &1,m,m € Ec, (2,w) — ©(2£ + &1, wn+mn) is entire holomorphic on C x C;
(02) there exist constant numbers C > 0 and p > 0 such that

9(&,n)? < CG.([€2)GalInlZ), & n € Ec.

In that case _
120012 1) < CGLUIA™ RO gr P EW, (21)

where q > 1/2 is taken as Go(||A™9||%s) < oo.

4.2 Diagonal Coherent State Representation With each z € E& we associate @, €
L(W, W*) by the formula:

QZ¢ = «¢Z7 ¢>> ¢zv ¢ S W

Note here that both maps z — ¢, € W* and z — Q, € L(W,W*) are continuous. The
symbol of @), is given by

Q:(6,m) = gen(2) = > 2 e By, &meEc. (22)
Then, for z = x + iy we obtain

q&’?($ + Zy) — e(mv€+n>e<y7z(_€+n)) — e(ﬁ,ﬂ)w

(+n)Va@Wi—grn/vaY)- (23)
In other words, g¢,, = €<E’n>¢(5+n)/\/§ ® WVi(_eam/ 3 and hence g, € W@ W = D.

Lemma 4.2 For p € D* there is a unique operator = € L(W, W*) such that

(Ede, du)) = (ps gen))y & n € Ec (24)

The proof is a simple application of Theorem 4.1 and a similar argument as in the proof
of Lemma 3.3, see also [20]. The operator E defined by (24) is denoted by

== [ paQ:v(d (25)
Eg
and is called the diagonal coherent state representation.

Theorem 4.3 [20] Every white noise operator in LW, W*) admits a unique diagonal co-
herent state representation.

PROOF. Here is an outline for the sake of the readers’ convenience, for more details see
[20]. Suppose we are given = € L(W, W*). Then, by Theorem 4.1 there exists a white noise
operator W € L(W, W*) such that

<<E¢§7 ¢77>> = «W(ﬁ(g-{-n)/\/i, ¢z(—£+n)/\/§» e<€’n>7 5777 € EC- (26)
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Using the canonical isomorphism (W ® W)* & L(W, W*), we choose p € (W ® W)* corre-
sponding to W € L(W, W*). Then (26) becomes

(Zde, D) = (P, Presny/vs ® Bieamyva) €7 (27)

By (10), (22) and (23) the functional realization of ¢,y /\/5 ® Gi_ein)/v2 e is equal to
Ve rm/va( @ Wi—erny vz ®)e®™ = denle +iy) = (Qade, 6n)
where z = z + iy € E&. Then (27) is written in a formal integral

(Edes 6 = [ p(a) (Qute, dn) w12

Eg

which means that = admits a diagonal coherent state representation as in (25). The unique-
ness follows from the fact that w is uniquely specified essentially by the symbol of =. |

Corollary 4.4 (Resolution of the identity) It holds that
I= Q. v(dz).
Eg

For the proof we need only to compute the symbols of both sides. We refer to [13] for the
prototype of the above formula and various developments. Some applications of Corollary
4.4 are found in [20], [21].

5 Wick Product and Overcompleteness of Coherent Vectors

5.1 Integral Kernel Operators With each x;,, € (Eg(Hm))* we associate a white noise
operator by a formal integral expression:

Eim(kim) =
= / Kim(S1y -y 81,1, -+ tm)ay, -+ Q5 g, -+ - Qg dS1 - - - dsydty -+ - dby,. (28)

Rl+m
This is called an integral kernel operator. The precise definition is as follows, for more details
see [3], [18, Chapter 4]. Let ¢ = (f,) € W. Then Z; (Kkim)¢ = (gn) is defined by
(n — 1+ m)!

(n—1)!

where ®,, denotes the right contraction of tensor products. It is known that for any x;,, €

(Eg(l+m) )*, the integral kernel operator Z; ,,,(k;m) always belongs to L(W, W*). The symbol
is easily obtained:

=0, 0<n<li gn = "3®mfn~l+ma n >,

By (k) (€,1) = (K, n® @ £&™) m,
Moreover, it is proved [3] that any = € L(W, W*) admits an infinite series expansion:

o0

=Y Eymlfim), (29)

l,m=0

where the right hand side converges in L(W, W*).

(1]
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Lemma 5.1 For F € (EE™)* we have

Zom(F) = [E ) Quds), EmolF) = [ (T F)Quidz). (30

Eg

PrOOF. We put p(z) = (2®™, F). As is easily verified by definition, p € D* and a
white noise operator

E= (2™, F)Q,v(dz)
Eg

is defined. Then the operator symbol is given by

[an

€M = o aea) = [ (27 F) e o(da)
Eg
Then using the orthogonal relation (9), we obtain with no difficulty

(€,m) = (F, €8m) elem ==, (F) (&,7).

The second identity in (30) is obtained by duality. i

[

For F = §, € E* we write naturally z(t) = (2, ;). Then {z(¢)} is the complex white noise
[10]. As a special case of Lemma 5.1, we obtain the diagonal coherent state representation
of the quantum white noise:

ay = /E 2(t) Q-v(dz), af = /E 2(t) Q.v(dz).

5.2 Wick Product of White Noise Functions For ®;,®, € W* there exists a unique
U € W* such that SU(€) = SP¢(€) - SPo(€) for £ € Ec. The verification is simple with the
help of Theorem 3.1. In that case we write ¥ = &; © $,.

Lemma 5.2 For ® € W* fized, the map We : ¢ — P o ¢ is a continuous linear operator
from W into W*.

Proor. We compute the symbol.

(Wade, $n) = (@0 e, 6y) = S(® o) (m)
S®(n) - S¢e(n) = (@, ¢y & (31)

Choosing p > 0 such that || ®||_, = < oo, we come to

|

| (Wade, o) 7 < 112, [l I, €€
< 1@, _ Galln ) elrinl, (32)

where we used a simple inequality: 2| (€, n)| < |€2+ |02 < |¢ lf, +|n |§ Now, with the
help of Proposition 1.1 we see that (32) becomes

| (Wade, o)) [P < 11 @12, - Gal(2In[)GalI€) S N@NZ, - Galln 1) Gall € [psg),
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where g > 0 is taken in such a way that 2| 77| < 2p%|p ]p+q <In ip+ Then the assertion
follows from the characterization theorem for operator symbols (Theorem 4.1). ]

The operator Wg € L(W, W*) defined in Lemma 5.2 is called the Wick multiplication
operator associated with ® € W*.

Theorem 5.3 For any ® € W*,

Wy = S®(z)Q, v(dz). (33)

Ec

PROOF. Let ® = (F,,). Then

z) = Z (z%™, F,)

as an element of D*, see also the proof of Theorem 3.4. Consider the diagonal coherent state
representation:

E= S®(2)Q, v(dz).

Eg
It then follows from Lemma 5.1 that

and therefore,

g Z <Fm, el&m S‘I)( )e (&) = (@, ¢, ) e (€m

This coincides with (31) and hence Z = Wy as desired. : |

The inversion formula for the S-transform is obtained also from Theorem 5.3 and a simple
relation: Wegy =

5.3 Overcompleteness of Coherent Vectors Let Dy deno’re the space of all p € D~
which annihilate Dyp, that is, all p € D* such that {(p, ¢)) = 0 for all ¢ € Dyo, =
DN L*(EE, v)nowL. Recall that (-, -)) is a C-bilinear form by our convention.

Theorem 5.4 For p € D* put

o [ A E), == | p2)@.viaz).

Then the following four conditions are equivalent:

(i) ® = 0;
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Ve
—
=
=5

"
[1

= annihilates the vacuum: Z¢g = 0;

(iv) Z is a quantum stochastic integral against the annihilation process, i.e., there exists
L € E& ® LW, W*) such that

R

PrROOF. (i) = (ii). By Lemma 3.3,

S0(6) = (p ), €€ Ec

Since € € Dyor, the assertion follows immediately.
(i) = (i). It is easily verified that ¢t — ((p, €)) is entire holomorphic on C. Then from
0= S®(t&) = (p, €)) for all z € C it follows that

«,0, wm» =0, wm(z) — <Z®m, §®m>.

This being valid for all £ € Eg, we conclude that p € Dyy.

(il) <= (iii) is obvious from Q,¢g = ¢,.

(il) <= (iv). Let 2 = Y75 _oEim(kim) be the expansion of the form (29). Then
condition (iii) is equivalent to ((Zdg, ¢n)) = £(0.n) = 0 for all n € Ec, that is,

(1)

(0777) = Z <’Ql,0> 77®l> =0, ne Ec.
=0 '

This is equivalent to ko = 0 for all { > 0. Therefore = is a sum of integral kernel operators
involving one or more annihilation operators. Then by a similar argument as in [19, Section
6] we see that such an operator is a quantum stochastic integral (in a broad sense) against
the annihilation process. 3 |

Corollary 5.5 Let ® € W*. Then for p € D* a coherent state representation:

¢ = / p(2)¢, v(dz)
Eg

holds if and only if .

p = p1+ p2, p1 € Dag, P2 € Din,

with

pi(z) = S®(2).
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